123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814 |
- #pragma once
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <memory>
- #include <utility>
- #include <vector>
- namespace mapbox {
- namespace util {
- template <std::size_t I, typename T> struct nth {
- inline static typename std::tuple_element<I, T>::type
- get(const T& t) { return std::get<I>(t); };
- };
- }
- namespace detail {
- template <typename N = uint32_t>
- class Earcut {
- public:
- std::vector<N> indices;
- std::size_t vertices = 0;
- template <typename Polygon>
- void operator()(const Polygon& points);
- private:
- struct Node {
- Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
- Node(const Node&) = delete;
- Node& operator=(const Node&) = delete;
- Node(Node&&) = delete;
- Node& operator=(Node&&) = delete;
- const N i;
- const double x;
- const double y;
- // previous and next vertice nodes in a polygon ring
- Node* prev = nullptr;
- Node* next = nullptr;
- // z-order curve value
- int32_t z = 0;
- // previous and next nodes in z-order
- Node* prevZ = nullptr;
- Node* nextZ = nullptr;
- // indicates whether this is a steiner point
- bool steiner = false;
- };
- template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
- Node* filterPoints(Node* start, Node* end = nullptr);
- void earcutLinked(Node* ear, int pass = 0);
- bool isEar(Node* ear);
- bool isEarHashed(Node* ear);
- Node* cureLocalIntersections(Node* start);
- void splitEarcut(Node* start);
- template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
- Node* eliminateHole(Node* hole, Node* outerNode);
- Node* findHoleBridge(Node* hole, Node* outerNode);
- bool sectorContainsSector(const Node* m, const Node* p);
- void indexCurve(Node* start);
- Node* sortLinked(Node* list);
- int32_t zOrder(const double x_, const double y_);
- Node* getLeftmost(Node* start);
- bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
- bool isValidDiagonal(Node* a, Node* b);
- double area(const Node* p, const Node* q, const Node* r) const;
- bool equals(const Node* p1, const Node* p2);
- bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
- bool onSegment(const Node* p, const Node* q, const Node* r);
- int sign(double val);
- bool intersectsPolygon(const Node* a, const Node* b);
- bool locallyInside(const Node* a, const Node* b);
- bool middleInside(const Node* a, const Node* b);
- Node* splitPolygon(Node* a, Node* b);
- template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
- void removeNode(Node* p);
- bool hashing;
- double minX, maxX;
- double minY, maxY;
- double inv_size = 0;
- template <typename T, typename Alloc = std::allocator<T>>
- class ObjectPool {
- public:
- ObjectPool() { }
- ObjectPool(std::size_t blockSize_) {
- reset(blockSize_);
- }
- ~ObjectPool() {
- clear();
- }
- template <typename... Args>
- T* construct(Args&&... args) {
- if (currentIndex >= blockSize) {
- currentBlock = alloc_traits::allocate(alloc, blockSize);
- allocations.emplace_back(currentBlock);
- currentIndex = 0;
- }
- T* object = ¤tBlock[currentIndex++];
- alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
- return object;
- }
- void reset(std::size_t newBlockSize) {
- for (auto allocation : allocations) {
- alloc_traits::deallocate(alloc, allocation, blockSize);
- }
- allocations.clear();
- blockSize = std::max<std::size_t>(1, newBlockSize);
- currentBlock = nullptr;
- currentIndex = blockSize;
- }
- void clear() { reset(blockSize); }
- private:
- T* currentBlock = nullptr;
- std::size_t currentIndex = 1;
- std::size_t blockSize = 1;
- std::vector<T*> allocations;
- Alloc alloc;
- typedef typename std::allocator_traits<Alloc> alloc_traits;
- };
- ObjectPool<Node> nodes;
- };
- template <typename N> template <typename Polygon>
- void Earcut<N>::operator()(const Polygon& points) {
- // reset
- indices.clear();
- vertices = 0;
- if (points.empty()) return;
- double x;
- double y;
- int threshold = 80;
- std::size_t len = 0;
- for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
- threshold -= static_cast<int>(points[i].size());
- len += points[i].size();
- }
- //estimate size of nodes and indices
