|
@@ -1,1060 +0,0 @@
|
|
|
-import type { ExcalidrawBindableElement } from "../../excalidraw/element/types";
|
|
|
-import {
|
|
|
- addVectors,
|
|
|
- distance2d,
|
|
|
- rotatePoint,
|
|
|
- scaleVector,
|
|
|
- subtractVectors,
|
|
|
-} from "../../excalidraw/math";
|
|
|
-import type { LineSegment } from "../bbox";
|
|
|
-import { crossProduct } from "../bbox";
|
|
|
-import type {
|
|
|
- Point,
|
|
|
- Line,
|
|
|
- Polygon,
|
|
|
- Curve,
|
|
|
- Ellipse,
|
|
|
- Polycurve,
|
|
|
- Polyline,
|
|
|
-} from "./shape";
|
|
|
-
|
|
|
-const DEFAULT_THRESHOLD = 10e-5;
|
|
|
-
|
|
|
-/**
|
|
|
- * utils
|
|
|
- */
|
|
|
-
|
|
|
-// the two vectors are ao and bo
|
|
|
-export const cross = (
|
|
|
- a: Readonly<Point>,
|
|
|
- b: Readonly<Point>,
|
|
|
- o: Readonly<Point>,
|
|
|
-) => {
|
|
|
- return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
|
|
|
-};
|
|
|
-
|
|
|
-export const dot = (
|
|
|
- a: Readonly<Point>,
|
|
|
- b: Readonly<Point>,
|
|
|
- o: Readonly<Point>,
|
|
|
-) => {
|
|
|
- return (a[0] - o[0]) * (b[0] - o[0]) + (a[1] - o[1]) * (b[1] - o[1]);
|
|
|
-};
|
|
|
-
|
|
|
-export const isClosed = (polygon: Polygon) => {
|
|
|
- const first = polygon[0];
|
|
|
- const last = polygon[polygon.length - 1];
|
|
|
- return first[0] === last[0] && first[1] === last[1];
|
|
|
-};
|
|
|
-
|
|
|
-export const close = (polygon: Polygon) => {
|
|
|
- return isClosed(polygon) ? polygon : [...polygon, polygon[0]];
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * angles
|
|
|
- */
|
|
|
-
|
|
|
-// convert radians to degress
|
|
|
-export const angleToDegrees = (angle: number) => {
|
|
|
- const theta = (angle * 180) / Math.PI;
|
|
|
-
|
|
|
- return theta < 0 ? 360 + theta : theta;
|
|
|
-};
|
|
|
-
|
|
|
-// convert degrees to radians
|
|
|
-export const angleToRadians = (angle: number) => {
|
|
|
- return (angle / 180) * Math.PI;
|
|
|
-};
|
|
|
-
|
|
|
-// return the angle of reflection given an angle of incidence and a surface angle in degrees
|
|
|
-export const angleReflect = (incidenceAngle: number, surfaceAngle: number) => {
|
|
|
- const a = surfaceAngle * 2 - incidenceAngle;
|
|
|
- return a >= 360 ? a - 360 : a < 0 ? a + 360 : a;
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * points
|
|
|
- */
|
|
|
-
|
|
|
-const rotate = (point: Point, angle: number): Point => {
|
|
|
- return [
|
|
|
- point[0] * Math.cos(angle) - point[1] * Math.sin(angle),
|
|
|
- point[0] * Math.sin(angle) + point[1] * Math.cos(angle),
|
|
|
- ];
|
|
|
-};
|
|
|
-
|
|
|
-const isOrigin = (point: Point) => {
|
|
|
- return point[0] === 0 && point[1] === 0;
|
|
|
-};
|
|
|
-
|
|
|
-// rotate a given point about a given origin at the given angle
|
|
|
-export const pointRotate = (
|
|
|
- point: Point,
|
|
|
- angle: number,
|
|
|
- origin?: Point,
|
|
|
-): Point => {
|
|
|
- const r = angleToRadians(angle);
|
|
|
-
|
|
|
- if (!origin || isOrigin(origin)) {
|
|
|
- return rotate(point, r);
|
|
|
- }
|
|
|
- return rotate(point.map((c, i) => c - origin[i]) as Point, r).map(
|
|
|
- (c, i) => c + origin[i],
|
|
|
- ) as Point;
|
|
|
-};
|
|
|
-
|
|
|
-// translate a point by an angle (in degrees) and distance
|
|
|
-export const pointTranslate = (point: Point, angle = 0, distance = 0) => {
|
|
|
- const r = angleToRadians(angle);
|
|
|
- return [
|
|
|
- point[0] + distance * Math.cos(r),
|
|
|
- point[1] + distance * Math.sin(r),
|
|
|
- ] as Point;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointInverse = (point: Point) => {
|
|
|
- return [-point[0], -point[1]] as Point;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointAdd = (pointA: Point, pointB: Point): Point => {
|
|
|
- return [pointA[0] + pointB[0], pointA[1] + pointB[1]];
|
|
|
-};
|
|
|
-
|
|
|
-export const distanceToPoint = (p1: Point, p2: Point) => {
|
|
|
- return distance2d(...p1, ...p2);
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * lines
|
|
|
- */
|
|
|
-
|
|
|
-// return the angle of a line, in degrees
|
|
|
