123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704 |
- /*
- Open Asset Import Library (assimp)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2020, assimp team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file IFCUtil.cpp
- * @brief Implementation of conversion routines for some common Ifc helper entities.
- */
- #ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
- #include "AssetLib/IFC/IFCUtil.h"
- #include "Common/PolyTools.h"
- #include "PostProcessing/ProcessHelper.h"
- #include <assimp/Defines.h>
- namespace Assimp {
- namespace IFC {
- // ------------------------------------------------------------------------------------------------
- void TempOpening::Transform(const IfcMatrix4& mat) {
- if(profileMesh) {
- profileMesh->Transform(mat);
- }
- if(profileMesh2D) {
- profileMesh2D->Transform(mat);
- }
- extrusionDir *= IfcMatrix3(mat);
- }
- // ------------------------------------------------------------------------------------------------
- aiMesh* TempMesh::ToMesh()
- {
- ai_assert(mVerts.size() == std::accumulate(mVertcnt.begin(),mVertcnt.end(),size_t(0)));
- if (mVerts.empty()) {
- return nullptr;
- }
- std::unique_ptr<aiMesh> mesh(new aiMesh());
- // copy vertices
- mesh->mNumVertices = static_cast<unsigned int>(mVerts.size());
- mesh->mVertices = new aiVector3D[mesh->mNumVertices];
- std::copy(mVerts.begin(),mVerts.end(),mesh->mVertices);
- // and build up faces
- mesh->mNumFaces = static_cast<unsigned int>(mVertcnt.size());
- mesh->mFaces = new aiFace[mesh->mNumFaces];
- for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
- aiFace& f = mesh->mFaces[i];
- if (!mVertcnt[n]) {
- --mesh->mNumFaces;
- continue;
- }
- f.mNumIndices = mVertcnt[n];
- f.mIndices = new unsigned int[f.mNumIndices];
- for(unsigned int a = 0; a < f.mNumIndices; ++a) {
- f.mIndices[a] = acc++;
- }
- ++i;
- }
- return mesh.release();
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::Clear()
- {
- mVerts.clear();
- mVertcnt.clear();
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::Transform(const IfcMatrix4& mat)
- {
- for(IfcVector3& v : mVerts) {
- v *= mat;
- }
- }
- // ------------------------------------------------------------------------------
- IfcVector3 TempMesh::Center() const
- {
- return (mVerts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(mVerts.begin(),mVerts.end(),IfcVector3()) / static_cast<IfcFloat>(mVerts.size()));
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::Append(const TempMesh& other)
- {
- mVerts.insert(mVerts.end(),other.mVerts.begin(),other.mVerts.end());
- mVertcnt.insert(mVertcnt.end(),other.mVertcnt.begin(),other.mVertcnt.end());
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::RemoveDegenerates()
- {
- // The strategy is simple: walk the mesh and compute normals using
- // Newell's algorithm. The length of the normals gives the area
- // of the polygons, which is close to zero for lines.
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(normals, false);
- bool drop = false;
- size_t inor = 0;
- std::vector<IfcVector3>::iterator vit = mVerts.begin();
- for (std::vector<unsigned int>::iterator it = mVertcnt.begin(); it != mVertcnt.end(); ++inor) {
- const unsigned int pcount = *it;
- if (normals[inor].SquareLength() < 1e-10f) {
- it = mVertcnt.erase(it);
- vit = mVerts.erase(vit, vit + pcount);
- drop = true;
- continue;
- }
- vit += pcount;
- ++it;
- }
- if(drop) {
- IFCImporter::LogVerboseDebug("removing degenerate faces");
- }
- }
- // ------------------------------------------------------------------------------------------------
- IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
- {
- std::vector<IfcFloat> temp((cnt+2)*3);
- for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
- {
- const IfcVector3& v = vtcs[vofs];
- temp[i++] = v.x;
- temp[i++] = v.y;
- temp[i++] = v.z;
- }
- IfcVector3 nor;
- NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2]);
- return normalize ? nor.Normalize() : nor;
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
- bool normalize,
- size_t ofs) const
- {
- size_t max_vcount = 0;
- std::vector<unsigned int>::const_iterator begin = mVertcnt.begin()+ofs, end = mVertcnt.end(), iit;
- for(iit = begin; iit != end; ++iit) {
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
- std::vector<IfcFloat> temp((max_vcount+2)*4);
- normals.reserve( normals.size() + mVertcnt.size()-ofs );
- // `NewellNormal()` currently has a relatively strange interface and need to
- // re-structure things a bit to meet them.
