123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917 |
- /*
- Open Asset Import Library (assimp)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2019, assimp team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /// \file X3DImporter_Geometry3D.cpp
- /// \brief Parsing data from nodes of "Geometry3D" set of X3D.
- /// \date 2015-2016
- /// \author [email protected]
- #ifndef ASSIMP_BUILD_NO_X3D_IMPORTER
- #include "X3DGeoHelper.h"
- #include "X3DImporter.hpp"
- #include "X3DImporter_Macro.hpp"
- #include "X3DXmlHelper.h"
- // Header files, Assimp.
- #include <assimp/StandardShapes.h>
- namespace Assimp {
- // <Box
- // DEF="" ID
- // USE="" IDREF
- // size="2 2 2" SFVec3f [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // />
- // The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and aligned with the local coordinate axes.
- // By default, the box measures 2 units in each dimension, from -1 to +1. The size field specifies the extents of the box along the X-, Y-, and Z-axes
- // respectively and each component value shall be greater than zero.
- void X3DImporter::readBox(XmlNode &node) {
- std::string def, use;
- bool solid = true;
- aiVector3D size(2, 2, 2);
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- X3DXmlHelper::getVector3DAttribute(node, "size", size);
- XmlParser::getBoolAttribute(node, "solid", solid);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Box, ne);
- } else {
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Box, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- X3DGeoHelper::rect_parallel_epiped(size, ((X3DNodeElementGeometry3D *)ne)->Vertices); // get quad list
- ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
- ((X3DNodeElementGeometry3D *)ne)->NumIndices = 4;
- // check for X3DMetadataObject childs.
- if (!isNodeEmpty(node))
- childrenReadMetadata(node, ne, "Box");
- else
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- // <Cone
- // DEF="" ID
- // USE="" IDREF
- // bottom="true" SFBool [initializeOnly]
- // bottomRadius="1" SFloat [initializeOnly]
- // height="2" SFloat [initializeOnly]
- // side="true" SFBool [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // />
- void X3DImporter::readCone(XmlNode &node) {
- std::string use, def;
- bool bottom = true;
- float bottomRadius = 1;
- float height = 2;
- bool side = true;
- bool solid = true;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getBoolAttribute(node, "solid", solid);
- XmlParser::getBoolAttribute(node, "side", side);
- XmlParser::getBoolAttribute(node, "bottom", bottom);
- XmlParser::getFloatAttribute(node, "height", height);
- XmlParser::getFloatAttribute(node, "bottomRadius", bottomRadius);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cone, ne);
- } else {
- const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property
- std::vector<aiVector3D> tvec; // temp array for vertices.
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cone, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- // make cone or parts according to flags.
- if (side) {
- StandardShapes::MakeCone(height, 0, bottomRadius, tess, tvec, !bottom);
- } else if (bottom) {
- StandardShapes::MakeCircle(bottomRadius, tess, tvec);
- height = -(height / 2);
- for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it)
- it->y = height; // y - because circle made in oXZ.
- }
- // copy data from temp array
- for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it)
- ((X3DNodeElementGeometry3D *)ne)->Vertices.push_back(*it);
- ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
- ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
- // check for X3DMetadataObject childs.
- if (!isNodeEmpty(node))
- childrenReadMetadata(node, ne, "Cone");
- else
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- // <Cylinder
- // DEF="" ID
- // USE="" IDREF
- // bottom="true" SFBool [initializeOnly]
- // height="2" SFloat [initializeOnly]
- // radius="1" SFloat [initializeOnly]
- // side="true" SFBool [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // top="true" SFBool [initializeOnly]
- // />
- void X3DImporter::readCylinder(XmlNode &node) {
- std::string use, def;
- bool bottom = true;
- float height = 2;
- float radius = 1;
- bool side = true;
- bool solid = true;
- bool top = true;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getFloatAttribute(node, "radius", radius);
- XmlParser::getBoolAttribute(node, "solid", solid);
- XmlParser::getBoolAttribute(node, "bottom", bottom);
- XmlParser::getBoolAttribute(node, "top", top);
- XmlParser::getBoolAttribute(node, "side", side);
- XmlParser::getFloatAttribute(node, "height", height);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cylinder, ne);
- } else {
- const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property
- std::vector<aiVector3D> tside; // temp array for vertices of side.