-export const lineAngle = (line: Line) => {
|
|
|
- return angleToDegrees(
|
|
|
- Math.atan2(line[1][1] - line[0][1], line[1][0] - line[0][0]),
|
|
|
- );
|
|
|
-};
|
|
|
-
|
|
|
-// get the distance between the endpoints of a line segment
|
|
|
-export const lineLength = (line: Line) => {
|
|
|
- return Math.sqrt(
|
|
|
- Math.pow(line[1][0] - line[0][0], 2) + Math.pow(line[1][1] - line[0][1], 2),
|
|
|
- );
|
|
|
-};
|
|
|
-
|
|
|
-// get the midpoint of a line segment
|
|
|
-export const lineMidpoint = (line: Line) => {
|
|
|
- return [
|
|
|
- (line[0][0] + line[1][0]) / 2,
|
|
|
- (line[0][1] + line[1][1]) / 2,
|
|
|
- ] as Point;
|
|
|
-};
|
|
|
-
|
|
|
-// return the coordinates resulting from rotating the given line about an origin by an angle in degrees
|
|
|
-// note that when the origin is not given, the midpoint of the given line is used as the origin
|
|
|
-export const lineRotate = (line: Line, angle: number, origin?: Point): Line => {
|
|
|
- return line.map((point) =>
|
|
|
- pointRotate(point, angle, origin || lineMidpoint(line)),
|
|
|
- ) as Line;
|
|
|
-};
|
|
|
-
|
|
|
-// returns the coordinates resulting from translating a line by an angle in degrees and a distance.
|
|
|
-export const lineTranslate = (line: Line, angle: number, distance: number) => {
|
|
|
- return line.map((point) => pointTranslate(point, angle, distance));
|
|
|
-};
|
|
|
-
|
|
|
-export const lineInterpolate = (line: Line, clamp = false) => {
|
|
|
- const [[x1, y1], [x2, y2]] = line;
|
|
|
- return (t: number) => {
|
|
|
- const t0 = clamp ? (t < 0 ? 0 : t > 1 ? 1 : t) : t;
|
|
|
- return [(x2 - x1) * t0 + x1, (y2 - y1) * t0 + y1] as Point;
|
|
|
- };
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * curves
|
|
|
- */
|
|
|
-function clone(p: Point): Point {
|
|
|
- return [...p] as Point;
|
|
|
-}
|
|
|
-
|
|
|
-export const curveToBezier = (
|
|
|
- pointsIn: readonly Point[],
|
|
|
- curveTightness = 0,
|
|
|
-): Point[] => {
|
|
|
- const len = pointsIn.length;
|
|
|
- if (len < 3) {
|
|
|
- throw new Error("A curve must have at least three points.");
|
|
|
- }
|
|
|
- const out: Point[] = [];
|
|
|
- if (len === 3) {
|
|
|
- out.push(
|
|
|
- clone(pointsIn[0]),
|
|
|
- clone(pointsIn[1]),
|
|
|
- clone(pointsIn[2]),
|
|
|
- clone(pointsIn[2]),
|
|
|
- );
|
|
|
- } else {
|
|
|
- const points: Point[] = [];
|
|
|
- points.push(pointsIn[0], pointsIn[0]);
|
|
|
- for (let i = 1; i < pointsIn.length; i++) {
|
|
|
- points.push(pointsIn[i]);
|
|
|
- if (i === pointsIn.length - 1) {
|
|
|
- points.push(pointsIn[i]);
|
|
|
- }
|
|
|
- }
|
|
|
- const b: Point[] = [];
|
|
|
- const s = 1 - curveTightness;
|
|
|
- out.push(clone(points[0]));
|
|
|
- for (let i = 1; i + 2 < points.length; i++) {
|
|
|
- const cachedVertArray = points[i];
|
|
|
- b[0] = [cachedVertArray[0], cachedVertArray[1]];
|
|
|
- b[1] = [
|
|
|
- cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
|
|
|
- cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
|
|
|
- ];
|
|
|
- b[2] = [
|
|
|
- points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
|
|
|
- points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
|
|
|
- ];
|
|
|
- b[3] = [points[i + 1][0], points[i + 1][1]];
|
|
|
- out.push(b[1], b[2], b[3]);
|
|
|
- }
|
|
|
- }
|
|
|
- return out;
|
|
|
-};
|
|
|
-
|
|
|
-export const curveRotate = (curve: Curve, angle: number, origin: Point) => {
|
|
|
- return curve.map((p) => pointRotate(p, angle, origin));
|
|
|
-};
|
|
|
-
|
|
|
-export const cubicBezierPoint = (t: number, controlPoints: Curve): Point => {
|
|
|
- const [p0, p1, p2, p3] = controlPoints;
|
|
|
-
|
|
|
- const x =
|
|
|
- Math.pow(1 - t, 3) * p0[0] +
|
|
|
- 3 * Math.pow(1 - t, 2) * t * p1[0] +
|
|
|
- 3 * (1 - t) * Math.pow(t, 2) * p2[0] +
|
|
|
- Math.pow(t, 3) * p3[0];
|
|
|
-
|
|
|
- const y =
|
|
|
- Math.pow(1 - t, 3) * p0[1] +
|
|
|
- 3 * Math.pow(1 - t, 2) * t * p1[1] +
|
|
|
- 3 * (1 - t) * Math.pow(t, 2) * p2[1] +
|
|
|
- Math.pow(t, 3) * p3[1];
|
|
|
-
|
|
|