- nodes.reset(len * 3 / 2);
- indices.reserve(len + points[0].size());
- Node* outerNode = linkedList(points[0], true);
- if (!outerNode || outerNode->prev == outerNode->next) return;
- if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
- // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
- hashing = threshold < 0;
- if (hashing) {
- Node* p = outerNode->next;
- minX = maxX = outerNode->x;
- minY = maxY = outerNode->y;
- do {
- x = p->x;
- y = p->y;
- minX = std::min<double>(minX, x);
- minY = std::min<double>(minY, y);
- maxX = std::max<double>(maxX, x);
- maxY = std::max<double>(maxY, y);
- p = p->next;
- } while (p != outerNode);
- // minX, minY and inv_size are later used to transform coords into integers for z-order calculation
- inv_size = std::max<double>(maxX - minX, maxY - minY);
- inv_size = inv_size != .0 ? (32767. / inv_size) : .0;
- }
- earcutLinked(outerNode);
- nodes.clear();
- }
- // create a circular doubly linked list from polygon points in the specified winding order
- template <typename N> template <typename Ring>
- typename Earcut<N>::Node*
- Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
- using Point = typename Ring::value_type;
- double sum = 0;
- const std::size_t len = points.size();
- std::size_t i, j;
- Node* last = nullptr;
- // calculate original winding order of a polygon ring
- for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
- const auto& p1 = points[i];
- const auto& p2 = points[j];
- const double p20 = util::nth<0, Point>::get(p2);
- const double p10 = util::nth<0, Point>::get(p1);
- const double p11 = util::nth<1, Point>::get(p1);
- const double p21 = util::nth<1, Point>::get(p2);
- sum += (p20 - p10) * (p11 + p21);
- }
- // link points into circular doubly-linked list in the specified winding order
- if (clockwise == (sum > 0)) {
- for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
- } else {
- for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
- }
- if (last && equals(last, last->next)) {
- removeNode(last);
- last = last->next;
- }
- vertices += len;
- return last;
- }
- // eliminate colinear or duplicate points
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::filterPoints(Node* start, Node* end) {
- if (!end) end = start;
- Node* p = start;
- bool again;
- do {
- again = false;
- if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
- removeNode(p);
- p = end = p->prev;
- if (p == p->next) break;
- again = true;
- } else {
- p = p->next;
- }
- } while (again || p != end);
- return end;
- }
- // main ear slicing loop which triangulates a polygon (given as a linked list)
- template <typename N>
- void Earcut<N>::earcutLinked(Node* ear, int pass) {
- if (!ear) return;
- // interlink polygon nodes in z-order
- if (!pass && hashing) indexCurve(ear);
- Node* stop = ear;
- Node* prev;
- Node* next;
- // iterate through ears, slicing them one by one
- while (ear->prev != ear->next) {
- prev = ear->prev;
- next = ear->next;
- if (hashing ? isEarHashed(ear) : isEar(ear)) {
- // cut off the triangle
- indices.emplace_back(prev->i);
- indices.emplace_back(ear->i);
- indices.emplace_back(next->i);
- removeNode(ear);
- // skipping the next vertice leads to less sliver triangles
- ear = next->next;
- stop = next->next;
- continue;
- }
- ear = next;
- // if we looped through the whole remaining polygon and can't find any more ears
- if (ear == stop) {
- // try filtering points and slicing again
- if (!pass) earcutLinked(filterPoints(ear), 1);
- // if this didn't work, try curing all small self-intersections locally
- else if (pass == 1) {
- ear = cureLocalIntersections(filterPoints(ear));
- earcutLinked(ear, 2);
- // as a last resort, try splitting the remaining polygon into two
- } else if (pass == 2) splitEarcut(ear);
- break;
- }
- }
- }
- // check whether a polygon node forms a valid ear with adjacent nodes
- template <typename N>
- bool Earcut<N>::isEar(Node* ear) {
- const Node* a = ear->prev;
- const Node* b = ear;
- const Node* c = ear->next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // now make sure we don't have other points inside the potential ear