- std::vector<aiVector3D> tcir; // temp array for vertices of circle.
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cylinder, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- // make cilynder or parts according to flags.
- if (side) StandardShapes::MakeCone(height, radius, radius, tess, tside, true);
- height /= 2; // height defined for whole cylinder, when creating top and bottom circle we are using just half of height.
- if (top || bottom) StandardShapes::MakeCircle(radius, tess, tcir);
- // copy data from temp arrays
- std::list<aiVector3D> &vlist = ((X3DNodeElementGeometry3D *)ne)->Vertices; // just short alias.
- for (std::vector<aiVector3D>::iterator it = tside.begin(); it != tside.end(); ++it)
- vlist.push_back(*it);
- if (top) {
- for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) {
- (*it).y = height; // y - because circle made in oXZ.
- vlist.push_back(*it);
- }
- } // if(top)
- if (bottom) {
- for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) {
- (*it).y = -height; // y - because circle made in oXZ.
- vlist.push_back(*it);
- }
- } // if(top)
- ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
- ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
- // check for X3DMetadataObject childs.
- if (!isNodeEmpty(node))
- childrenReadMetadata(node, ne, "Cylinder");
- else
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- // <ElevationGrid
- // DEF="" ID
- // USE="" IDREF
- // ccw="true" SFBool [initializeOnly]
- // colorPerVertex="true" SFBool [initializeOnly]
- // creaseAngle="0" SFloat [initializeOnly]
- // height="" MFloat [initializeOnly]
- // normalPerVertex="true" SFBool [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // xDimension="0" SFInt32 [initializeOnly]
- // xSpacing="1.0" SFloat [initializeOnly]
- // zDimension="0" SFInt32 [initializeOnly]
- // zSpacing="1.0" SFloat [initializeOnly]
- // >
- // <!-- ColorNormalTexCoordContentModel -->
- // ColorNormalTexCoordContentModel can contain Color (or ColorRGBA), Normal and TextureCoordinate, in any order. No more than one instance of any single
- // node type is allowed. A ProtoInstance node (with the proper node type) can be substituted for any node in this content model.
- // </ElevationGrid>
- // The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local coordinate system. The geometry is described
- // by a scalar array of height values that specify the height of a surface above each point of the grid. The xDimension and zDimension fields indicate
- // the number of elements of the grid height array in the X and Z directions. Both xDimension and zDimension shall be greater than or equal to zero.
- // If either the xDimension or the zDimension is less than two, the ElevationGrid contains no quadrilaterals.
- void X3DImporter::readElevationGrid(XmlNode &node) {
- std::string use, def;
- bool ccw = true;
- bool colorPerVertex = true;
- float creaseAngle = 0;
- std::vector<float> height;
- bool normalPerVertex = true;
- bool solid = true;
- int32_t xDimension = 0;
- float xSpacing = 1;
- int32_t zDimension = 0;
- float zSpacing = 1;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getBoolAttribute(node, "solid", solid);
- XmlParser::getBoolAttribute(node, "ccw", ccw);
- XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex);
- XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex);
- XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
- X3DXmlHelper::getFloatArrayAttribute(node, "height", height);
- XmlParser::getIntAttribute(node, "xDimension", xDimension);
- XmlParser::getFloatAttribute(node, "xSpacing", xSpacing);
- XmlParser::getIntAttribute(node, "zDimension", zDimension);
- XmlParser::getFloatAttribute(node, "zSpacing", zSpacing);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_ElevationGrid, ne);
- } else {
- if ((xSpacing == 0.0f) || (zSpacing == 0.0f)) throw DeadlyImportError("Spacing in <ElevationGrid> must be grater than zero.");
- if ((xDimension <= 0) || (zDimension <= 0)) throw DeadlyImportError("Dimension in <ElevationGrid> must be grater than zero.");
- if ((size_t)(xDimension * zDimension) != height.size()) DeadlyImportError("Heights count must be equal to \"xDimension * zDimension\" in <ElevationGrid>");
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementElevationGrid(X3DElemType::ENET_ElevationGrid, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- X3DNodeElementElevationGrid &grid_alias = *((X3DNodeElementElevationGrid *)ne); // create alias for conveience
- { // create grid vertices list
- std::vector<float>::const_iterator he_it = height.begin();
- for (int32_t zi = 0; zi < zDimension; zi++) // rows
- {
- for (int32_t xi = 0; xi < xDimension; xi++) // columns
- {
- aiVector3D tvec(xSpacing * xi, *he_it, zSpacing * zi);
- grid_alias.Vertices.push_back(tvec);
- ++he_it;
- }
- }
- } // END: create grid vertices list
- //
- // create faces list. In "coordIdx" format
- //
- // check if we have quads
- if ((xDimension < 2) || (zDimension < 2)) // only one element in dimension is set, create line set.