- return [x, y];
|
|
|
-};
|
|
|
-
|
|
|
-const solveCubicEquation = (a: number, b: number, c: number, d: number) => {
|
|
|
- // This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
|
|
|
- const roots: number[] = [];
|
|
|
-
|
|
|
- const discriminant =
|
|
|
- 18 * a * b * c * d -
|
|
|
- 4 * Math.pow(b, 3) * d +
|
|
|
- Math.pow(b, 2) * Math.pow(c, 2) -
|
|
|
- 4 * a * Math.pow(c, 3) -
|
|
|
- 27 * Math.pow(a, 2) * Math.pow(d, 2);
|
|
|
-
|
|
|
- if (discriminant >= 0) {
|
|
|
- const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
|
|
|
- const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
|
|
|
-
|
|
|
- const root1 = (-b - C - D) / (3 * a);
|
|
|
- const root2 = (-b + (C + D) / 2) / (3 * a);
|
|
|
- const root3 = (-b + (C + D) / 2) / (3 * a);
|
|
|
-
|
|
|
- roots.push(root1, root2, root3);
|
|
|
- } else {
|
|
|
- const realPart = -b / (3 * a);
|
|
|
-
|
|
|
- const root1 =
|
|
|
- 2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
|
|
|
- const root2 =
|
|
|
- 2 *
|
|
|
- Math.sqrt(-b / (3 * a)) *
|
|
|
- Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
|
|
|
- const root3 =
|
|
|
- 2 *
|
|
|
- Math.sqrt(-b / (3 * a)) *
|
|
|
- Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
|
|
|
-
|
|
|
- roots.push(root1, root2, root3);
|
|
|
- }
|
|
|
-
|
|
|
- return roots;
|
|
|
-};
|
|
|
-
|
|
|
-const findClosestParameter = (point: Point, controlPoints: Curve) => {
|
|
|
- // This function finds the parameter t that minimizes the distance between the point
|
|
|
- // and any point on the cubic Bezier curve.
|
|
|
-
|
|
|
- const [p0, p1, p2, p3] = controlPoints;
|
|
|
-
|
|
|
- // Use the direct formula to find the parameter t
|
|
|
- const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
|
|
|
- const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
|
|
|
- const c = 3 * p1[0] - 3 * p0[0];
|
|
|
- const d = p0[0] - point[0];
|
|
|
-
|
|
|
- const rootsX = solveCubicEquation(a, b, c, d);
|
|
|
-
|
|
|
- // Do the same for the y-coordinate
|
|
|
- const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
|
|
|
- const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
|
|
|
- const g = 3 * p1[1] - 3 * p0[1];
|
|
|
- const h = p0[1] - point[1];
|
|
|
-
|
|
|
- const rootsY = solveCubicEquation(e, f, g, h);
|
|
|
-
|
|
|
- // Select the real root that is between 0 and 1 (inclusive)
|
|
|
- const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
|
|
|
- const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
|
|
|
-
|
|
|
- if (validRootsX.length === 0 || validRootsY.length === 0) {
|
|
|
- // No valid roots found, use the midpoint as a fallback
|
|
|
- return 0.5;
|
|
|
- }
|
|
|
-
|
|
|
- // Choose the parameter t that minimizes the distance
|
|
|
- let minDistance = Infinity;
|
|
|
- let closestT = 0;
|
|
|
-
|
|
|
- for (const rootX of validRootsX) {
|
|
|
- for (const rootY of validRootsY) {
|
|
|
- const distance = Math.sqrt(
|
|
|
- (rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
|
|
|
- );
|
|
|
- if (distance < minDistance) {
|
|
|
- minDistance = distance;
|
|
|
- closestT = (rootX + rootY) / 2; // Use the average for a smoother result
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return closestT;
|
|
|
-};
|
|
|
-
|
|
|
-export const cubicBezierDistance = (point: Point, controlPoints: Curve) => {
|
|
|
- // Calculate the closest point on the Bezier curve to the given point
|
|
|
- const t = findClosestParameter(point, controlPoints);
|
|
|
-
|
|
|
- // Calculate the coordinates of the closest point on the curve
|
|
|
- const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
|
|
|
-
|
|
|
- // Calculate the distance between the given point and the closest point on the curve
|
|
|
- const distance = Math.sqrt(
|
|
|
- (point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
|
|
|
- );
|
|
|
-
|
|
|
- return distance;
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * polygons
|
|
|
- */
|
|
|
-
|
|
|
-export const polygonRotate = (
|
|
|
