123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067 |
- /*
- Open Asset Import Library (assimp)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2010, assimp team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file IFCGeometry.cpp
- * @brief Geometry conversion and synthesis for IFC
- */
- #include "AssimpPCH.h"
- #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
- #include "IFCUtil.h"
- #include "PolyTools.h"
- #include "ProcessHelper.h"
- #include "../contrib/poly2tri/poly2tri/poly2tri.h"
- #include "../contrib/clipper/clipper.hpp"
- #include <iterator>
- namespace Assimp {
- namespace IFC {
- using ClipperLib::ulong64;
- // XXX use full -+ range ...
- const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
- //#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
- #define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
- #define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
- // ------------------------------------------------------------------------------------------------
- bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
- {
- size_t cnt = 0;
- BOOST_FOREACH(const IfcCartesianPoint& c, loop.Polygon) {
- IfcVector3 tmp;
- ConvertCartesianPoint(tmp,c);
- meshout.verts.push_back(tmp);
- ++cnt;
- }
- meshout.vertcnt.push_back(cnt);
- // zero- or one- vertex polyloops simply ignored
- if (meshout.vertcnt.back() > 1) {
- return true;
- }
-
- if (meshout.vertcnt.back()==1) {
- meshout.vertcnt.pop_back();
- meshout.verts.pop_back();
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void ComputePolygonNormals(const TempMesh& meshout, std::vector<IfcVector3>& normals, bool normalize = true, size_t ofs = 0)
- {
- size_t max_vcount = 0;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
- for(iit = begin; iit != end; ++iit) {
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
- std::vector<IfcFloat> temp((max_vcount+2)*4);
- normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
- // `NewellNormal()` currently has a relatively strange interface and need to
- // re-structure things a bit to meet them.
- size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
- for(iit = begin; iit != end; vidx += *iit++) {
- if (!*iit) {
- normals.push_back(IfcVector3());
- continue;
- }
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = meshout.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- #ifdef _DEBUG
- temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
- #endif
- ++cnt;
- }
- normals.push_back(IfcVector3());
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
- }
- if(normalize) {
- BOOST_FOREACH(IfcVector3& n, normals) {
- n.Normalize();
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- // Compute the normal of the last polygon in the given mesh
- IfcVector3 ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
- {
- size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
- std::vector<IfcFloat> temp((total+2)*3);
- for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
- const IfcVector3& v = inmesh.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- }
- IfcVector3 nor;
- NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
- return normalize ? nor.Normalize() : nor;
- }
- // ------------------------------------------------------------------------------------------------
- void FixupFaceOrientation(TempMesh& result)
- {
- const IfcVector3 vavg = result.Center();
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(result,normals);
- size_t c = 0, ofs = 0;
- BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
- if (cnt>2){
- const IfcVector3& thisvert = result.verts[c];
- if (normals[ofs]*(thisvert-vavg) < 0) {
- std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
- }
- }
- c += cnt;
- ++ofs;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void RecursiveMergeBoundaries(TempMesh& final_result, const TempMesh& in, const TempMesh& boundary, std::vector<IfcVector3>& normals, const IfcVector3& nor_boundary)
- {
- ai_assert(in.vertcnt.size() >= 1);
- ai_assert(boundary.vertcnt.size() == 1);
- std::vector<unsigned int>::const_iterator end = in.vertcnt.end(), begin=in.vertcnt.begin(), iit, best_iit;
- TempMesh out;
- // iterate through all other bounds and find the one for which the shortest connection
- // to the outer boundary is actually the shortest possible.
- size_t vidx = 0, best_vidx_start = 0;
- size_t best_ofs, best_outer = boundary.verts.size();
- IfcFloat best_dist = 1e10;
- for(std::vector<unsigned int>::const_iterator iit = begin; iit != end; vidx += *iit++) {
-
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = in.verts[vidx+vofs];
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const IfcVector3& o = boundary.verts[outer];
- const IfcFloat d = (o-v).SquareLength();
- if (d < best_dist) {
- best_dist = d;
- best_ofs = vofs;
- best_outer = outer;
- best_iit = iit;
- best_vidx_start = vidx;
- }
- }
- }
- }
- ai_assert(best_outer != boundary.verts.size());
- // now that we collected all vertex connections to be added, build the output polygon
- const size_t cnt = boundary.verts.size() + *best_iit+2;
- out.verts.reserve(cnt);
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const IfcVector3& o = boundary.verts[outer];
- out.verts.push_back(o);
- if (outer == best_outer) {
- for(size_t i = best_ofs; i < *best_iit; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
- // we need the first vertex of the inner polygon twice as we return to the
- // outer loop through the very same connection through which we got there.
- for(size_t i = 0; i <= best_ofs; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
- // reverse face winding if the normal of the sub-polygon points in the
- // same direction as the normal of the outer polygonal boundary
- if (normals[std::distance(begin,best_iit)] * nor_boundary > 0) {
- std::reverse(out.verts.rbegin(),out.verts.rbegin()+*best_iit+1);
- }
- // also append a copy of the initial insertion point to be able to continue the outer polygon
- out.verts.push_back(o);
- }
- }
- out.vertcnt.push_back(cnt);
- ai_assert(out.verts.size() == cnt);
- if (in.vertcnt.size()-std::count(begin,end,0) > 1) {
- // Recursively apply the same algorithm if there are more boundaries to merge. The
- // current implementation is relatively inefficient, though.
-
- TempMesh temp;
-
- // drop the boundary that we just processed
- const size_t dist = std::distance(begin, best_iit);
- TempMesh remaining = in;
- remaining.vertcnt.erase(remaining.vertcnt.begin() + dist);
- remaining.verts.erase(remaining.verts.begin()+best_vidx_start,remaining.verts.begin()+best_vidx_start+*best_iit);
- normals.erase(normals.begin() + dist);
- RecursiveMergeBoundaries(temp,remaining,out,normals,nor_boundary);
- final_result.Append(temp);
- }
- else final_result.Append(out);
- }
- // ------------------------------------------------------------------------------------------------
- void MergePolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = -1)
- {
- // standard case - only one boundary, just copy it to the result vector
- if (inmesh.vertcnt.size() <= 1) {
- result.Append(inmesh);
- return;
- }
- result.vertcnt.reserve(inmesh.vertcnt.size()+result.vertcnt.size());
- // XXX get rid of the extra copy if possible
- TempMesh meshout = inmesh;
- // handle polygons with holes. Our built in triangulation won't handle them as is, but
- // the ear cutting algorithm is solid enough to deal with them if we join the inner
- // holes with the outer boundaries by dummy connections.
- IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
- std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), end=outer_polygon, iit;
- // each hole results in two extra vertices
- result.verts.reserve(meshout.verts.size()+meshout.vertcnt.size()*2+result.verts.size());
- size_t outer_polygon_start = 0;
- // do not normalize 'normals', we need the original length for computing the polygon area
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(meshout,normals,false);
- // see if one of the polygons is a IfcFaceOuterBound (in which case `master_bounds` is its index).
- // sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
- IfcFloat area_outer_polygon = 1e-10f;
- if (master_bounds != (size_t)-1) {
- outer_polygon = begin + master_bounds;
- outer_polygon_start = std::accumulate(begin,outer_polygon,0);
- area_outer_polygon = normals[master_bounds].SquareLength();
- }
- else {
- size_t vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- // find the polygon with the largest area, it must be the outer bound.
- IfcVector3& n = normals[std::distance(begin,iit)];
- const IfcFloat area = n.SquareLength();
- if (area > area_outer_polygon) {
- area_outer_polygon = area;
- outer_polygon = iit;
- outer_polygon_start = vidx;
- }
- }
- }
- ai_assert(outer_polygon != meshout.vertcnt.end());
- std::vector<IfcVector3>& in = meshout.verts;
- // skip over extremely small boundaries - this is a workaround to fix cases
- // in which the number of holes is so extremely large that the
- // triangulation code fails.
- #define IFC_VERTICAL_HOLE_SIZE_THRESHOLD 0.000001f
- size_t vidx = 0, removed = 0, index = 0;
- const IfcFloat threshold = area_outer_polygon * IFC_VERTICAL_HOLE_SIZE_THRESHOLD;
- for(iit = begin; iit != end ;++index) {
- const IfcFloat sqlen = normals[index].SquareLength();
- if (sqlen < threshold) {
- std::vector<IfcVector3>::iterator inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
-
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
- *iit++ = 0;
- ++removed;
- IFCImporter::LogDebug("skip small hole below threshold");
- }
- else {
- normals[index] /= sqrt(sqlen);
- vidx += *iit++;
- }
- }
- // see if one or more of the hole has a face that lies directly on an outer bound.
- // this happens for doors, for example.
- vidx = 0;
- for(iit = begin; ; vidx += *iit++) {
- next_loop:
- if (iit == end) {
- break;
- }
- if (iit == outer_polygon) {
- continue;
- }
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- if (!*iit) {
- continue;
- }
- const size_t next = (vofs+1)%*iit;
- const IfcVector3& v = in[vidx+vofs], &vnext = in[vidx+next],&vd = (vnext-v).Normalize();
- for(size_t outer = 0; outer < *outer_polygon; ++outer) {
- const IfcVector3& o = in[outer_polygon_start+outer], &onext = in[outer_polygon_start+(outer+1)%*outer_polygon], &od = (onext-o).Normalize();
- if (fabs(vd * od) > 1.f-1e-6f && (onext-v).Normalize() * vd > 1.f-1e-6f && (onext-v)*(o-v) < 0) {
- IFCImporter::LogDebug("got an inner hole that lies partly on the outer polygonal boundary, merging them to a single contour");
- // in between outer and outer+1 insert all vertices of this loop, then drop the original altogether.
- std::vector<IfcVector3> tmp(*iit);
- const size_t start = (v-o).SquareLength() > (vnext-o).SquareLength() ? vofs : next;
- std::vector<IfcVector3>::iterator inbase = in.begin()+vidx, it = std::copy(inbase+start, inbase+*iit,tmp.begin());
- std::copy(inbase, inbase+start,it);
- std::reverse(tmp.begin(),tmp.end());
- in.insert(in.begin()+outer_polygon_start+(outer+1)%*outer_polygon,tmp.begin(),tmp.end());
- vidx += outer_polygon_start<vidx ? *iit : 0;
- inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
-
- *outer_polygon += tmp.size();
- *iit++ = 0;
- ++removed;
- goto next_loop;
- }
- }
- }
- }
- if ( meshout.vertcnt.size() - removed <= 1) {
- result.Append(meshout);
- return;
- }
- // extract the outer boundary and move it to a separate mesh
- TempMesh boundary;
- boundary.vertcnt.resize(1,*outer_polygon);
- boundary.verts.resize(*outer_polygon);
- std::vector<IfcVector3>::iterator b = in.begin()+outer_polygon_start;
- std::copy(b,b+*outer_polygon,boundary.verts.begin());
- in.erase(b,b+*outer_polygon);
- std::vector<IfcVector3>::iterator norit = normals.begin()+std::distance(meshout.vertcnt.begin(),outer_polygon);
- const IfcVector3 nor_boundary = *norit;
- normals.erase(norit);
- meshout.vertcnt.erase(outer_polygon);
- // keep merging the closest inner boundary with the outer boundary until no more boundaries are left
- RecursiveMergeBoundaries(result,meshout,boundary,normals,nor_boundary);
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
- {
- BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
- // size_t ob = -1, cnt = 0;
- TempMesh meshout;
- BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
-
- // XXX implement proper merging for polygonal loops
- if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
- if(ProcessPolyloop(*polyloop, meshout,conv)) {
- //if(bound.ToPtr<IfcFaceOuterBound>()) {
- // ob = cnt;
- //}
- //++cnt;
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is " + bound.Bound->GetClassName());
- continue;
- }
- /*if(!IsTrue(bound.Orientation)) {
- size_t c = 0;
- BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
- std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
- cnt += c;
- }
- }*/
- }
- MergePolygonBoundaries(result,meshout);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
- {
- TempMesh meshout;
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- IfcVector3 axis, pos;
- ConvertAxisPlacement(axis,pos,solid.Axis);
- IfcMatrix4 tb0,tb1;
- IfcMatrix4::Translation(pos,tb0);
- IfcMatrix4::Translation(-pos,tb1);
- const std::vector<IfcVector3>& in = meshout.verts;
- const size_t size=in.size();
-
- bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- const IfcFloat max_angle = solid.Angle*conv.angle_scale;
- if(fabs(max_angle) < 1e-3) {
- if(has_area) {
- result = meshout;
- }
- return;
- }
- const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
- const IfcFloat delta = max_angle/cnt_segments;
- has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
-
- result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
- result.vertcnt.reserve(size*cnt_segments+2);
- IfcMatrix4 rot;
- rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1;
- size_t base = 0;