- {
- ((X3DNodeElementElevationGrid *)ne)->NumIndices = 2; // will be holded as line set.
- for (size_t i = 0, i_e = (grid_alias.Vertices.size() - 1); i < i_e; i++) {
- grid_alias.CoordIdx.push_back(static_cast<int32_t>(i));
- grid_alias.CoordIdx.push_back(static_cast<int32_t>(i + 1));
- grid_alias.CoordIdx.push_back(-1);
- }
- } else // two or more elements in every dimension is set. create quad set.
- {
- ((X3DNodeElementElevationGrid *)ne)->NumIndices = 4;
- for (int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++) // rows
- {
- for (int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++) // columns
- {
- // points direction in face.
- if (ccw) {
- // CCW:
- // 3 2
- // 0 1
- grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi);
- grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1));
- grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1));
- grid_alias.CoordIdx.push_back(fzi * xDimension + fxi);
- } else {
- // CW:
- // 0 1
- // 3 2
- grid_alias.CoordIdx.push_back(fzi * xDimension + fxi);
- grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1));
- grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1));
- grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi);
- } // if(ccw) else
- grid_alias.CoordIdx.push_back(-1);
- } // for(int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++)
- } // for(int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++)
- } // if((xDimension < 2) || (zDimension < 2)) else
- grid_alias.ColorPerVertex = colorPerVertex;
- grid_alias.NormalPerVertex = normalPerVertex;
- grid_alias.CreaseAngle = creaseAngle;
- grid_alias.Solid = solid;
- // check for child nodes
- if (!isNodeEmpty(node)) {
- ParseHelper_Node_Enter(ne);
- for (auto currentChildNode : node.children()) {
- const std::string ¤tChildName = currentChildNode.name();
- // check for X3DComposedGeometryNodes
- if (currentChildName == "Color")
- readColor(currentChildNode);
- else if (currentChildName == "ColorRGBA")
- readColorRGBA(currentChildNode);
- else if (currentChildName == "Normal")
- readNormal(currentChildNode);
- else if (currentChildName == "TextureCoordinate")
- readTextureCoordinate(currentChildNode);
- // check for X3DMetadataObject
- else if (!checkForMetadataNode(currentChildNode))
- skipUnsupportedNode("ElevationGrid", currentChildNode);
- }
- ParseHelper_Node_Exit();
- } // if(!mReader->isEmptyElement())
- else {
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- } // if(!mReader->isEmptyElement()) else
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- template <typename TVector>
- static void GeometryHelper_Extrusion_CurveIsClosed(std::vector<TVector> &pCurve, const bool pDropTail, const bool pRemoveLastPoint, bool &pCurveIsClosed) {
- size_t cur_sz = pCurve.size();
- pCurveIsClosed = false;
- // for curve with less than four points checking is have no sense,
- if (cur_sz < 4) return;
- for (size_t s = 3, s_e = cur_sz; s < s_e; s++) {
- // search for first point of duplicated part.
- if (pCurve[0] == pCurve[s]) {
- bool found = true;
- // check if tail(indexed by b2) is duplicate of head(indexed by b1).
- for (size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++) {
- if (pCurve[b1] != pCurve[b2]) { // points not match: clear flag and break loop.
- found = false;
- break;
- }
- } // for(size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++)
- // if duplicate tail is found then drop or not it depending on flags.
- if (found) {
- pCurveIsClosed = true;
- if (pDropTail) {
- if (!pRemoveLastPoint) s++; // prepare value for iterator's arithmetics.