- polygon: Polygon,
|
|
|
- angle: number,
|
|
|
- origin: Point,
|
|
|
-) => {
|
|
|
- return polygon.map((p) => pointRotate(p, angle, origin));
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonBounds = (polygon: Polygon) => {
|
|
|
- let xMin = Infinity;
|
|
|
- let xMax = -Infinity;
|
|
|
- let yMin = Infinity;
|
|
|
- let yMax = -Infinity;
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const p = polygon[i];
|
|
|
- const x = p[0];
|
|
|
- const y = p[1];
|
|
|
-
|
|
|
- if (x != null && isFinite(x) && y != null && isFinite(y)) {
|
|
|
- if (x < xMin) {
|
|
|
- xMin = x;
|
|
|
- }
|
|
|
- if (x > xMax) {
|
|
|
- xMax = x;
|
|
|
- }
|
|
|
- if (y < yMin) {
|
|
|
- yMin = y;
|
|
|
- }
|
|
|
- if (y > yMax) {
|
|
|
- yMax = y;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return [
|
|
|
- [xMin, yMin],
|
|
|
- [xMax, yMax],
|
|
|
- ] as [Point, Point];
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonCentroid = (vertices: Point[]) => {
|
|
|
- let a = 0;
|
|
|
- let x = 0;
|
|
|
- let y = 0;
|
|
|
- const l = vertices.length;
|
|
|
-
|
|
|
- for (let i = 0; i < l; i++) {
|
|
|
- const s = i === l - 1 ? 0 : i + 1;
|
|
|
- const v0 = vertices[i];
|
|
|
- const v1 = vertices[s];
|
|
|
- const f = v0[0] * v1[1] - v1[0] * v0[1];
|
|
|
-
|
|
|
- a += f;
|
|
|
- x += (v0[0] + v1[0]) * f;
|
|
|
- y += (v0[1] + v1[1]) * f;
|
|
|
- }
|
|
|
-
|
|
|
- const d = a * 3;
|
|
|
-
|
|
|
- return [x / d, y / d] as Point;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonScale = (
|
|
|
- polygon: Polygon,
|
|
|
- scale: number,
|
|
|
- origin?: Point,
|
|
|
-) => {
|
|
|
- if (!origin) {
|
|
|
- origin = polygonCentroid(polygon);
|
|
|
- }
|
|
|
-
|
|
|
- const p: Polygon = [];
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const v = polygon[i];
|
|
|
- const d = lineLength([origin, v]);
|
|
|
- const a = lineAngle([origin, v]);
|
|
|
-
|
|
|
- p[i] = pointTranslate(origin, a, d * scale);
|
|
|
- }
|
|
|
-
|
|
|
- return p;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonScaleX = (
|
|
|
- polygon: Polygon,
|
|
|
- scale: number,
|
|
|
- origin?: Point,
|
|
|
-) => {
|
|
|
- if (!origin) {
|
|
|
- origin = polygonCentroid(polygon);
|
|
|
- }
|
|
|
-
|
|
|
- const p: Polygon = [];
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const v = polygon[i];
|
|
|
- const d = lineLength([origin, v]);
|
|
|
- const a = lineAngle([origin, v]);
|
|
|
- const t = pointTranslate(origin, a, d * scale);
|
|
|
-
|
|
|
- p[i] = [t[0], v[1]];
|
|
|
- }
|
|
|
-
|
|
|
- return p;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonScaleY = (
|
|
|
- polygon: Polygon,
|
|
|
- scale: number,
|
|
|
- origin?: Point,
|
|
|
-) => {
|
|
|
- if (!origin) {
|
|
|
- origin = polygonCentroid(polygon);
|
|
|
- }
|
|
|
-
|
|
|
- const p: Polygon = [];
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const v = polygon[i];
|
|
|
- const d = lineLength([origin, v]);
|
|
|
- const a = lineAngle([origin, v]);
|
|
|
- const t = pointTranslate(origin, a, d * scale);
|
|
|
-
|
|
|
- p[i] = [v[0], t[1]];
|
|
|
- }
|
|
|
-
|
|
|
- return p;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonReflectX = (polygon: Polygon, reflectFactor = 1) => {
|
|
|
- const [[min], [max]] = polygonBounds(polygon);
|
|
|
- const p: Point[] = [];
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const [x, y] = polygon[i];
|
|
|
- const r: Point = [min + max - x, y];
|
|
|
-
|
|
|
- if (reflectFactor === 0) {
|
|
|
- p[i] = [x, y];
|
|
|
- } else if (reflectFactor === 1) {
|
|
|
- p[i] = r;
|
|
|
- } else {
|
|
|
- const t = lineInterpolate([[x, y], r]);
|
|
|
- p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return p;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonReflectY = (polygon: Polygon, reflectFactor = 1) => {
|
|
|
- const [[, min], [, max]] = polygonBounds(polygon);
|
|
|
- const p: Point[] = [];
|
|
|
-
|
|
|
- for (let i = 0, l = polygon.length; i < l; i++) {
|
|
|
- const [x, y] = polygon[i];
|
|
|
- const r: Point = [x, min + max - y];