- size_t vidx = std::accumulate(mVertcnt.begin(),begin,0);
- for(iit = begin; iit != end; vidx += *iit++) {
- if (!*iit) {
- normals.push_back(IfcVector3());
- continue;
- }
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = mVerts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- #ifdef ASSIMP_BUILD_DEBUG
- temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
- #endif
- ++cnt;
- }
- normals.push_back(IfcVector3());
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
- }
- if(normalize) {
- for(IfcVector3& n : normals) {
- n.Normalize();
- }
- }
- }
- // ------------------------------------------------------------------------------------------------
- // Compute the normal of the last polygon in the given mesh
- IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const
- {
- return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize);
- }
- struct CompareVector
- {
- bool operator () (const IfcVector3& a, const IfcVector3& b) const
- {
- IfcVector3 d = a - b;
- IfcFloat eps = 1e-6;
- return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
- }
- };
- struct FindVector
- {
- IfcVector3 v;
- FindVector(const IfcVector3& p) : v(p) { }
- bool operator () (const IfcVector3& p) { return FuzzyVectorCompare(1e-6)(p, v); }
- };
- // ------------------------------------------------------------------------------------------------
- void TempMesh::FixupFaceOrientation()
- {
- const IfcVector3 vavg = Center();
- // create a list of start indices for all faces to allow random access to faces
- std::vector<size_t> faceStartIndices(mVertcnt.size());
- for( size_t i = 0, a = 0; a < mVertcnt.size(); i += mVertcnt[a], ++a )
- faceStartIndices[a] = i;
- // list all faces on a vertex
- std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
- for( size_t a = 0; a < mVertcnt.size(); ++a )
- {
- for( size_t b = 0; b < mVertcnt[a]; ++b )
- facesByVertex[mVerts[faceStartIndices[a] + b]].push_back(a);
- }
- // determine neighbourhood for all polys
- std::vector<size_t> neighbour(mVerts.size(), SIZE_MAX);
- std::vector<size_t> tempIntersect(10);
- for( size_t a = 0; a < mVertcnt.size(); ++a )
- {
- for( size_t b = 0; b < mVertcnt[a]; ++b )
- {
- size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % mVertcnt[a];
- const std::vector<size_t>& facesOnB = facesByVertex[mVerts[ib]];
- const std::vector<size_t>& facesOnNB = facesByVertex[mVerts[nib]];
- // there should be exactly one or two faces which appear in both lists. Our face and the other side
- std::vector<size_t>::iterator sectstart = tempIntersect.begin();
- std::vector<size_t>::iterator sectend = std::set_intersection(
- facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart);
- if( std::distance(sectstart, sectend) != 2 )
- continue;
- if( *sectstart == a )
- ++sectstart;
- neighbour[ib] = *sectstart;
- }
- }
- // now we're getting started. We take the face which is the farthest away from the center. This face is most probably
- // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
- // faces to have the same winding until all faces have been tested.
- std::vector<bool> faceDone(mVertcnt.size(), false);
- while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
- {
- // find the farthest of the remaining faces
- size_t farthestIndex = SIZE_MAX;
- IfcFloat farthestDistance = -1.0;
- for( size_t a = 0; a < mVertcnt.size(); ++a )
- {
- if( faceDone[a] )
- continue;
- IfcVector3 faceCenter = std::accumulate(mVerts.begin() + faceStartIndices[a],
- mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) / IfcFloat(mVertcnt[a]);
- IfcFloat dst = (faceCenter - vavg).SquareLength();
- if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
- }
- // calculate its normal and reverse the poly if its facing towards the mesh center
- IfcVector3 farthestNormal = ComputePolygonNormal(mVerts.data() + faceStartIndices[farthestIndex], mVertcnt[farthestIndex]);
- IfcVector3 farthestCenter = std::accumulate(mVerts.begin() + faceStartIndices[farthestIndex],
- mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0))
- / IfcFloat(mVertcnt[farthestIndex]);
- // We accept a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
- // the file.
- if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
- {
- size_t fsi = faceStartIndices[farthestIndex], fvc = mVertcnt[farthestIndex];
- std::reverse(mVerts.begin() + fsi, mVerts.begin() + fsi + fvc);
- std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
- // because of the neighbour index belonging to the edge starting with the point at the same index, we need to
- // cycle the neighbours through to match the edges again.
