123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511 |
- import { NormalizedZoomValue, Point, Zoom } from "./types";
- import {
- DEFAULT_ADAPTIVE_RADIUS,
- LINE_CONFIRM_THRESHOLD,
- DEFAULT_PROPORTIONAL_RADIUS,
- ROUNDNESS,
- } from "./constants";
- import {
- ExcalidrawElement,
- ExcalidrawLinearElement,
- NonDeleted,
- } from "./element/types";
- import { getCurvePathOps } from "./element/bounds";
- import { Mutable } from "./utility-types";
- import { ShapeCache } from "./scene/ShapeCache";
- export const rotate = (
- x1: number,
- y1: number,
- x2: number,
- y2: number,
- angle: number,
- ): [number, number] =>
- // 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
- // 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
- // https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
- [
- (x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
- (x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
- ];
- export const rotatePoint = (
- point: Point,
- center: Point,
- angle: number,
- ): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
- export const adjustXYWithRotation = (
- sides: {
- n?: boolean;
- e?: boolean;
- s?: boolean;
- w?: boolean;
- },
- x: number,
- y: number,
- angle: number,
- deltaX1: number,
- deltaY1: number,
- deltaX2: number,
- deltaY2: number,
- ): [number, number] => {
- const cos = Math.cos(angle);
- const sin = Math.sin(angle);
- if (sides.e && sides.w) {
- x += deltaX1 + deltaX2;
- } else if (sides.e) {
- x += deltaX1 * (1 + cos);
- y += deltaX1 * sin;
- x += deltaX2 * (1 - cos);
- y += deltaX2 * -sin;
- } else if (sides.w) {
- x += deltaX1 * (1 - cos);
- y += deltaX1 * -sin;
- x += deltaX2 * (1 + cos);
- y += deltaX2 * sin;
- }
- if (sides.n && sides.s) {
- y += deltaY1 + deltaY2;
- } else if (sides.n) {
- x += deltaY1 * sin;
- y += deltaY1 * (1 - cos);
- x += deltaY2 * -sin;
- y += deltaY2 * (1 + cos);
- } else if (sides.s) {
- x += deltaY1 * -sin;
- y += deltaY1 * (1 + cos);
- x += deltaY2 * sin;
- y += deltaY2 * (1 - cos);
- }
- return [x, y];
- };
- export const getPointOnAPath = (point: Point, path: Point[]) => {
- const [px, py] = point;
- const [start, ...other] = path;
- let [lastX, lastY] = start;
- let kLine: number = 0;
- let idx: number = 0;
- // if any item in the array is true, it means that a point is
- // on some segment of a line based path
- const retVal = other.some(([x2, y2], i) => {
- // we always take a line when dealing with line segments
- const x1 = lastX;
- const y1 = lastY;
- lastX = x2;
- lastY = y2;
- // if a point is not within the domain of the line segment
- // it is not on the line segment
- if (px < x1 || px > x2) {
- return false;
- }
- // check if all points lie on the same line
- // y1 = kx1 + b, y2 = kx2 + b
- // y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
- // coefficient for the line (p0, p1)
- const kL = (y2 - y1) / (x2 - x1);
- // coefficient for the line segment (p0, point)
- const kP1 = (py - y1) / (px - x1);
- // coefficient for the line segment (point, p1)
- const kP2 = (py - y2) / (px - x2);
- // because we are basing both lines from the same starting point
- // the only option for collinearity is having same coefficients
- // using it for floating point comparisons
- const epsilon = 0.3;
- // if coefficient is more than an arbitrary epsilon,
- // these lines are nor collinear
- if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
- return false;
- }
- // store the coefficient because we are goint to need it
- kLine = kL;
- idx = i;
- return true;
- });
- // Return a coordinate that is always on the line segment
- if (retVal === true) {
- return { x: point[0], y: kLine * point[0], segment: idx };
- }
- return null;
- };
- export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
- const xd = x2 - x1;
- const yd = y2 - y1;
- return Math.hypot(xd, yd);
- };
- export const centerPoint = (a: Point, b: Point): Point => {
- return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
- };
- // Checks if the first and last point are close enough
- // to be considered a loop
- export const isPathALoop = (
- points: ExcalidrawLinearElement["points"],
- /** supply if you want the loop detection to account for current zoom */
- zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
- ): boolean => {
- if (points.length >= 3) {
- const [first, last] = [points[0], points[points.length - 1]];
- const distance = distance2d(first[0], first[1], last[0], last[1]);
- // Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
- // really close we make the threshold smaller, and vice versa.