|
|
|
-
|
|
|
- if (reflectFactor === 0) {
|
|
|
- p[i] = [x, y];
|
|
|
- } else if (reflectFactor === 1) {
|
|
|
- p[i] = r;
|
|
|
- } else {
|
|
|
- const t = lineInterpolate([[x, y], r]);
|
|
|
- p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return p;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonTranslate = (
|
|
|
- polygon: Polygon,
|
|
|
- angle: number,
|
|
|
- distance: number,
|
|
|
-) => {
|
|
|
- return polygon.map((p) => pointTranslate(p, angle, distance));
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * ellipses
|
|
|
- */
|
|
|
-
|
|
|
-export const ellipseAxes = (ellipse: Ellipse) => {
|
|
|
- const widthGreaterThanHeight = ellipse.halfWidth > ellipse.halfHeight;
|
|
|
-
|
|
|
- const majorAxis = widthGreaterThanHeight
|
|
|
- ? ellipse.halfWidth * 2
|
|
|
- : ellipse.halfHeight * 2;
|
|
|
- const minorAxis = widthGreaterThanHeight
|
|
|
- ? ellipse.halfHeight * 2
|
|
|
- : ellipse.halfWidth * 2;
|
|
|
-
|
|
|
- return {
|
|
|
- majorAxis,
|
|
|
- minorAxis,
|
|
|
- };
|
|
|
-};
|
|
|
-
|
|
|
-export const ellipseFocusToCenter = (ellipse: Ellipse) => {
|
|
|
- const { majorAxis, minorAxis } = ellipseAxes(ellipse);
|
|
|
-
|
|
|
- return Math.sqrt(majorAxis ** 2 - minorAxis ** 2);
|
|
|
-};
|
|
|
-
|
|
|
-export const ellipseExtremes = (ellipse: Ellipse) => {
|
|
|
- const { center, angle } = ellipse;
|
|
|
- const { majorAxis, minorAxis } = ellipseAxes(ellipse);
|
|
|
-
|
|
|
- const cos = Math.cos(angle);
|
|
|
- const sin = Math.sin(angle);
|
|
|
-
|
|
|
- const sqSum = majorAxis ** 2 + minorAxis ** 2;
|
|
|
- const sqDiff = (majorAxis ** 2 - minorAxis ** 2) * Math.cos(2 * angle);
|
|
|
-
|
|
|
- const yMax = Math.sqrt((sqSum - sqDiff) / 2);
|
|
|
- const xAtYMax =
|
|
|
- (yMax * sqSum * sin * cos) /
|
|
|
- (majorAxis ** 2 * sin ** 2 + minorAxis ** 2 * cos ** 2);
|
|
|
-
|
|
|
- const xMax = Math.sqrt((sqSum + sqDiff) / 2);
|
|
|
- const yAtXMax =
|
|
|
- (xMax * sqSum * sin * cos) /
|
|
|
- (majorAxis ** 2 * cos ** 2 + minorAxis ** 2 * sin ** 2);
|
|
|
-
|
|
|
- return [
|
|
|
- pointAdd([xAtYMax, yMax], center),
|
|
|
- pointAdd(pointInverse([xAtYMax, yMax]), center),
|
|
|
- pointAdd([xMax, yAtXMax], center),
|
|
|
- pointAdd([xMax, yAtXMax], center),
|
|
|
- ];
|
|
|
-};
|
|
|
-
|
|
|
-export const pointRelativeToCenter = (
|
|
|
- point: Point,
|
|
|
- center: Point,
|
|
|
- angle: number,
|
|
|
-): Point => {
|
|
|
- const translated = pointAdd(point, pointInverse(center));
|
|
|
- const rotated = pointRotate(translated, -angleToDegrees(angle));
|
|
|
-
|
|
|
- return rotated;
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * relationships
|
|
|
- */
|
|
|
-
|
|
|
-const topPointFirst = (line: Line) => {
|
|
|
- return line[1][1] > line[0][1] ? line : [line[1], line[0]];
|
|
|
-};
|
|
|
-
|
|
|
-export const pointLeftofLine = (point: Point, line: Line) => {
|
|
|
- const t = topPointFirst(line);
|
|
|
- return cross(point, t[1], t[0]) < 0;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointRightofLine = (point: Point, line: Line) => {
|
|
|
- const t = topPointFirst(line);
|
|
|
- return cross(point, t[1], t[0]) > 0;
|
|
|
-};
|
|
|
-
|
|
|
-export const distanceToSegment = (point: Point, line: Line) => {
|
|
|
- const [x, y] = point;
|
|
|
- const [[x1, y1], [x2, y2]] = line;
|
|
|
-
|
|
|
- const A = x - x1;
|
|
|
- const B = y - y1;
|
|
|
- const C = x2 - x1;
|
|
|
- const D = y2 - y1;
|
|
|
-
|
|
|
- const dot = A * C + B * D;
|
|
|
- const len_sq = C * C + D * D;
|
|
|
- let param = -1;
|
|
|
- if (len_sq !== 0) {
|
|
|
- param = dot / len_sq;
|
|
|
- }
|
|
|
-
|
|
|
- let xx;
|
|
|
- let yy;
|
|
|
-
|
|
|
- if (param < 0) {
|
|
|
- xx = x1;
|
|
|
- yy = y1;
|
|
|
- } else if (param > 1) {
|
|
|
- xx = x2;
|
|
|
- yy = y2;
|
|
|
- } else {
|
|
|
- xx = x1 + param * C;
|
|
|
- yy = y1 + param * D;
|
|
|
- }
|
|
|
-
|
|
|
- const dx = x - xx;
|
|
|
- const dy = y - yy;
|
|
|
- return Math.sqrt(dx * dx + dy * dy);