- std::vector<IfcVector3>& out = result.verts;
- // dummy data to simplify later processing
- for(size_t i = 0; i < size; ++i) {
- out.insert(out.end(),4,in[i]);
- }
- for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- result.vertcnt.push_back(4);
- const IfcVector3& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
- out.push_back(base_0);
- out.push_back(base_1);
- out.push_back(rot*base_1);
- out.push_back(rot*base_0);
- }
- base += size*4;
- }
- out.erase(out.begin(),out.begin()+size*4);
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- base -= size*8;
- for(size_t i = size; i--; ) {
- out.push_back(out[base+i*4+3]);
- }
- for(size_t i = 0; i < size; ++i ) {
- out.push_back(out[i*4]);
- }
- result.vertcnt.push_back(size);
- result.vertcnt.push_back(size);
- }
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
-
- result.Transform(trafo);
- IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv)
- {
- const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
- if(!curve) {
- IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
- return;
- }
- const std::vector<IfcVector3>& in = result.verts;
- const size_t size=in.size();
- const unsigned int cnt_segments = 16;
- const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
- const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam);
- result.verts.reserve(cnt_segments * samples * 4);
- result.vertcnt.reserve((cnt_segments - 1) * samples);
- std::vector<IfcVector3> points;
- points.reserve(cnt_segments * samples);
- TempMesh temp;
- curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam);
- const std::vector<IfcVector3>& curve_points = temp.verts;
- if(curve_points.empty()) {
- IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
- return;
- }
- IfcVector3 current = curve_points[0];
- IfcVector3 previous = current;
- IfcVector3 next;
- IfcVector3 startvec;
- startvec.x = 1.0f;
- startvec.y = 1.0f;
- startvec.z = 1.0f;
- unsigned int last_dir = 0;
- // generate circles at the sweep positions
- for(size_t i = 0; i < samples; ++i) {
- if(i != samples - 1) {
- next = curve_points[i + 1];
- }
- // get a direction vector reflecting the approximate curvature (i.e. tangent)
- IfcVector3 d = (current-previous) + (next-previous);
-
- d.Normalize();
- // figure out an arbitrary point q so that (p-q) * d = 0,
- // try to maximize ||(p-q)|| * ||(p_last-q_last)||
- IfcVector3 q;
- bool take_any = false;
- for (unsigned int i = 0; i < 2; ++i, take_any = true) {
- if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) {
- q.y = startvec.y;
- q.z = startvec.z;
- q.x = -(d.y * q.y + d.z * q.z) / d.x;
- last_dir = 0;
- break;
- }
- else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) {
- q.x = startvec.x;
- q.z = startvec.z;
- q.y = -(d.x * q.x + d.z * q.z) / d.y;
- last_dir = 1;
- break;
- }
- else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) {
- q.y = startvec.y;
- q.x = startvec.x;
- q.z = -(d.y * q.y + d.x * q.x) / d.z;
- last_dir = 2;
- break;
- }
- }
- q *= solid.Radius / q.Length();
- startvec = q;
- // generate a rotation matrix to rotate q around d
- IfcMatrix4 rot;
- IfcMatrix4::Rotation(deltaAngle,d,rot);
- for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
- points.push_back(q + current);
- }
- previous = current;
- current = next;
- }
- // make quads
- for(size_t i = 0; i < samples - 1; ++i) {
- const aiVector3D& this_start = points[ i * cnt_segments ];
- // locate corresponding point on next sample ring
- unsigned int best_pair_offset = 0;
- float best_distance_squared = 1e10f;
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
- const float l = (p-this_start).SquareLength();
- if(l < best_distance_squared) {
- best_pair_offset = seg;
- best_distance_squared = l;
- }
- }
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
- result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
- result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
- result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
- IfcVector3& v1 = *(result.verts.end()-1);
- IfcVector3& v2 = *(result.verts.end()-2);
- IfcVector3& v3 = *(result.verts.end()-3);
- IfcVector3& v4 = *(result.verts.end()-4);
- if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
- std::swap(v4, v1);
- std::swap(v3, v2);
- }
- result.vertcnt.push_back(4);
- }
- }
- IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh) {
- const std::vector<IfcVector3>& out = curmesh.verts;
- IfcMatrix3 m;
- const size_t s = out.size();
- assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
- const IfcVector3 any_point = out[s-1];
- IfcVector3 nor;
- // The input polygon is arbitrarily shaped, so we might need some tries
- // until we find a suitable normal (and it does not even need to be
- // right in all cases, Newell's algorithm would be the correct one ... ).
- size_t base = s-curmesh.vertcnt.back(), i, j;
- for (i = base; i < s-1; ++i) {
- for (j = i+1; j < s; ++j) {
- nor = -((out[i]-any_point)^(out[j]-any_point));
- if(fabs(nor.Length()) > 1e-8f) {
- goto out;
- }
- }
- }
- assert(0);
- out:
- nor.Normalize();
- IfcVector3 r = (out[i]-any_point);
- r.Normalize();
- // reconstruct orthonormal basis
- IfcVector3 u = r ^ nor;
- u.Normalize();
- m.a1 = r.x;
- m.a2 = r.y;
- m.a3 = r.z;
- m.b1 = u.x;
- m.b2 = u.y;
- m.b3 = u.z;
- m.c1 = nor.x;
- m.c2 = nor.y;
- m.c3 = nor.z;
- return m;
- }
- // ------------------------------------------------------------------------------------------------
- bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors, TempMesh& curmesh)
- {
- std::vector<IfcVector3>& out = curmesh.verts;
- bool result = false;
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh);
- const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
- IfcFloat coord = -1;
- std::vector<IfcVector2> contour_flat;
- contour_flat.reserve(out.size());
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
-
- // Move all points into the new coordinate system, collecting min/max verts on the way
- BOOST_FOREACH(IfcVector3& x, out) {
- const IfcVector3 vv = m * x;
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
- coord = vv.z;
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
- contour_flat.push_back(IfcVector2(vv.x,vv.y));
- }
-
- // With the current code in DerivePlaneCoordinateSpace,
- // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
- // but here we won't rely on this.