- pCurve.erase(pCurve.begin() + s, pCurve.end()); // remove tail
- }
- break;
- } // if(found)
- } // if(pCurve[0] == pCurve[s])
- } // for(size_t s = 3, s_e = (cur_sz - 1); s < s_e; s++)
- }
- static aiVector3D GeometryHelper_Extrusion_GetNextY(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed) {
- const size_t spine_idx_last = pSpine.size() - 1;
- aiVector3D tvec;
- if ((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) // at first special cases
- {
- if (pSpine_Closed) { // If the spine curve is closed: The SCP for the first and last points is the same and is found using (spine[1] - spine[n - 2]) to compute the Y-axis.
- // As we even for closed spine curve last and first point in pSpine are not the same: duplicates(spine[n - 1] which are equivalent to spine[0])
- // in tail are removed.
- // So, last point in pSpine is a spine[n - 2]
- tvec = pSpine[1] - pSpine[spine_idx_last];
- } else if (pSpine_PointIdx == 0) { // The Y-axis used for the first point is the vector from spine[0] to spine[1]
- tvec = pSpine[1] - pSpine[0];
- } else { // The Y-axis used for the last point it is the vector from spine[n-2] to spine[n-1]. In our case(see above about dropping tail) spine[n - 1] is
- // the spine[0].
- tvec = pSpine[spine_idx_last] - pSpine[spine_idx_last - 1];
- }
- } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last))
- else { // For all points other than the first or last: The Y-axis for spine[i] is found by normalizing the vector defined by (spine[i+1] - spine[i-1]).
- tvec = pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx - 1];
- } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) else
- return tvec.Normalize();
- }
- static aiVector3D GeometryHelper_Extrusion_GetNextZ(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed,
- const aiVector3D pVecZ_Prev) {
- const aiVector3D zero_vec(0);
- const size_t spine_idx_last = pSpine.size() - 1;
- aiVector3D tvec;
- // at first special cases
- if (pSpine.size() < 3) // spine have not enough points for vector calculations.
- {
- tvec.Set(0, 0, 1);
- } else if (pSpine_PointIdx == 0) // special case: first point
- {
- if (pSpine_Closed) // for calculating use previous point in curve s[n - 2]. In list it's a last point, because point s[n - 1] was removed as duplicate.
- {
- tvec = (pSpine[1] - pSpine[0]) ^ (pSpine[spine_idx_last] - pSpine[0]);
- } else // for not closed curve first and next point(s[0] and s[1]) has the same vector Z.
- {
- bool found = false;
- // As said: "If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments are collinear)
- // then the Z-axis for the first spine point with a defined Z-axis is used."
- // Walk through spine and find Z.
- for (size_t next_point = 2; (next_point <= spine_idx_last) && !found; next_point++) {
- // (pSpine[2] - pSpine[1]) ^ (pSpine[0] - pSpine[1])
- tvec = (pSpine[next_point] - pSpine[next_point - 1]) ^ (pSpine[next_point - 2] - pSpine[next_point - 1]);
- found = !tvec.Equal(zero_vec);
- }
- // if entire spine are collinear then use OZ axis.
- if (!found) tvec.Set(0, 0, 1);
- } // if(pSpine_Closed) else
- } // else if(pSpine_PointIdx == 0)
- else if (pSpine_PointIdx == spine_idx_last) // special case: last point
- {
- if (pSpine_Closed) { // do not forget that real last point s[n - 1] is removed as duplicated. And in this case we are calculating vector Z for point s[n - 2].
- tvec = (pSpine[0] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]);
- // if taken spine vectors are collinear then use previous vector Z.
- if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev;
- } else { // vector Z for last point of not closed curve is previous vector Z.
- tvec = pVecZ_Prev;
- }
- } else // regular point
- {
- tvec = (pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]);
- // if taken spine vectors are collinear then use previous vector Z.
- if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev;
- }
- // After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this value is negative, the Z-axis
- // is flipped (multiplied by -1).