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnLine = (
|
|
|
- point: Point,
|
|
|
- line: Line,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- const distance = distanceToSegment(point, line);
|
|
|
-
|
|
|
- if (distance === 0) {
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return distance < threshold;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnPolyline = (
|
|
|
- point: Point,
|
|
|
- polyline: Polyline,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- return polyline.some((line) => pointOnLine(point, line, threshold));
|
|
|
-};
|
|
|
-
|
|
|
-export const lineIntersectsLine = (lineA: Line, lineB: Line) => {
|
|
|
- const [[a0x, a0y], [a1x, a1y]] = lineA;
|
|
|
- const [[b0x, b0y], [b1x, b1y]] = lineB;
|
|
|
-
|
|
|
- // shared points
|
|
|
- if (a0x === b0x && a0y === b0y) {
|
|
|
- return true;
|
|
|
- }
|
|
|
- if (a1x === b1x && a1y === b1y) {
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- // point on line
|
|
|
- if (pointOnLine(lineA[0], lineB) || pointOnLine(lineA[1], lineB)) {
|
|
|
- return true;
|
|
|
- }
|
|
|
- if (pointOnLine(lineB[0], lineA) || pointOnLine(lineB[1], lineA)) {
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- const denom = (b1y - b0y) * (a1x - a0x) - (b1x - b0x) * (a1y - a0y);
|
|
|
-
|
|
|
- if (denom === 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- const deltaY = a0y - b0y;
|
|
|
- const deltaX = a0x - b0x;
|
|
|
- const numer0 = (b1x - b0x) * deltaY - (b1y - b0y) * deltaX;
|
|
|
- const numer1 = (a1x - a0x) * deltaY - (a1y - a0y) * deltaX;
|
|
|
- const quotA = numer0 / denom;
|
|
|
- const quotB = numer1 / denom;
|
|
|
-
|
|
|
- return quotA > 0 && quotA < 1 && quotB > 0 && quotB < 1;
|
|
|
-};
|
|
|
-
|
|
|
-export const lineIntersectsPolygon = (line: Line, polygon: Polygon) => {
|
|
|
- let intersects = false;
|
|
|
- const closed = close(polygon);
|
|
|
-
|
|
|
- for (let i = 0, l = closed.length - 1; i < l; i++) {
|
|
|
- const v0 = closed[i];
|
|
|
- const v1 = closed[i + 1];
|
|
|
-
|
|
|
- if (
|
|
|
- lineIntersectsLine(line, [v0, v1]) ||
|
|
|
- (pointOnLine(v0, line) && pointOnLine(v1, line))
|
|
|
- ) {
|
|
|
- intersects = true;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return intersects;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointInBezierEquation = (
|
|
|
- p0: Point,
|
|
|
- p1: Point,
|
|
|
- p2: Point,
|
|
|
- p3: Point,
|
|
|
- [mx, my]: Point,
|
|
|
- lineThreshold: number,
|
|
|
-) => {
|
|
|
- // B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
|
|
|
- const equation = (t: number, idx: number) =>
|
|
|
- Math.pow(1 - t, 3) * p3[idx] +
|
|
|
- 3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
|
|
- 3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
|
|
- p0[idx] * Math.pow(t, 3);
|
|
|
-
|
|
|
- const lineSegmentPoints: Point[] = [];
|
|
|
- let t = 0;
|
|
|
- while (t <= 1.0) {
|
|
|
- const tx = equation(t, 0);
|
|
|
- const ty = equation(t, 1);
|
|
|
-
|
|
|
- const diff = Math.sqrt(Math.pow(tx - mx, 2) + Math.pow(ty - my, 2));
|
|
|
-
|
|
|
- if (diff < lineThreshold) {
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- lineSegmentPoints.push([tx, ty]);
|
|
|
-
|
|
|
- t += 0.1;
|
|
|
- }
|
|
|
-
|
|
|
- // check the distance from line segments to the given point
|
|
|
-
|
|
|
- return false;
|
|
|
-};
|
|
|
-
|
|
|
-export const cubicBezierEquation = (curve: Curve) => {
|
|
|
- const [p0, p1, p2, p3] = curve;
|
|
|
- // B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
|
|
|
- return (t: number, idx: number) =>
|
|
|
- Math.pow(1 - t, 3) * p3[idx] +
|
|
|
- 3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
|
|
- 3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
|
|
- p0[idx] * Math.pow(t, 3);
|
|
|
-};
|
|
|
-
|
|
|
-export const polyLineFromCurve = (curve: Curve, segments = 10): Polyline => {
|
|
|
- const equation = cubicBezierEquation(curve);
|
|
|
- let startingPoint = [equation(0, 0), equation(0, 1)] as Point;
|
|
|
- const lineSegments: Polyline = [];
|