- vmax -= vmin;
- // If this happens then the projection must have been wrong.
- assert(vmax.Length());
- ClipperLib::ExPolygons clipped;
- ClipperLib::Polygons holes_union;
- IfcVector3 wall_extrusion;
- bool do_connections = false, first = true;
- try {
- ClipperLib::Clipper clipper_holes;
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- const IfcVector3& outernor = nors[c++];
- const IfcFloat dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
- const std::vector<IfcVector3>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
-
- std::vector<IfcVector2> contour;
- BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) {
- IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
-
- const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord);
- if (first) {
- first = false;
- if (dot > 0.f) {
- do_connections = true;
- wall_extrusion = t.extrusionDir;
- if (is_extruded_side) {
- wall_extrusion = - wall_extrusion;
- }
- }
- }
- // XXX should not be necessary - but it is. Why? For precision reasons?
- vv = is_extruded_side ? vv_extr : vv;
- contour.push_back(IfcVector2(vv.x,vv.y));
- }
- ClipperLib::Polygon hole;
- BOOST_FOREACH(IfcVector2& pip, contour) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
- hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (!ClipperLib::Orientation(hole)) {
- std::reverse(hole.begin(), hole.end());
- // assert(ClipperLib::Orientation(hole));
- }
- /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
- pol_temp[0] = hole;
- ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
- hole = pol_temp2[0];*/
- clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
- }
- clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
- if (holes_union.empty()) {
- return false;
- }
- // Now that we have the big union of all holes, subtract it from the outer contour
- // to obtain the final polygon to feed into the triangulator.
- {
- ClipperLib::Polygon poly;
- BOOST_FOREACH(IfcVector2& pip, contour_flat) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
- poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(poly)) {
- std::reverse(poly.begin(), poly.end());
- }
- clipper_holes.Clear();
- clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
- clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
- clipper_holes.Execute(ClipperLib::ctDifference,clipped,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
- }
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
- + std::string(sx) + ")");
- return false;
- }
- std::vector<IfcVector3> old_verts;
- std::vector<unsigned int> old_vertcnt;
- old_verts.swap(curmesh.verts);
- old_vertcnt.swap(curmesh.vertcnt);
- // add connection geometry to close the adjacent 'holes' for the openings
- // this should only be done from one side of the wall or the polygons
- // would be emitted twice.
- if (false && do_connections) {
- std::vector<IfcVector3> tmpvec;
- BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
- assert(ClipperLib::Orientation(opening));
- tmpvec.clear();
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
- tmpvec.push_back( minv * IfcVector3(
- vmin.x + from_int64(point.X) * vmax.x,
- vmin.y + from_int64(point.Y) * vmax.y,
- coord));
- }
- for(size_t i = 0, size = tmpvec.size(); i < size; ++i) {
- const size_t next = (i+1)%size;
- curmesh.vertcnt.push_back(4);
- const IfcVector3& in_world = tmpvec[i];
- const IfcVector3& next_world = tmpvec[next];
- // Assumptions: no 'partial' openings, wall thickness roughly the same across the wall
- curmesh.verts.push_back(in_world);
- curmesh.verts.push_back(in_world+wall_extrusion);
- curmesh.verts.push_back(next_world+wall_extrusion);
- curmesh.verts.push_back(next_world);
- }
- }
- }
-
- std::vector< std::vector<p2t::Point*> > contours;
- BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) {
-
- contours.clear();
- // Build the outer polygon contour line for feeding into poly2tri
- std::vector<p2t::Point*> contour_points;
- BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) {
- contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
- }
- p2t::CDT* cdt ;
- try {
- // Note: this relies on custom modifications in poly2tri to raise runtime_error's
- // instead if assertions. These failures are not debug only, they can actually
- // happen in production use if the input data is broken. An assertion would be
- // inappropriate.