- return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
- }
- return false;
- };
- // Draw a line from the point to the right till infiinty
- // Check how many lines of the polygon does this infinite line intersects with
- // If the number of intersections is odd, point is in the polygon
- export const isPointInPolygon = (
- points: Point[],
- x: number,
- y: number,
- ): boolean => {
- const vertices = points.length;
- // There must be at least 3 vertices in polygon
- if (vertices < 3) {
- return false;
- }
- const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
- const p: Point = [x, y];
- let count = 0;
- for (let i = 0; i < vertices; i++) {
- const current = points[i];
- const next = points[(i + 1) % vertices];
- if (doSegmentsIntersect(current, next, p, extreme)) {
- if (orderedColinearOrientation(current, p, next) === 0) {
- return isPointWithinBounds(current, p, next);
- }
- count++;
- }
- }
- // true if count is off
- return count % 2 === 1;
- };
- // Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
- // This is an approximation to "does `q` lie on a segment `pr`" check.
- export const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
- return (
- q[0] <= Math.max(p[0], r[0]) &&
- q[0] >= Math.min(p[0], r[0]) &&
- q[1] <= Math.max(p[1], r[1]) &&
- q[1] >= Math.min(p[1], r[1])
- );
- };
- // For the ordered points p, q, r, return
- // 0 if p, q, r are colinear
- // 1 if Clockwise
- // 2 if counterclickwise
- const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
- const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
- if (val === 0) {
- return 0;
- }
- return val > 0 ? 1 : 2;
- };
- // Check is p1q1 intersects with p2q2
- const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
- const o1 = orderedColinearOrientation(p1, q1, p2);
- const o2 = orderedColinearOrientation(p1, q1, q2);
- const o3 = orderedColinearOrientation(p2, q2, p1);
- const o4 = orderedColinearOrientation(p2, q2, q1);
- if (o1 !== o2 && o3 !== o4) {
- return true;
- }
- // p1, q1 and p2 are colinear and p2 lies on segment p1q1
- if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
- return true;
- }
- // p1, q1 and p2 are colinear and q2 lies on segment p1q1
- if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
- return true;
- }
- // p2, q2 and p1 are colinear and p1 lies on segment p2q2
- if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
- return true;
- }
- // p2, q2 and q1 are colinear and q1 lies on segment p2q2
- if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
- return true;
- }
- return false;
- };
- // TODO: Rounding this point causes some shake when free drawing
- export const getGridPoint = (
- x: number,
- y: number,
- gridSize: number | null,
- ): [number, number] => {
- if (gridSize) {
- return [
- Math.round(x / gridSize) * gridSize,
- Math.round(y / gridSize) * gridSize,
- ];
- }
- return [x, y];
- };
- export const getCornerRadius = (x: number, element: ExcalidrawElement) => {
- if (
- element.roundness?.type === ROUNDNESS.PROPORTIONAL_RADIUS ||
- element.roundness?.type === ROUNDNESS.LEGACY
- ) {
- return x * DEFAULT_PROPORTIONAL_RADIUS;
- }
- if (element.roundness?.type === ROUNDNESS.ADAPTIVE_RADIUS) {
- const fixedRadiusSize = element.roundness?.value ?? DEFAULT_ADAPTIVE_RADIUS;