|
|
- let t = 0;
|
|
|
- const increment = 1 / segments;
|
|
|
-
|
|
|
- for (let i = 0; i < segments; i++) {
|
|
|
- t += increment;
|
|
|
- if (t <= 1) {
|
|
|
- const nextPoint: Point = [equation(t, 0), equation(t, 1)];
|
|
|
- lineSegments.push([startingPoint, nextPoint]);
|
|
|
- startingPoint = nextPoint;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return lineSegments;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnCurve = (
|
|
|
- point: Point,
|
|
|
- curve: Curve,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- return pointOnPolyline(point, polyLineFromCurve(curve), threshold);
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnPolycurve = (
|
|
|
- point: Point,
|
|
|
- polycurve: Polycurve,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- return polycurve.some((curve) => pointOnCurve(point, curve, threshold));
|
|
|
-};
|
|
|
-
|
|
|
-export const pointInPolygon = (point: Point, polygon: Polygon) => {
|
|
|
- const x = point[0];
|
|
|
- const y = point[1];
|
|
|
- let inside = false;
|
|
|
-
|
|
|
- for (let i = 0, j = polygon.length - 1; i < polygon.length; j = i++) {
|
|
|
- const xi = polygon[i][0];
|
|
|
- const yi = polygon[i][1];
|
|
|
- const xj = polygon[j][0];
|
|
|
- const yj = polygon[j][1];
|
|
|
-
|
|
|
- if (
|
|
|
- ((yi > y && yj <= y) || (yi <= y && yj > y)) &&
|
|
|
- x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
|
|
|
- ) {
|
|
|
- inside = !inside;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return inside;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnPolygon = (
|
|
|
- point: Point,
|
|
|
- polygon: Polygon,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- let on = false;
|
|
|
- const closed = close(polygon);
|
|
|
-
|
|
|
- for (let i = 0, l = closed.length - 1; i < l; i++) {
|
|
|
- if (pointOnLine(point, [closed[i], closed[i + 1]], threshold)) {
|
|
|
- on = true;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return on;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonInPolygon = (polygonA: Polygon, polygonB: Polygon) => {
|
|
|
- let inside = true;
|
|
|
- const closed = close(polygonA);
|
|
|
-
|
|
|
- for (let i = 0, l = closed.length - 1; i < l; i++) {
|
|
|
- const v0 = closed[i];
|
|
|
-
|
|
|
- // Points test
|
|
|
- if (!pointInPolygon(v0, polygonB)) {
|
|
|
- inside = false;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- // Lines test
|
|
|
- if (lineIntersectsPolygon([v0, closed[i + 1]], polygonB)) {
|
|
|
- inside = false;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return inside;
|
|
|
-};
|
|
|
-
|
|
|
-export const polygonIntersectPolygon = (
|
|
|
- polygonA: Polygon,
|
|
|
- polygonB: Polygon,
|
|
|
-) => {
|
|
|
- let intersects = false;
|
|
|
- let onCount = 0;
|
|
|
- const closed = close(polygonA);
|
|
|
-
|
|
|
- for (let i = 0, l = closed.length - 1; i < l; i++) {
|
|
|
- const v0 = closed[i];
|
|
|
- const v1 = closed[i + 1];
|
|
|
-
|
|
|
- if (lineIntersectsPolygon([v0, v1], polygonB)) {
|
|
|
- intersects = true;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- if (pointOnPolygon(v0, polygonB)) {
|
|
|
- ++onCount;
|
|
|
- }
|
|
|
-
|
|
|
- if (onCount === 2) {
|
|
|
- intersects = true;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return intersects;
|
|
|
-};
|
|
|
-
|
|
|
-const distanceToEllipse = (point: Point, ellipse: Ellipse) => {
|
|
|
- const { angle, halfWidth, halfHeight, center } = ellipse;
|
|
|
- const a = halfWidth;
|
|
|
- const b = halfHeight;
|
|
|
- const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
|
|
|
- point,
|
|
|
- center,
|
|
|
- angle,
|
|
|
- );
|
|
|
-
|
|
|
- const px = Math.abs(rotatedPointX);
|
|
|
- const py = Math.abs(rotatedPointY);
|
|
|
-
|
|
|
- let tx = 0.707;
|
|
|
- let ty = 0.707;
|
|
|
-
|
|
|
- for (let i = 0; i < 3; i++) {
|
|
|
- const x = a * tx;
|
|
|
- const y = b * ty;
|
|
|
-
|
|
|
- const ex = ((a * a - b * b) * tx ** 3) / a;
|
|
|
- const ey = ((b * b - a * a) * ty ** 3) / b;
|
|
|
-
|
|
|