- Node* p = ear->next->next;
- while (p != ear->prev) {
- if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->next;
- }
- return true;
- }
- template <typename N>
- bool Earcut<N>::isEarHashed(Node* ear) {
- const Node* a = ear->prev;
- const Node* b = ear;
- const Node* c = ear->next;
- if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
- // triangle bbox; min & max are calculated like this for speed
- const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
- const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
- const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
- const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
- // z-order range for the current triangle bbox;
- const int32_t minZ = zOrder(minTX, minTY);
- const int32_t maxZ = zOrder(maxTX, maxTY);
- // first look for points inside the triangle in increasing z-order
- Node* p = ear->nextZ;
- while (p && p->z <= maxZ) {
- if (p != ear->prev && p != ear->next &&
- pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->nextZ;
- }
- // then look for points in decreasing z-order
- p = ear->prevZ;
- while (p && p->z >= minZ) {
- if (p != ear->prev && p != ear->next &&
- pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
- area(p->prev, p, p->next) >= 0) return false;
- p = p->prevZ;
- }
- return true;
- }
- // go through all polygon nodes and cure small local self-intersections
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::cureLocalIntersections(Node* start) {
- Node* p = start;
- do {
- Node* a = p->prev;
- Node* b = p->next->next;
- // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
- if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
- indices.emplace_back(a->i);
- indices.emplace_back(p->i);
- indices.emplace_back(b->i);
- // remove two nodes involved
- removeNode(p);
- removeNode(p->next);
- p = start = b;
- }
- p = p->next;
- } while (p != start);
- return filterPoints(p);
- }
- // try splitting polygon into two and triangulate them independently
- template <typename N>
- void Earcut<N>::splitEarcut(Node* start) {
- // look for a valid diagonal that divides the polygon into two
- Node* a = start;
- do {
- Node* b = a->next->next;
- while (b != a->prev) {
- if (a->i != b->i && isValidDiagonal(a, b)) {
- // split the polygon in two by the diagonal
- Node* c = splitPolygon(a, b);
- // filter colinear points around the cuts
- a = filterPoints(a, a->next);
- c = filterPoints(c, c->next);
- // run earcut on each half
- earcutLinked(a);
- earcutLinked(c);
- return;
- }
- b = b->next;
- }
- a = a->next;
- } while (a != start);
- }
- // link every hole into the outer loop, producing a single-ring polygon without holes
- template <typename N> template <typename Polygon>
- typename Earcut<N>::Node*
- Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
- const size_t len = points.size();
- std::vector<Node*> queue;
- for (size_t i = 1; i < len; i++) {
- Node* list = linkedList(points[i], false);
- if (list) {
- if (list == list->next) list->steiner = true;
- queue.push_back(getLeftmost(list));
- }
- }
- std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
- return a->x < b->x;
- });
- // process holes from left to right
- for (size_t i = 0; i < queue.size(); i++) {
- outerNode = eliminateHole(queue[i], outerNode);
- }
- return outerNode;
- }
- // find a bridge between vertices that connects hole with an outer ring and and link it
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
- Node* bridge = findHoleBridge(hole, outerNode);
- if (!bridge) {
- return outerNode;
- }
- Node* bridgeReverse = splitPolygon(bridge, hole);
- // filter collinear points around the cuts
- filterPoints(bridgeReverse, bridgeReverse->next);
- // Check if input node was removed by the filtering
- return filterPoints(bridge, bridge->next);
- }
- // David Eberly's algorithm for finding a bridge between hole and outer polygon
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
- Node* p = outerNode;
- double hx = hole->x;
- double hy = hole->y;
- double qx = -std::numeric_limits<double>::infinity();
- Node* m = nullptr;
- // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