- if ((tvec * pVecZ_Prev) < 0) tvec = -tvec;
- return tvec.Normalize();
- }
- // <Extrusion
- // DEF="" ID
- // USE="" IDREF
- // beginCap="true" SFBool [initializeOnly]
- // ccw="true" SFBool [initializeOnly]
- // convex="true" SFBool [initializeOnly]
- // creaseAngle="0.0" SFloat [initializeOnly]
- // crossSection="1 1 1 -1 -1 -1 -1 1 1 1" MFVec2f [initializeOnly]
- // endCap="true" SFBool [initializeOnly]
- // orientation="0 0 1 0" MFRotation [initializeOnly]
- // scale="1 1" MFVec2f [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // spine="0 0 0 0 1 0" MFVec3f [initializeOnly]
- // />
- void X3DImporter::readExtrusion(XmlNode &node) {
- std::string use, def;
- bool beginCap = true;
- bool ccw = true;
- bool convex = true;
- float creaseAngle = 0;
- std::vector<aiVector2D> crossSection;
- bool endCap = true;
- std::vector<float> orientation;
- std::vector<aiVector2D> scale;
- bool solid = true;
- std::vector<aiVector3D> spine;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getBoolAttribute(node, "beginCap", beginCap);
- XmlParser::getBoolAttribute(node, "ccw", ccw);
- XmlParser::getBoolAttribute(node, "convex", convex);
- XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
- X3DXmlHelper::getVector2DArrayAttribute(node, "crossSection", crossSection);
- XmlParser::getBoolAttribute(node, "endCap", endCap);
- X3DXmlHelper::getFloatArrayAttribute(node, "orientation", orientation);
- X3DXmlHelper::getVector2DArrayAttribute(node, "scale", scale);
- XmlParser::getBoolAttribute(node, "solid", solid);
- X3DXmlHelper::getVector3DArrayAttribute(node, "spine", spine);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Extrusion, ne);
- } else {
- //
- // check if default values must be assigned
- //
- if (spine.size() == 0) {
- spine.resize(2);
- spine[0].Set(0, 0, 0), spine[1].Set(0, 1, 0);
- } else if (spine.size() == 1) {
- throw DeadlyImportError("ParseNode_Geometry3D_Extrusion. Spine must have at least two points.");
- }
- if (crossSection.size() == 0) {
- crossSection.resize(5);
- crossSection[0].Set(1, 1), crossSection[1].Set(1, -1), crossSection[2].Set(-1, -1), crossSection[3].Set(-1, 1), crossSection[4].Set(1, 1);
- }
- { // orientation
- size_t ori_size = orientation.size() / 4;
- if (ori_size < spine.size()) {
- float add_ori[4]; // values that will be added
- if (ori_size == 1) // if "orientation" has one element(means one MFRotation with four components) then use it value for all spine points.
- {
- add_ori[0] = orientation[0], add_ori[1] = orientation[1], add_ori[2] = orientation[2], add_ori[3] = orientation[3];
- } else // else - use default values
- {
- add_ori[0] = 0, add_ori[1] = 0, add_ori[2] = 1, add_ori[3] = 0;
- }
- orientation.reserve(spine.size() * 4);
- for (size_t i = 0, i_e = (spine.size() - ori_size); i < i_e; i++)
- orientation.push_back(add_ori[0]), orientation.push_back(add_ori[1]), orientation.push_back(add_ori[2]), orientation.push_back(add_ori[3]);
- }
- if (orientation.size() % 4) throw DeadlyImportError("Attribute \"orientation\" in <Extrusion> must has multiple four quantity of numbers.");
- } // END: orientation
- { // scale
- if (scale.size() < spine.size()) {
- aiVector2D add_sc;
- if (scale.size() == 1) // if "scale" has one element then use it value for all spine points.
- add_sc = scale[0];
- else // else - use default values
- add_sc.Set(1, 1);
- scale.reserve(spine.size());
- for (size_t i = 0, i_e = (spine.size() - scale.size()); i < i_e; i++)
- scale.push_back(add_sc);
- }
- } // END: scale
- //
- // create and if needed - define new geometry object.
- //
- ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_Extrusion, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- X3DNodeElementIndexedSet &ext_alias = *((X3DNodeElementIndexedSet *)ne); // create alias for conveience
- // assign part of input data
- ext_alias.CCW = ccw;
- ext_alias.Convex = convex;
- ext_alias.CreaseAngle = creaseAngle;
- ext_alias.Solid = solid;
- //
- // How we done it at all?
- // 1. At first we will calculate array of basises for every point in spine(look SCP in ISO-dic). Also "orientation" vector
- // are applied vor every basis.
- // 2. After that we can create array of point sets: which are scaled, transferred to basis of relative basis and at final translated to real position
- // using relative spine point.
- // 3. Next step is creating CoordIdx array(do not forget "-1" delimiter). While creating CoordIdx also created faces for begin and end caps, if
- // needed. While createing CootdIdx is taking in account CCW flag.