- const rx = x - ex;
|
|
|
- const ry = y - ey;
|
|
|
-
|
|
|
- const qx = px - ex;
|
|
|
- const qy = py - ey;
|
|
|
-
|
|
|
- const r = Math.hypot(ry, rx);
|
|
|
- const q = Math.hypot(qy, qx);
|
|
|
-
|
|
|
- tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
|
|
|
- ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
|
|
|
- const t = Math.hypot(ty, tx);
|
|
|
- tx /= t;
|
|
|
- ty /= t;
|
|
|
- }
|
|
|
-
|
|
|
- const [minX, minY] = [
|
|
|
- a * tx * Math.sign(rotatedPointX),
|
|
|
- b * ty * Math.sign(rotatedPointY),
|
|
|
- ];
|
|
|
-
|
|
|
- return distanceToPoint([rotatedPointX, rotatedPointY], [minX, minY]);
|
|
|
-};
|
|
|
-
|
|
|
-export const pointOnEllipse = (
|
|
|
- point: Point,
|
|
|
- ellipse: Ellipse,
|
|
|
- threshold = DEFAULT_THRESHOLD,
|
|
|
-) => {
|
|
|
- return distanceToEllipse(point, ellipse) <= threshold;
|
|
|
-};
|
|
|
-
|
|
|
-export const pointInEllipse = (point: Point, ellipse: Ellipse) => {
|
|
|
- const { center, angle, halfWidth, halfHeight } = ellipse;
|
|
|
- const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
|
|
|
- point,
|
|
|
- center,
|
|
|
- angle,
|
|
|
- );
|
|
|
-
|
|
|
- return (
|
|
|
- (rotatedPointX / halfWidth) * (rotatedPointX / halfWidth) +
|
|
|
- (rotatedPointY / halfHeight) * (rotatedPointY / halfHeight) <=
|
|
|
- 1
|
|
|
- );
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * Calculates the point two line segments with a definite start and end point
|
|
|
- * intersect at.
|
|
|
- */
|
|
|
-export const segmentsIntersectAt = (
|
|
|
- a: Readonly<LineSegment>,
|
|
|
- b: Readonly<LineSegment>,
|
|
|
-): Point | null => {
|
|
|
- const r = subtractVectors(a[1], a[0]);
|
|
|
- const s = subtractVectors(b[1], b[0]);
|
|
|
- const denominator = crossProduct(r, s);
|
|
|
-
|
|
|
- if (denominator === 0) {
|
|
|
- return null;
|
|
|
- }
|
|
|
-
|
|
|
- const i = subtractVectors(b[0], a[0]);
|
|
|
- const u = crossProduct(i, r) / denominator;
|
|
|
- const t = crossProduct(i, s) / denominator;
|
|
|
-
|
|
|
- if (u === 0) {
|
|
|
- return null;
|
|
|
- }
|
|
|
-
|
|
|
- const p = addVectors(a[0], scaleVector(r, t));
|
|
|
-
|
|
|
- if (t >= 0 && t < 1 && u >= 0 && u < 1) {
|
|
|
- return p;
|
|
|
- }
|
|
|
-
|
|
|
- return null;
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * Determine intersection of a rectangular shaped element and a
|
|
|
- * line segment.
|
|
|
- *
|
|
|
- * @param element The rectangular element to test against
|
|
|
- * @param segment The segment intersecting the element
|
|
|
- * @param gap Optional value to inflate the shape before testing
|
|
|
- * @returns An array of intersections
|
|
|
- */
|
|
|
-// TODO: Replace with final rounded rectangle code
|
|
|
-export const segmentIntersectRectangleElement = (
|
|
|
- element: ExcalidrawBindableElement,
|
|
|
- segment: LineSegment,
|
|
|
- gap: number = 0,
|
|
|
-): Point[] => {
|
|
|
- const bounds = [
|
|
|
- element.x - gap,
|
|
|
- element.y - gap,
|
|
|
- element.x + element.width + gap,
|
|
|
- element.y + element.height + gap,
|
|
|
- ];
|
|
|
- const center = [
|
|
|
- (bounds[0] + bounds[2]) / 2,
|
|
|
- (bounds[1] + bounds[3]) / 2,
|
|
|
- ] as Point;
|
|
|
-
|
|
|
- return [
|
|
|
- [
|
|
|
- rotatePoint([bounds[0], bounds[1]], center, element.angle),
|
|
|
- rotatePoint([bounds[2], bounds[1]], center, element.angle),
|
|
|
- ] as LineSegment,
|
|
|
- [
|
|
|
- rotatePoint([bounds[2], bounds[1]], center, element.angle),
|
|
|
- rotatePoint([bounds[2], bounds[3]], center, element.angle),
|
|
|
- ] as LineSegment,
|
|
|
- [
|
|
|
- rotatePoint([bounds[2], bounds[3]], center, element.angle),
|
|
|
- rotatePoint([bounds[0], bounds[3]], center, element.angle),
|
|
|
- ] as LineSegment,
|
|
|
- [
|
|
|
- rotatePoint([bounds[0], bounds[3]], center, element.angle),
|
|
|
- rotatePoint([bounds[0], bounds[1]], center, element.angle),
|
|
|
- ] as LineSegment,
|
|
|
- ]
|
|
|
- .map((s) => segmentsIntersectAt(segment, s))
|
|
|
- .filter((i): i is Point => !!i);
|
|
|
-};
|