- cdt = new p2t::CDT(contour_points);
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
-
- // Build the poly2tri inner contours for all holes we got from ClipperLib
- BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) {
-
- contours.push_back(std::vector<p2t::Point*>());
- std::vector<p2t::Point*>& contour = contours.back();
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
- contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
- }
- cdt->AddHole(contour);
- }
-
- try {
- // Note: See above
- cdt->Triangulate();
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
- const std::vector<p2t::Triangle*>& tris = cdt->GetTriangles();
- // Collect the triangles we just produced
- BOOST_FOREACH(p2t::Triangle* tri, tris) {
- for(int i = 0; i < 3; ++i) {
- const IfcVector2& v = IfcVector2(
- static_cast<IfcFloat>( tri->GetPoint(i)->x ),
- static_cast<IfcFloat>( tri->GetPoint(i)->y )
- );
- assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
- const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
- curmesh.verts.push_back(v3);
- }
- curmesh.vertcnt.push_back(3);
- }
- result = true;
- }
- if (!result) {
- // revert -- it's a shame, but better than nothing
- curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
- curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
- IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
- }
- return result;
- }
- // ------------------------------------------------------------------------------------------------
- struct DistanceSorter {
- DistanceSorter(const IfcVector3& base) : base(base) {}
- bool operator () (const TempOpening& a, const TempOpening& b) const {
- return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
- }
- IfcVector3 base;
- };
- // ------------------------------------------------------------------------------------------------
- struct XYSorter {
- // sort first by X coordinates, then by Y coordinates
- bool operator () (const IfcVector2&a, const IfcVector2& b) const {
- if (a.x == b.x) {
- return a.y < b.y;
- }
- return a.x < b.x;
- }
- };
- typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
- typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
- // ------------------------------------------------------------------------------------------------
- void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
- const std::vector< BoundingBox >& bbs,
- std::vector<IfcVector2>& out)
- {
- if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
- return;
- }
- IfcFloat xs = 1e10, xe = 1e10;
- bool found = false;
- // Search along the x-axis until we find an opening
- XYSortedField::iterator start = field.begin();
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if(bb.first.x >= pmax.x) {
- break;
- }
- if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
- xs = bb.first.x;
- xe = bb.second.x;
- found = true;
- break;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(pmax);
- out.push_back(IfcVector2(pmax.x,pmin.y));
- return;
- }
- xs = std::max(pmin.x,xs);
- xe = std::min(pmax.x,xe);
- // see if there's an offset to fill at the top of our quad
- if (xs - pmin.x) {
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xs,pmin.y));
- }
- // search along the y-axis for all openings that overlap xs and our quad
- IfcFloat ylast = pmin.y;
- found = false;
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if (bb.first.x > xs || bb.first.y >= pmax.y) {
- break;
- }
- if (bb.second.y > ylast) {
- found = true;
- const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
- if (ys - ylast > 0.0f) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
- }
- // the following are the window vertices
- /*wnd.push_back(IfcVector2(xs,ys));
- wnd.push_back(IfcVector2(xs,ye));
- wnd.push_back(IfcVector2(xe,ye));
- wnd.push_back(IfcVector2(xe,ys));*/
- ylast = ye;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(IfcVector2(xs,pmin.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xe,pmax.y));
- out.push_back(IfcVector2(xe,pmin.y));
- return;
- }
- if (ylast < pmax.y) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
- }
- // now for the whole rest
- if (pmax.x-xe) {
- QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void InsertWindowContours(const std::vector< BoundingBox >& bbs,
- const std::vector< std::vector<IfcVector2> >& contours,
- const std::vector<TempOpening>& openings,
- const IfcMatrix3& minv,
- const IfcVector2& scale,
- const IfcVector2& offset,
- IfcFloat coord,
- TempMesh& curmesh)
- {
- ai_assert(contours.size() == bbs.size());
- // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
- for(size_t i = 0; i < contours.size();++i) {
- const BoundingBox& bb = bbs[i];
- const std::vector<IfcVector2>& contour = contours[i];
- // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
- // i.e. their contours *are* already their bounding boxes.
- if (contour.size() == 4) {
- std::set<IfcVector2,XYSorter> verts;
- for(size_t n = 0; n < 4; ++n) {
- verts.insert(contour[n]);
- }
- const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
- if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
- && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
- && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
- ) {
- continue;
- }
- }
- const IfcFloat diag = (bb.first-bb.second).Length();
- const IfcFloat epsilon = diag/1000.f;
- // walk through all contour points and find those that lie on the BB corner
- size_t last_hit = -1, very_first_hit = -1;
- IfcVector2 edge;
- for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
- // sanity checking
- if (e == size*2) {
- IFCImporter::LogError("encountered unexpected topology while generating window contour");
- break;
- }
- const IfcVector2& v = contour[n];
- bool hit = false;
- if (fabs(v.x-bb.first.x)<epsilon) {
- edge.x = bb.first.x;
- hit = true;
- }
- else if (fabs(v.x-bb.second.x)<epsilon) {
- edge.x = bb.second.x;
- hit = true;
- }
- if (fabs(v.y-bb.first.y)<epsilon) {
- edge.y = bb.first.y;
- hit = true;
- }
- else if (fabs(v.y-bb.second.y)<epsilon) {
- edge.y = bb.second.y;
- hit = true;
- }
- if (hit) {
- if (last_hit != (size_t)-1) {
- const size_t old = curmesh.verts.size();
- size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
- for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
- // hack: this is to fix cases where opening contours are self-intersecting.
- // Clipper doesn't produce such polygons, but as soon as we're back in
- // our brave new floating-point world, very small distances are consumed
- // by the maximum available precision, leading to self-intersecting
- // polygons. This fix makes concave windows fail even worse, but
- // anyway, fail is fail.
- if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
- continue;
- }
- const IfcVector3 v3 = minv * IfcVector3(offset.x + contour[a].x * scale.x, offset.y + contour[a].y * scale.y, coord);
- curmesh.verts.push_back(v3);
- }
- if (edge != contour[last_hit]) {
- IfcVector2 corner = edge;
- if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
- corner.x = bb.first.x;
- }
- else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
- corner.x = bb.second.x;
- }
- if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
- corner.y = bb.first.y;
- }
- else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
- corner.y = bb.second.y;
- }
- const IfcVector3 v3 = minv * IfcVector3(offset.x + corner.x * scale.x, offset.y + corner.y * scale.y,coord);
- curmesh.verts.push_back(v3);
- }
- else if (cnt == 1) {
- // avoid degenerate polygons (also known as lines or points)
- curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
- }
- if (const size_t d = curmesh.verts.size()-old) {
- curmesh.vertcnt.push_back(d);
- std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
- }
- if (n == very_first_hit) {
- break;
- }
- }
- else {
- very_first_hit = n;
- }
- last_hit = n;
- }
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- void MergeWindowContours (const std::vector<IfcVector2>& a,
- const std::vector<IfcVector2>& b,
- ClipperLib::ExPolygons& out)
- {
- ClipperLib::Clipper clipper;
- ClipperLib::Polygon clip;
- BOOST_FOREACH(const IfcVector2& pip, a) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clip.clear();
- BOOST_FOREACH(const IfcVector2& pip, b) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- }
- // ------------------------------------------------------------------------------------------------
- void CleanupWindowContours(std::vector< std::vector<IfcVector2> >& contours)
- {
- std::vector<IfcVector2> scratch;
- // use polyclipper to clean up window contours as well
- try {
- BOOST_FOREACH(std::vector<IfcVector2>& contour, contours) {
- ClipperLib::Polygon subject;
- ClipperLib::Clipper clipper;
- ClipperLib::ExPolygons clipped;
- BOOST_FOREACH(const IfcVector2& pip, contour) {
- subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- clipper.AddPolygon(subject,ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- // this should yield only one polygon or something went wrong
- if (clipped.size() != 1) {
- // empty polygon? drop the contour altogether
- if(clipped.empty()) {
- contour.clear();
- continue;
- }
- // else: take only the first ...