- // 4. The last step: create Vertices list.
- //
- bool spine_closed; // flag: true if spine curve is closed.
- bool cross_closed; // flag: true if cross curve is closed.
- std::vector<aiMatrix3x3> basis_arr; // array of basises. ROW_a - X, ROW_b - Y, ROW_c - Z.
- std::vector<std::vector<aiVector3D>> pointset_arr; // array of point sets: cross curves.
- // detect closed curves
- GeometryHelper_Extrusion_CurveIsClosed(crossSection, true, true, cross_closed); // true - drop tail, true - remove duplicate end.
- GeometryHelper_Extrusion_CurveIsClosed(spine, true, true, spine_closed); // true - drop tail, true - remove duplicate end.
- // If both cap are requested and spine curve is closed then we can make only one cap. Because second cap will be the same surface.
- if (spine_closed) {
- beginCap |= endCap;
- endCap = false;
- }
- { // 1. Calculate array of basises.
- aiMatrix4x4 rotmat;
- aiVector3D vecX(0), vecY(0), vecZ(0);
- basis_arr.resize(spine.size());
- for (size_t i = 0, i_e = spine.size(); i < i_e; i++) {
- aiVector3D tvec;
- // get axises of basis.
- vecY = GeometryHelper_Extrusion_GetNextY(i, spine, spine_closed);
- vecZ = GeometryHelper_Extrusion_GetNextZ(i, spine, spine_closed, vecZ);
- vecX = (vecY ^ vecZ).Normalize();
- // get rotation matrix and apply "orientation" to basis
- aiMatrix4x4::Rotation(orientation[i * 4 + 3], aiVector3D(orientation[i * 4], orientation[i * 4 + 1], orientation[i * 4 + 2]), rotmat);
- tvec = vecX, tvec *= rotmat, basis_arr[i].a1 = tvec.x, basis_arr[i].a2 = tvec.y, basis_arr[i].a3 = tvec.z;
- tvec = vecY, tvec *= rotmat, basis_arr[i].b1 = tvec.x, basis_arr[i].b2 = tvec.y, basis_arr[i].b3 = tvec.z;
- tvec = vecZ, tvec *= rotmat, basis_arr[i].c1 = tvec.x, basis_arr[i].c2 = tvec.y, basis_arr[i].c3 = tvec.z;
- } // for(size_t i = 0, i_e = spine.size(); i < i_e; i++)
- } // END: 1. Calculate array of basises
- { // 2. Create array of point sets.
- aiMatrix4x4 scmat;
- std::vector<aiVector3D> tcross(crossSection.size());
- pointset_arr.resize(spine.size());
- for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) {
- aiVector3D tc23vec;
- tc23vec.Set(scale[spi].x, 0, scale[spi].y);
- aiMatrix4x4::Scaling(tc23vec, scmat);
- for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) {
- aiVector3D tvecX, tvecY, tvecZ;
- tc23vec.Set(crossSection[cri].x, 0, crossSection[cri].y);
- // apply scaling to point
- tcross[cri] = scmat * tc23vec;
- //
- // transfer point to new basis
- // calculate coordinate in new basis
- tvecX.Set(basis_arr[spi].a1, basis_arr[spi].a2, basis_arr[spi].a3), tvecX *= tcross[cri].x;
- tvecY.Set(basis_arr[spi].b1, basis_arr[spi].b2, basis_arr[spi].b3), tvecY *= tcross[cri].y;
- tvecZ.Set(basis_arr[spi].c1, basis_arr[spi].c2, basis_arr[spi].c3), tvecZ *= tcross[cri].z;
- // apply new coordinates and translate it to spine point.
- tcross[cri] = tvecX + tvecY + tvecZ + spine[spi];
- } // for(size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; i++)
- pointset_arr[spi] = tcross; // store transferred point set
- } // for(size_t spi = 0, spi_e = spine.size(); spi < spi_e; i++)
- } // END: 2. Create array of point sets.
- { // 3. Create CoordIdx.
- // add caps if needed
- if (beginCap) {
- // add cap as polygon. vertices of cap are places at begin, so just add numbers from zero.