- // Before: points A - B - C - D with edge neighbour p - q - r - s
- // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be
- // r q p s
- for( size_t a = 0; a < fvc - 1; ++a )
- std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]);
- }
- faceDone[farthestIndex] = true;
- std::vector<size_t> todo;
- todo.push_back(farthestIndex);
- // go over its neighbour faces recursively and adapt their winding order to match the farthest face
- while( !todo.empty() )
- {
- size_t tdf = todo.back();
- size_t vsi = faceStartIndices[tdf], vc = mVertcnt[tdf];
- todo.pop_back();
- // check its neighbours
- for( size_t a = 0; a < vc; ++a )
- {
- // ignore neighbours if we already checked them
- size_t nbi = neighbour[vsi + a];
- if( nbi == SIZE_MAX || faceDone[nbi] )
- continue;
- const IfcVector3& vp = mVerts[vsi + a];
- size_t nbvsi = faceStartIndices[nbi], nbvc = mVertcnt[nbi];
- std::vector<IfcVector3>::iterator it = std::find_if(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc, FindVector(vp));
- ai_assert(it != mVerts.begin() + nbvsi + nbvc);
- size_t nb_vidx = std::distance(mVerts.begin() + nbvsi, it);
- // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other
- // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need
- // to reverse the neighbour
- nb_vidx = (nb_vidx + 1) % nbvc;
- size_t oursideidx = (a + 1) % vc;
- if( FuzzyVectorCompare(1e-6)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx]) )
- {
- std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc);
- std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
- for (size_t aa = 0; aa < nbvc - 1; ++aa) {
- std::swap(neighbour[nbvsi + aa], neighbour[nbvsi + aa + 1]);
- }
- }
- // either way we're done with the neighbour. Mark it as done and continue checking from there recursively
- faceDone[nbi] = true;
- todo.push_back(nbi);
- }
- }
- // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face
- }
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::RemoveAdjacentDuplicates() {
- bool drop = false;
- std::vector<IfcVector3>::iterator base = mVerts.begin();
- for(unsigned int& cnt : mVertcnt) {
- if (cnt < 2){
- base += cnt;
- continue;
- }
- IfcVector3 vmin,vmax;
- ArrayBounds(&*base, cnt ,vmin,vmax);
- const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
- //const IfcFloat dotepsilon = 1e-9;
- //// look for vertices that lie directly on the line between their predecessor and their
- //// successor and replace them with either of them.
- //for(size_t i = 0; i < cnt; ++i) {
- // IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
- // const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
- // const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
- // if (!l0 || !l1) {
- // continue;
- // }
- // const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));
- // if ( d >= 1.f-dotepsilon ) {
- // v1 = v0;
- // }
- // else if ( d < -1.f+dotepsilon ) {
- // v2 = v1;
- // continue;
- // }
- //}
- // drop any identical, adjacent vertices. this pass will collect the dropouts
- // of the previous pass as a side-effect.
- FuzzyVectorCompare fz(epsilon);
- std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
- if (e != end) {
- cnt -= static_cast<unsigned int>(std::distance(e, end));
- mVerts.erase(e,end);
- drop = true;
- }
- // check front and back vertices for this polygon
- if (cnt > 1 && fz(*base,*(base+cnt-1))) {
- mVerts.erase(base+ --cnt);
- drop = true;
- }
- // removing adjacent duplicates shouldn't erase everything :-)
- ai_assert(cnt>0);
- base += cnt;
- }
- if(drop) {
- IFCImporter::LogVerboseDebug("removing duplicate vertices");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void TempMesh::Swap(TempMesh& other)
- {
- mVertcnt.swap(other.mVertcnt);
- mVerts.swap(other.mVerts);
- }
- // ------------------------------------------------------------------------------------------------
- bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN& in)
- {
- return (std::string)in == "TRUE" || (std::string)in == "T";
- }
- // ------------------------------------------------------------------------------------------------
- IfcFloat ConvertSIPrefix(const std::string& prefix)
- {
- if (prefix == "EXA") {
- return 1e18f;
- }
- else if (prefix == "PETA") {
- return 1e15f;
- }
- else if (prefix == "TERA") {
- return 1e12f;
- }
- else if (prefix == "GIGA") {
- return 1e9f;
- }
- else if (prefix == "MEGA") {
- return 1e6f;
- }
- else if (prefix == "KILO") {
- return 1e3f;
- }
- else if (prefix == "HECTO") {
- return 1e2f;
- }
- else if (prefix == "DECA") {
- return 1e-0f;
- }
- else if (prefix == "DECI") {
- return 1e-1f;
- }
- else if (prefix == "CENTI") {
- return 1e-2f;
- }
- else if (prefix == "MILLI") {
- return 1e-3f;
- }
- else if (prefix == "MICRO") {
- return 1e-6f;
- }