- IFCImporter::LogError("error during polygon clipping, window contour is not convex");
- }
- scratch.clear();
- BOOST_FOREACH(const ClipperLib::IntPoint& point, clipped[0].outer) {
- scratch.push_back( IfcVector2(from_int64(point.X), from_int64(point.Y)));
- }
- contour.swap(scratch);
- }
- }
- catch (const char* sx) {
- IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
- + std::string(sx) + ")");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh,
- const IfcMatrix3& minv,
- const IfcVector2& scale,
- const IfcVector2& offset,
- IfcFloat coord,
- const std::vector<IfcVector2>& outflat)
- {
- std::vector<IfcVector3> vold;
- std::vector<unsigned int> iold;
- vold.reserve(outflat.size());
- iold.reserve(outflat.size() / 4);
- // Fix the outer contour using polyclipper
- try {
- ClipperLib::Polygon subject;
- ClipperLib::Clipper clipper;
- ClipperLib::ExPolygons clipped;
- ClipperLib::Polygon clip;
- clip.reserve(contour_flat.size());
- BOOST_FOREACH(const IfcVector2& pip, contour_flat) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (!ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
- // We need to run polyclipper on every single quad -- we can't run it one all
- // of them at once or it would merge them all together which would undo all
- // previous steps
- subject.reserve(4);
- size_t cnt = 0;
- BOOST_FOREACH(const IfcVector2& pip, outflat) {
- subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- if (!(++cnt % 4)) {
- if (!ClipperLib::Orientation(subject)) {
- std::reverse(subject.begin(), subject.end());
- }
- clipper.AddPolygon(subject,ClipperLib::ptSubject);
- clipper.AddPolygon(clip,ClipperLib::ptClip);
- clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
- BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
- iold.push_back(ex.outer.size());
- BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
- vold.push_back( minv * IfcVector3(
- offset.x + from_int64(point.X) * scale.x,
- offset.y + from_int64(point.Y) * scale.y,
- coord));
- }
- }
- subject.clear();
- clipped.clear();
- clipper.Clear();
- }
- }
- assert(!(cnt % 4));
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
- + std::string(sx) + ")");
- iold.resize(outflat.size()/4,4);
- BOOST_FOREACH(const IfcVector2& vproj, outflat) {
- const IfcVector3 v3 = minv * IfcVector3(offset.x + vproj.x * scale.x, offset.y + vproj.y * scale.y,coord);
- vold.push_back(v3);
- }
- }
- // undo the projection, generate output quads
- std::swap(vold,curmesh.verts);
- std::swap(iold,curmesh.vertcnt);
- }
- // ------------------------------------------------------------------------------------------------
- bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
- const std::vector<IfcVector3>& nors,
- TempMesh& curmesh)
- {
- std::vector<IfcVector3>& out = curmesh.verts;
- const IfcVector2 one_vec = IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0));
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh);
- const IfcMatrix3& minv = IfcMatrix3(m).Inverse();
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
- IfcFloat coord = -1;
- std::vector<IfcVector2> contour_flat;
- contour_flat.reserve(out.size());
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
- // Move all points into the new coordinate system, collecting min/max verts on the way
- BOOST_FOREACH(IfcVector3& x, out) {
- const IfcVector3& vv = m * x;
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
- coord = vv.z;
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
- contour_flat.push_back(IfcVector2(vv.x,vv.y));
- }
- // With the current code in DerivePlaneCoordinateSpace,
- // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
- // but here we really need this to be accurate, so normalize again.
- vmax -= vmin;
- BOOST_FOREACH(IfcVector2& vv, contour_flat) {
- vv.x = (vv.x - vmin.x) / vmax.x;
- vv.y = (vv.y - vmin.y) / vmax.y;
- // sanity rounding
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- }
- // project all openings into the coordinate system defined by the p+sv*tu plane
- // and compute bounding boxes for them
- std::vector< BoundingBox > bbs;
- std::vector< std::vector<IfcVector2> > contours;
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- std::vector<IfcVector3> profile_verts = t.profileMesh->verts;
- std::vector<unsigned int> profile_vertcnts = t.profileMesh->vertcnt;
- if(profile_verts.size() <= 2) {
- continue;
- }
- IfcVector2 vpmin,vpmax;
- MinMaxChooser<IfcVector2>()(vpmin,vpmax);
- // the opening meshes are real 3D meshes so skip over all faces
- // clearly facing into the wrong direction.
- std::vector<IfcVector2> contour;
- for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {
- const IfcVector3& face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
- (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
- const IfcFloat abs_dot_face_nor = abs(nor * face_nor);
- if (abs_dot_face_nor < 0.5) {
- vi_total += profile_vertcnts[f];
- continue;
- }
- for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
- const IfcVector3& x = profile_verts[vi_total];
- const IfcVector3& v = m * x;
- IfcVector2 vv(v.x, v.y);
- // rescale
- vv.x = (vv.x - vmin.x) / vmax.x;
- vv.y = (vv.y - vmin.y) / vmax.y;
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- vpmin = std::min(vpmin,vv);
- vpmax = std::max(vpmax,vv);
- contour.push_back(vv);
- }
- }
- if(contour.size() <= 2) {
- continue;
- }
- BoundingBox bb = BoundingBox(vpmin,vpmax);
- // see if this BB intersects any other, in which case we could not use the Quadrify()
- // algorithm and would revert to Poly2Tri only.
- for (std::vector<BoundingBox>::iterator it = bbs.begin(); it != bbs.end();) {
- const BoundingBox& ibb = *it;
- if (ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
- ibb.first.y < bb.second.y && ibb.second.y > bb.second.x) {
- // take these two contours and try to merge them. If they overlap (which
- // should not happen, but in fact happens-in-the-real-world [tm] ),
- // resume using a single contour and a single bounding box.