- for (size_t i = 0, i_e = crossSection.size(); i < i_e; i++)
- ext_alias.CoordIndex.push_back(static_cast<int32_t>(i));
- // add delimiter
- ext_alias.CoordIndex.push_back(-1);
- } // if(beginCap)
- if (endCap) {
- // add cap as polygon. vertices of cap are places at end, as for beginCap use just sequence of numbers but with offset.
- size_t beg = (pointset_arr.size() - 1) * crossSection.size();
- for (size_t i = beg, i_e = (beg + crossSection.size()); i < i_e; i++)
- ext_alias.CoordIndex.push_back(static_cast<int32_t>(i));
- // add delimiter
- ext_alias.CoordIndex.push_back(-1);
- } // if(beginCap)
- // add quads
- for (size_t spi = 0, spi_e = (spine.size() - 1); spi <= spi_e; spi++) {
- const size_t cr_sz = crossSection.size();
- const size_t cr_last = crossSection.size() - 1;
- size_t right_col; // hold index basis for points of quad placed in right column;
- if (spi != spi_e)
- right_col = spi + 1;
- else if (spine_closed) // if spine curve is closed then one more quad is needed: between first and last points of curve.
- right_col = 0;
- else
- break; // if spine curve is not closed then break the loop, because spi is out of range for that type of spine.
- for (size_t cri = 0; cri < cr_sz; cri++) {
- if (cri != cr_last) {
- MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex,
- static_cast<int32_t>(spi * cr_sz + cri),
- static_cast<int32_t>(right_col * cr_sz + cri),
- static_cast<int32_t>(right_col * cr_sz + cri + 1),
- static_cast<int32_t>(spi * cr_sz + cri + 1));
- // add delimiter
- ext_alias.CoordIndex.push_back(-1);
- } else if (cross_closed) // if cross curve is closed then one more quad is needed: between first and last points of curve.
- {
- MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex,
- static_cast<int32_t>(spi * cr_sz + cri),
- static_cast<int32_t>(right_col * cr_sz + cri),
- static_cast<int32_t>(right_col * cr_sz + 0),
- static_cast<int32_t>(spi * cr_sz + 0));
- // add delimiter
- ext_alias.CoordIndex.push_back(-1);
- }
- } // for(size_t cri = 0; cri < cr_sz; cri++)
- } // for(size_t spi = 0, spi_e = (spine.size() - 2); spi < spi_e; spi++)
- } // END: 3. Create CoordIdx.
- { // 4. Create vertices list.
- // just copy all vertices
- for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) {
- for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) {
- ext_alias.Vertices.emplace_back(pointset_arr[spi][cri]);
- }
- }
- } // END: 4. Create vertices list.
- //PrintVectorSet("Ext. CoordIdx", ext_alias.CoordIndex);
- //PrintVectorSet("Ext. Vertices", ext_alias.Vertices);
- // check for child nodes
- if (!isNodeEmpty(node))
- childrenReadMetadata(node, ne, "Extrusion");
- else
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- // <IndexedFaceSet
- // DEF="" ID
- // USE="" IDREF
- // ccw="true" SFBool [initializeOnly]
- // colorIndex="" MFInt32 [initializeOnly]
- // colorPerVertex="true" SFBool [initializeOnly]
- // convex="true" SFBool [initializeOnly]
- // coordIndex="" MFInt32 [initializeOnly]
- // creaseAngle="0" SFFloat [initializeOnly]
- // normalIndex="" MFInt32 [initializeOnly]
- // normalPerVertex="true" SFBool [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // texCoordIndex="" MFInt32 [initializeOnly]
- // >
- // <!-- ComposedGeometryContentModel -->
- // ComposedGeometryContentModel is the child-node content model corresponding to X3DComposedGeometryNodes. It can contain Color (or ColorRGBA), Coordinate,
- // Normal and TextureCoordinate, in any order. No more than one instance of these nodes is allowed. Multiple VertexAttribute (FloatVertexAttribute,
- // Matrix3VertexAttribute, Matrix4VertexAttribute) nodes can also be contained.
- // A ProtoInstance node (with the proper node type) can be substituted for any node in this content model.