- else if (prefix == "NANO") {
- return 1e-9f;
- }
- else if (prefix == "PICO") {
- return 1e-12f;
- }
- else if (prefix == "FEMTO") {
- return 1e-15f;
- }
- else if (prefix == "ATTO") {
- return 1e-18f;
- }
- else {
- IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
- return 1;
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in)
- {
- out.r = static_cast<float>( in.Red );
- out.g = static_cast<float>( in.Green );
- out.b = static_cast<float>( in.Blue );
- out.a = static_cast<float>( 1.f );
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
- {
- if (const ::Assimp::STEP::EXPRESS::REAL* const r = in.ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
- out.r = out.g = out.b = static_cast<float>(*r);
- if(base) {
- out.r *= static_cast<float>( base->r );
- out.g *= static_cast<float>( base->g );
- out.b *= static_cast<float>( base->b );
- out.a = static_cast<float>( base->a );
- }
- else out.a = 1.0;
- }
- else if (const Schema_2x3::IfcColourRgb* const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) {
- ConvertColor(out,*rgb);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint& in)
- {
- out = IfcVector3();
- for(size_t i = 0; i < in.Coordinates.size(); ++i) {
- out[static_cast<unsigned int>(i)] = in.Coordinates[i];
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertVector(IfcVector3& out, const Schema_2x3::IfcVector& in)
- {
- ConvertDirection(out,in.Orientation);
- out *= in.Magnitude;
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
- {
- out = IfcVector3();
- for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
- out[static_cast<unsigned int>(i)] = in.DirectionRatios[i];
- }
- const IfcFloat len = out.Length();
- if (len<1e-6) {
- IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
- return;
- }
- out /= len;
- }
- // ------------------------------------------------------------------------------------------------
- void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
- {
- out.a1 = x.x;
- out.b1 = x.y;
- out.c1 = x.z;
- out.a2 = y.x;
- out.b2 = y.y;
- out.c2 = y.z;
- out.a3 = z.x;
- out.b3 = z.y;
- out.c3 = z.z;
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D& in)
- {
- IfcVector3 loc;
- ConvertCartesianPoint(loc,in.Location);
- IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
- if (in.Axis) {
- ConvertDirection(z,*in.Axis.Get());
- }
- if (in.RefDirection) {
- ConvertDirection(r,*in.RefDirection.Get());
- }
- IfcVector3 v = r.Normalize();
- IfcVector3 tmpx = z * (v*z);
- x = (v-tmpx).Normalize();
- IfcVector3 y = (z^x);
- IfcMatrix4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,z);
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D& in)
- {
- IfcVector3 loc;
- ConvertCartesianPoint(loc,in.Location);
- IfcVector3 x(1.f,0.f,0.f);
- if (in.RefDirection) {
- ConvertDirection(x,*in.RefDirection.Get());
- }
- const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
- IfcMatrix4::Translation(loc,out);
- AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const Schema_2x3::IfcAxis1Placement& in)
- {
- ConvertCartesianPoint(pos,in.Location);
- if (in.Axis) {
- ConvertDirection(axis,in.Axis.Get());
- }
- else {
- axis = IfcVector3(0.f,0.f,1.f);
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement& in, ConversionData& conv)
- {
- if(const Schema_2x3::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement3D>(conv.db)) {
- ConvertAxisPlacement(out,*pl3);
- }
- else if(const Schema_2x3::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) {
- ConvertAxisPlacement(out,*pl2);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
- }
- }
- // ------------------------------------------------------------------------------------------------
- void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTransformationOperator& op)
- {
- IfcVector3 loc;
- ConvertCartesianPoint(loc,op.LocalOrigin);
- IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
- if (op.Axis1) {
- ConvertDirection(x,*op.Axis1.Get());
- }
- if (op.Axis2) {
- ConvertDirection(y,*op.Axis2.Get());
- }
- if (const Schema_2x3::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3D>()) {
- if(op2->Axis3) {
- ConvertDirection(z,*op2->Axis3.Get());
- }
- }
- IfcMatrix4 locm;
- IfcMatrix4::Translation(loc,locm);
- AssignMatrixAxes(out,x,y,z);
- IfcVector3 vscale;
- if (const Schema_2x3::IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3DnonUniform>()) {
- vscale.x = nuni->Scale?op.Scale.Get():1.f;
- vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
- vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
- }
- else {
- const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
- vscale = IfcVector3(sc,sc,sc);
- }
- IfcMatrix4 s;
- IfcMatrix4::Scaling(vscale,s);
- out = locm * out * s;
- }
- } // ! IFC
- } // ! Assimp
- #endif
|