- const std::vector<IfcVector2>& other = contours[std::distance(bbs.begin(),it)];
- ClipperLib::ExPolygons poly;
- MergeWindowContours(contour, other, poly);
- if (poly.size() > 1) {
- IFCImporter::LogWarn("cannot use quadrify algorithm to generate wall openings due to "
- "bounding box overlaps, using poly2tri fallback method");
- return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
- }
- else if (poly.size() == 0) {
- IFCImporter::LogWarn("ignoring duplicate opening");
- contour.clear();
- break;
- }
- else {
- IFCImporter::LogDebug("merging overlapping openings, this should not happen");
- contour.clear();
- BOOST_FOREACH(const ClipperLib::IntPoint& point, poly[0].outer) {
- IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
- vv = std::max(vv,IfcVector2());
- vv = std::min(vv,one_vec);
- contour.push_back( vv );
- }
- bb.first = std::min(bb.first, ibb.first);
- bb.second = std::max(bb.second, ibb.second);
- contours.erase(contours.begin() + std::distance(bbs.begin(),it));
- it = bbs.erase(it);
- continue;
- }
- }
- ++it;
- }
- if(!contour.empty()) {
- contours.push_back(contour);
- bbs.push_back(bb);
- }
- }
- if (bbs.empty()) {
- return false;
- }
- XYSortedField field;
- for (std::vector<BoundingBox>::iterator it = bbs.begin(); it != bbs.end(); ++it) {
- if (field.find((*it).first) != field.end()) {
- IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
- }
- field[(*it).first] = std::distance(bbs.begin(),it);
- }
- std::vector<IfcVector2> outflat;
- outflat.reserve(openings.size()*4);
- QuadrifyPart(IfcVector2(0.f,0.f),IfcVector2(1.f,1.f),field,bbs,outflat);
- ai_assert(!(outflat.size() % 4));
- CleanupOuterContour(contour_flat, curmesh, minv, vmax, vmin, coord, outflat);
- CleanupWindowContours(contours);
- InsertWindowContours(bbs,contours,openings, minv,vmax, vmin, coord, curmesh);
- return true;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
- ConversionData& conv)
- {
- TempMesh meshout;
-
- // First read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
- return;
- }
- IfcVector3 dir;
- ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
- // Outline: assuming that `meshout.verts` is now a list of vertex points forming
- // the underlying profile, extrude along the given axis, forming new
- // triangles.
-
- std::vector<IfcVector3>& in = meshout.verts;
- const size_t size=in.size();
- const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- if(solid.Depth < 1e-3) {
- if(has_area) {
- meshout = result;
- }
- return;
- }
- result.verts.reserve(size*(has_area?4:2));
- result.vertcnt.reserve(meshout.vertcnt.size()+2);
- // First step: transform all vertices into the target coordinate space
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
- BOOST_FOREACH(IfcVector3& v,in) {
- v *= trafo;
- }
-
- IfcVector3 min = in[0];
- dir *= IfcMatrix3(trafo);
- std::vector<IfcVector3> nors;
- const bool openings = !!conv.apply_openings && conv.apply_openings->size();
-
- // Compute the normal vectors for all opening polygons as a prerequisite
- // to TryAddOpenings_Poly2Tri()
- // XXX this belongs into the aforementioned function
- if (openings) {
- if (!conv.settings.useCustomTriangulation) {
- // it is essential to apply the openings in the correct spatial order. The direction
- // doesn't matter, but we would screw up if we started with e.g. a door in between
- // two windows.
- std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
- DistanceSorter(min));
- }
-
- nors.reserve(conv.apply_openings->size());
- BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
- TempMesh& bounds = *t.profileMesh.get();
-
- if (bounds.verts.size() <= 2) {
- nors.push_back(IfcVector3());
- continue;
- }
- nors.push_back(((bounds.verts[2]-bounds.verts[0])^(bounds.verts[1]-bounds.verts[0]) ).Normalize());
- }
- }
-
- TempMesh temp;
- TempMesh& curmesh = openings ? temp : result;
- std::vector<IfcVector3>& out = curmesh.verts;
-
- size_t sides_with_openings = 0;
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
- curmesh.vertcnt.push_back(4);
-
- out.push_back(in[i]);
- out.push_back(in[i]+dir);
- out.push_back(in[next]+dir);
- out.push_back(in[next]);
- if(openings) {
- if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
- ++sides_with_openings;
- }
-
- result.Append(temp);
- temp.Clear();
- }
- }
-
- size_t sides_with_v_openings = 0;
- if(has_area) {
- for(size_t n = 0; n < 2; ++n) {
- for(size_t i = size; i--; ) {
- out.push_back(in[i]+(n?dir:IfcVector3()));
- }
- curmesh.vertcnt.push_back(size);
- if(openings && size > 2) {
- if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
- ++sides_with_v_openings;
- }
- result.Append(temp);
- temp.Clear();
- }
- }
- }
- if(openings && ((sides_with_openings != 2 && sides_with_openings) || (sides_with_v_openings != 2 && sides_with_v_openings))) {
- IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
- }
- IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
- ConversionData& conv)
- {
- if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
- // Do we just collect openings for a parent element (i.e. a wall)?