- // segment's endpoint with lesser x will be potential connection Vertex
- do {
- if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
- double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
- if (x <= hx && x > qx) {
- qx = x;
- m = p->x < p->next->x ? p : p->next;
- if (x == hx) return m; // hole touches outer segment; pick leftmost endpoint
- }
- }
- p = p->next;
- } while (p != outerNode);
- if (!m) return 0;
- // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
- // if there are no points found, we have a valid connection;
- // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
- const Node* stop = m;
- double tanMin = std::numeric_limits<double>::infinity();
- double tanCur = 0;
- p = m;
- double mx = m->x;
- double my = m->y;
- do {
- if (hx >= p->x && p->x >= mx && hx != p->x &&
- pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
- tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
- if (locallyInside(p, hole) &&
- (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
- m = p;
- tanMin = tanCur;
- }
- }
- p = p->next;
- } while (p != stop);
- return m;
- }
- // whether sector in vertex m contains sector in vertex p in the same coordinates
- template <typename N>
- bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
- return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
- }
- // interlink polygon nodes in z-order
- template <typename N>
- void Earcut<N>::indexCurve(Node* start) {
- assert(start);
- Node* p = start;
- do {
- p->z = p->z ? p->z : zOrder(p->x, p->y);
- p->prevZ = p->prev;
- p->nextZ = p->next;
- p = p->next;
- } while (p != start);
- p->prevZ->nextZ = nullptr;
- p->prevZ = nullptr;
- sortLinked(p);
- }
- // Simon Tatham's linked list merge sort algorithm
- // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::sortLinked(Node* list) {
- assert(list);
- Node* p;
- Node* q;
- Node* e;
- Node* tail;
- int i, numMerges, pSize, qSize;
- int inSize = 1;
- for (;;) {
- p = list;
- list = nullptr;
- tail = nullptr;
- numMerges = 0;
- while (p) {
- numMerges++;
- q = p;
- pSize = 0;
- for (i = 0; i < inSize; i++) {
- pSize++;
- q = q->nextZ;
- if (!q) break;
- }
- qSize = inSize;
- while (pSize > 0 || (qSize > 0 && q)) {
- if (pSize == 0) {
- e = q;
- q = q->nextZ;
- qSize--;
- } else if (qSize == 0 || !q) {
- e = p;
- p = p->nextZ;
- pSize--;
- } else if (p->z <= q->z) {
- e = p;
- p = p->nextZ;
- pSize--;
- } else {
- e = q;
- q = q->nextZ;
- qSize--;
- }
- if (tail) tail->nextZ = e;
- else list = e;
- e->prevZ = tail;
- tail = e;
- }
- p = q;
- }
- tail->nextZ = nullptr;
- if (numMerges <= 1) return list;
- inSize *= 2;
- }
- }
- // z-order of a Vertex given coords and size of the data bounding box
- template <typename N>
- int32_t Earcut<N>::zOrder(const double x_, const double y_) {
- // coords are transformed into non-negative 15-bit integer range
- int32_t x = static_cast<int32_t>((x_ - minX) * inv_size);
- int32_t y = static_cast<int32_t>((y_ - minY) * inv_size);
- x = (x | (x << 8)) & 0x00FF00FF;
- x = (x | (x << 4)) & 0x0F0F0F0F;
- x = (x | (x << 2)) & 0x33333333;
- x = (x | (x << 1)) & 0x55555555;
- y = (y | (y << 8)) & 0x00FF00FF;
- y = (y | (y << 4)) & 0x0F0F0F0F;
- y = (y | (y << 2)) & 0x33333333;
- y = (y | (y << 1)) & 0x55555555;
- return x | (y << 1);
- }
- // find the leftmost node of a polygon ring
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::getLeftmost(Node* start) {
- Node* p = start;
- Node* leftmost = start;
- do {
- if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
- leftmost = p;
- p = p->next;
- } while (p != start);
- return leftmost;
- }
- // check if a point lies within a convex triangle
- template <typename N>
- bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
- return (cx - px) * (ay - py) >= (ax - px) * (cy - py) &&
- (ax - px) * (by - py) >= (bx - px) * (ay - py) &&
- (bx - px) * (cy - py) >= (cx - px) * (by - py);
- }
- // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
- template <typename N>
- bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
- return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges
- ((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
- (area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // does not create opposite-facing sectors
- (equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); // special zero-length case
- }
- // signed area of a triangle
- template <typename N>
- double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
- return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
- }
- // check if two points are equal
- template <typename N>
- bool Earcut<N>::equals(const Node* p1, const Node* p2) {
- return p1->x == p2->x && p1->y == p2->y;
- }
- // check if two segments intersect
- template <typename N>
- bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
- int o1 = sign(area(p1, q1, p2));
- int o2 = sign(area(p1, q1, q2));
- int o3 = sign(area(p2, q2, p1));
- int o4 = sign(area(p2, q2, q1));
- if (o1 != o2 && o3 != o4) return true; // general case
- if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
- if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
- if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
- if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
- return false;
- }
- // for collinear points p, q, r, check if point q lies on segment pr
- template <typename N>
- bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
- return q->x <= std::max<double>(p->x, r->x) &&
- q->x >= std::min<double>(p->x, r->x) &&
- q->y <= std::max<double>(p->y, r->y) &&
- q->y >= std::min<double>(p->y, r->y);
- }
- template <typename N>
- int Earcut<N>::sign(double val) {
- return (0.0 < val) - (val < 0.0);
- }
- // check if a polygon diagonal intersects any polygon segments
- template <typename N>
- bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
- const Node* p = a;
- do {
- if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
- intersects(p, p->next, a, b)) return true;
- p = p->next;
- } while (p != a);
- return false;
- }
- // check if a polygon diagonal is locally inside the polygon
- template <typename N>
- bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
- return area(a->prev, a, a->next) < 0 ?
- area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
- area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
- }
- // check if the middle Vertex of a polygon diagonal is inside the polygon
- template <typename N>
- bool Earcut<N>::middleInside(const Node* a, const Node* b) {
- const Node* p = a;
- bool inside = false;
- double px = (a->x + b->x) / 2;
- double py = (a->y + b->y) / 2;
- do {
- if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
- (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
- inside = !inside;
- p = p->next;
- } while (p != a);
- return inside;
- }
- // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
- // polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
- // single ring
- template <typename N>
- typename Earcut<N>::Node*
- Earcut<N>::splitPolygon(Node* a, Node* b) {
- Node* a2 = nodes.construct(a->i, a->x, a->y);
- Node* b2 = nodes.construct(b->i, b->x, b->y);
- Node* an = a->next;
- Node* bp = b->prev;
- a->next = b;
- b->prev = a;
- a2->next = an;
- an->prev = a2;
- b2->next = a2;
- a2->prev = b2;
- bp->next = b2;
- b2->prev = bp;
- return b2;
- }
- // create a node and util::optionally link it with previous one (in a circular doubly linked list)
- template <typename N> template <typename Point>
- typename Earcut<N>::Node*
- Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
- Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
- if (!last) {
- p->prev = p;
- p->next = p;
- } else {
- assert(last);
- p->next = last->next;
- p->prev = last;
- last->next->prev = p;
- last->next = p;
- }
- return p;
- }
- template <typename N>
- void Earcut<N>::removeNode(Node* p) {
- p->next->prev = p->prev;
- p->prev->next = p->next;
- if (p->prevZ) p->prevZ->nextZ = p->nextZ;
- if (p->nextZ) p->nextZ->prevZ = p->prevZ;
- }
- }
- template <typename N = uint32_t, typename Polygon>
- std::vector<N> earcut(const Polygon& poly) {
- mapbox::detail::Earcut<N> earcut;
- earcut(poly);
- return std::move(earcut.indices);
- }
- }
|