- // </IndexedFaceSet>
- void X3DImporter::readIndexedFaceSet(XmlNode &node) {
- std::string use, def;
- bool ccw = true;
- std::vector<int32_t> colorIndex;
- bool colorPerVertex = true;
- bool convex = true;
- std::vector<int32_t> coordIndex;
- float creaseAngle = 0;
- std::vector<int32_t> normalIndex;
- bool normalPerVertex = true;
- bool solid = true;
- std::vector<int32_t> texCoordIndex;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getBoolAttribute(node, "ccw", ccw);
- X3DXmlHelper::getInt32ArrayAttribute(node, "colorIndex", colorIndex);
- XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex);
- XmlParser::getBoolAttribute(node, "convex", convex);
- X3DXmlHelper::getInt32ArrayAttribute(node, "coordIndex", coordIndex);
- XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
- X3DXmlHelper::getInt32ArrayAttribute(node, "normalIndex", normalIndex);
- XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex);
- XmlParser::getBoolAttribute(node, "solid", solid);
- X3DXmlHelper::getInt32ArrayAttribute(node, "texCoordIndex", texCoordIndex);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_IndexedFaceSet, ne);
- } else {
- // check data
- if (coordIndex.size() == 0) throw DeadlyImportError("IndexedFaceSet must contain not empty \"coordIndex\" attribute.");
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_IndexedFaceSet, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- X3DNodeElementIndexedSet &ne_alias = *((X3DNodeElementIndexedSet *)ne);
- ne_alias.CCW = ccw;
- ne_alias.ColorIndex = colorIndex;
- ne_alias.ColorPerVertex = colorPerVertex;
- ne_alias.Convex = convex;
- ne_alias.CoordIndex = coordIndex;
- ne_alias.CreaseAngle = creaseAngle;
- ne_alias.NormalIndex = normalIndex;
- ne_alias.NormalPerVertex = normalPerVertex;
- ne_alias.Solid = solid;
- ne_alias.TexCoordIndex = texCoordIndex;
- // check for child nodes
- if (!isNodeEmpty(node)) {
- ParseHelper_Node_Enter(ne);
- for (auto currentChildNode : node.children()) {
- const std::string ¤tChildName = currentChildNode.name();
- // check for X3DComposedGeometryNodes
- if (currentChildName == "Color")
- readColor(currentChildNode);
- else if (currentChildName == "ColorRGBA")
- readColorRGBA(currentChildNode);
- else if (currentChildName == "Coordinate")
- readCoordinate(currentChildNode);
- else if (currentChildName == "Normal")
- readNormal(currentChildNode);
- else if (currentChildName == "TextureCoordinate")
- readTextureCoordinate(currentChildNode);
- // check for X3DMetadataObject
- else if (!checkForMetadataNode(currentChildNode))
- skipUnsupportedNode("IndexedFaceSet", currentChildNode);
- }
- ParseHelper_Node_Exit();
- } // if(!isNodeEmpty(node))
- else {
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- }
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- // <Sphere
- // DEF="" ID
- // USE="" IDREF
- // radius="1" SFloat [initializeOnly]
- // solid="true" SFBool [initializeOnly]
- // />
- void X3DImporter::readSphere(XmlNode &node) {
- std::string use, def;
- ai_real radius = 1;
- bool solid = true;
- X3DNodeElementBase *ne(nullptr);
- MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
- XmlParser::getRealAttribute(node, "radius", radius);
- XmlParser::getBoolAttribute(node, "solid", solid);
- // if "USE" defined then find already defined element.
- if (!use.empty()) {
- ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Sphere, ne);
- } else {
- const unsigned int tess = 3; ///TODO: IME tessellation factor through ai_property
- std::vector<aiVector3D> tlist;
- // create and if needed - define new geometry object.
- ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Sphere, mNodeElementCur);
- if (!def.empty()) ne->ID = def;
- StandardShapes::MakeSphere(tess, tlist);
- // copy data from temp array and apply scale
- for (std::vector<aiVector3D>::iterator it = tlist.begin(); it != tlist.end(); ++it) {
- aiVector3D v = *it;
- ((X3DNodeElementGeometry3D *)ne)->Vertices.emplace_back(v * radius);
- }
- ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
- ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
- // check for X3DMetadataObject childs.
- if (!isNodeEmpty(node))
- childrenReadMetadata(node, ne, "Sphere");
- else
- mNodeElementCur->Children.push_back(ne); // add made object as child to current element
- NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
- } // if(!use.empty()) else
- }
- } // namespace Assimp
- #endif // !ASSIMP_BUILD_NO_X3D_IMPORTER
|