- // In this case we don't extrude the surface yet, just keep the profile and transform it correctly
- if(conv.collect_openings) {
- boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
- ProcessExtrudedAreaSolid(*solid,*meshtmp,conv);
- /*
- ProcessProfile(swept.SweptArea,*meshtmp,conv);
- IfcMatrix4 m;
- ConvertAxisPlacement(m,solid->Position);
- meshtmp->Transform(m);
- IfcVector3 dir;
- ConvertDirection(dir,solid->ExtrudedDirection); */
- conv.collect_openings->push_back(TempOpening(solid,IfcVector3(0,0,0)
- /* IfcMatrix3(m) * (dir*static_cast<IfcFloat>(solid->Depth)) */,meshtmp));
- return;
- }
- ProcessExtrudedAreaSolid(*solid,meshout,conv);
- }
- else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
- ProcessRevolvedAreaSolid(*rev,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- enum Intersect {
- Intersect_No,
- Intersect_LiesOnPlane,
- Intersect_Yes
- };
- // ------------------------------------------------------------------------------------------------
- Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
- const IfcVector3& e1,
- IfcVector3& out)
- {
- const IfcVector3 pdelta = e0 - p, seg = e1-e0;
- const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
- if (fabs(dotOne) < 1e-6) {
- return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
- }
- const IfcFloat t = dotTwo/dotOne;
- // t must be in [0..1] if the intersection point is within the given segment
- if (t > 1.f || t < 0.f) {
- return Intersect_No;
- }
- out = e0+t*seg;
- return Intersect_Yes;
- }
- // ------------------------------------------------------------------------------------------------
- void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
- {
- if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
- if(clip->Operator != "DIFFERENCE") {
- IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
- return;
- }
- TempMesh meshout;
- const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
- if(!hs) {
- IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
- return;
- }
- const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
- if(!plane) {
- IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
- return;
- }
- if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
- ProcessBoolean(*op0,meshout,conv);
- }
- else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
- ProcessSweptAreaSolid(*swept,meshout,conv);
- }
- else {
- IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
- return;
- }
- // extract plane base position vector and normal vector
- IfcVector3 p,n(0.f,0.f,1.f);
- if (plane->Position->Axis) {
- ConvertDirection(n,plane->Position->Axis.Get());
- }
- ConvertCartesianPoint(p,plane->Position->Location);
- if(!IsTrue(hs->AgreementFlag)) {
- n *= -1.f;
- }
- // clip the current contents of `meshout` against the plane we obtained from the second operand
- const std::vector<IfcVector3>& in = meshout.verts;
- std::vector<IfcVector3>& outvert = result.verts;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin(), end=meshout.vertcnt.end(), iit;
- outvert.reserve(in.size());
- result.vertcnt.reserve(meshout.vertcnt.size());
- unsigned int vidx = 0;
- for(iit = begin; iit != end; vidx += *iit++) {
- unsigned int newcount = 0;
- for(unsigned int i = 0; i < *iit; ++i) {
- const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
- // does the next segment intersect the plane?
- IfcVector3 isectpos;
- const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
- if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
- if ( (e0-p).Normalize()*n > 0 ) {
- outvert.push_back(e0);
- ++newcount;
- }
- }
- else if (isect == Intersect_Yes) {
- if ( (e0-p).Normalize()*n > 0 ) {
- // e0 is on the right side, so keep it
- outvert.push_back(e0);
- outvert.push_back(isectpos);
- newcount += 2;
- }
- else {
- // e0 is on the wrong side, so drop it and keep e1 instead
- outvert.push_back(isectpos);
- ++newcount;
- }
- }
- }
- if (!newcount) {
- continue;
- }
- IfcVector3 vmin,vmax;
- ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
- // filter our IfcFloat points - those may happen if a point lies
- // directly on the intersection line. However, due to IfcFloat
- // precision a bitwise comparison is not feasible to detect
- // this case.
- const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
- FuzzyVectorCompare fz(epsilon);
- std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
- if (e != outvert.end()) {
- newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
- outvert.erase(e,outvert.end());
- }
- if (fz(*( outvert.end()-newcount),outvert.back())) {
- outvert.pop_back();
- --newcount;
- }
- if(newcount > 2) {
- result.vertcnt.push_back(newcount);
- }
- else while(newcount-->0)result.verts.pop_back();
- }
- IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- bool fix_orientation = true;
- TempMesh meshtmp;
- if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
- BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
- try {
- const EXPRESS::ENTITY& e = shell->To<ENTITY>();
- const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
- ProcessConnectedFaceSet(fs,meshtmp,conv);
- }
- catch(std::bad_cast&) {
- IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
- }
- }
- }
- else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,meshtmp,conv);
- }
- else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,meshtmp,conv);
- }
- else if(const IfcSweptDiskSolid* disk = geo.ToPtr<IfcSweptDiskSolid>()) {
- ProcessSweptDiskSolid(*disk,meshtmp,conv);
- fix_orientation = false;
- }
- else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
- }
- else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
- BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,meshtmp,conv);
- }
- }
- else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
- ProcessBoolean(*boolean,meshtmp,conv);
- }
- else if(geo.ToPtr<IfcBoundingBox>()) {
- // silently skip over bounding boxes
- return false;
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcGeometricRepresentationItem entity, type is " + geo.GetClassName());
- return false;
- }
- meshtmp.RemoveAdjacentDuplicates();
- if(fix_orientation) {
- FixupFaceOrientation(meshtmp);
- }
- aiMesh* const mesh = meshtmp.ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = ProcessMaterials(geo,conv);
- mesh_indices.push_back(conv.meshes.size());
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,
- ConversionData& /*conv*/)
- {
- if (!mesh_indices.empty()) {
- // make unique
- std::sort(mesh_indices.begin(),mesh_indices.end());
- std::vector<unsigned int>::iterator it_end = std::unique(mesh_indices.begin(),mesh_indices.end());
- const size_t size = std::distance(mesh_indices.begin(),it_end);
- nd->mNumMeshes = size;
- nd->mMeshes = new unsigned int[nd->mNumMeshes];
- for(unsigned int i = 0; i < nd->mNumMeshes; ++i) {
- nd->mMeshes[i] = mesh_indices[i];
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- bool TryQueryMeshCache(const IfcRepresentationItem& item,
- std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
- if (it != conv.cached_meshes.end()) {
- std::copy((*it).second.begin(),(*it).second.end(),std::back_inserter(mesh_indices));
- return true;
- }
- return false;
- }
- // ------------------------------------------------------------------------------------------------
- void PopulateMeshCache(const IfcRepresentationItem& item,
- const std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- conv.cached_meshes[&item] = mesh_indices;
- }
- // ------------------------------------------------------------------------------------------------
- bool ProcessRepresentationItem(const IfcRepresentationItem& item,
- std::vector<unsigned int>& mesh_indices,
- ConversionData& conv)
- {
- if (!TryQueryMeshCache(item,mesh_indices,conv)) {
- if(ProcessGeometricItem(item,mesh_indices,conv)) {
- if(mesh_indices.size()) {
- PopulateMeshCache(item,mesh_indices,conv);
- }
- }
- else return false;
- }
- return true;
- }
- #undef to_int64
- #undef from_int64
- #undef from_int64_f
- } // ! IFC
- } // ! Assimp
- #endif
|