- const CUTOFF_SIZE = fixedRadiusSize / DEFAULT_PROPORTIONAL_RADIUS;
- if (x <= CUTOFF_SIZE) {
- return x * DEFAULT_PROPORTIONAL_RADIUS;
- }
- return fixedRadiusSize;
- }
- return 0;
- };
- export const getControlPointsForBezierCurve = (
- element: NonDeleted<ExcalidrawLinearElement>,
- endPoint: Point,
- ) => {
- const shape = ShapeCache.generateElementShape(element);
- if (!shape) {
- return null;
- }
- const ops = getCurvePathOps(shape[0]);
- let currentP: Mutable<Point> = [0, 0];
- let index = 0;
- let minDistance = Infinity;
- let controlPoints: Mutable<Point>[] | null = null;
- while (index < ops.length) {
- const { op, data } = ops[index];
- if (op === "move") {
- currentP = data as unknown as Mutable<Point>;
- }
- if (op === "bcurveTo") {
- const p0 = currentP;
- const p1 = [data[0], data[1]] as Mutable<Point>;
- const p2 = [data[2], data[3]] as Mutable<Point>;
- const p3 = [data[4], data[5]] as Mutable<Point>;
- const distance = distance2d(p3[0], p3[1], endPoint[0], endPoint[1]);
- if (distance < minDistance) {
- minDistance = distance;
- controlPoints = [p0, p1, p2, p3];
- }
- currentP = p3;
- }
- index++;
- }
- return controlPoints;
- };
- export const getBezierXY = (
- p0: Point,
- p1: Point,
- p2: Point,
- p3: Point,
- t: number,
- ) => {
- const equation = (t: number, idx: number) =>
- Math.pow(1 - t, 3) * p3[idx] +
- 3 * t * Math.pow(1 - t, 2) * p2[idx] +
- 3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
- p0[idx] * Math.pow(t, 3);
- const tx = equation(t, 0);
- const ty = equation(t, 1);
- return [tx, ty];
- };
- export const getPointsInBezierCurve = (
- element: NonDeleted<ExcalidrawLinearElement>,
- endPoint: Point,
- ) => {
- const controlPoints: Mutable<Point>[] = getControlPointsForBezierCurve(
- element,
- endPoint,
- )!;
- if (!controlPoints) {
- return [];
- }
- const pointsOnCurve: Mutable<Point>[] = [];
- let t = 1;
- // Take 20 points on curve for better accuracy
- while (t > 0) {
- const point = getBezierXY(
- controlPoints[0],
- controlPoints[1],
- controlPoints[2],
- controlPoints[3],
- t,
- );
- pointsOnCurve.push([point[0], point[1]]);
- t -= 0.05;
- }
- if (pointsOnCurve.length) {
- if (arePointsEqual(pointsOnCurve.at(-1)!, endPoint)) {
- pointsOnCurve.push([endPoint[0], endPoint[1]]);
- }
- }
- return pointsOnCurve;
- };
- export const getBezierCurveArcLengths = (
- element: NonDeleted<ExcalidrawLinearElement>,
- endPoint: Point,
- ) => {
- const arcLengths: number[] = [];
- arcLengths[0] = 0;
- const points = getPointsInBezierCurve(element, endPoint);
- let index = 0;
- let distance = 0;
- while (index < points.length - 1) {
- const segmentDistance = distance2d(
- points[index][0],
- points[index][1],
- points[index + 1][0],
- points[index + 1][1],
- );
- distance += segmentDistance;
- arcLengths.push(distance);
- index++;
- }
- return arcLengths;
- };
- export const getBezierCurveLength = (
- element: NonDeleted<ExcalidrawLinearElement>,
- endPoint: Point,
- ) => {
- const arcLengths = getBezierCurveArcLengths(element, endPoint);
- return arcLengths.at(-1) as number;
- };
- // This maps interval to actual interval t on the curve so that when t = 0.5, its actually the point at 50% of the length
- export const mapIntervalToBezierT = (
- element: NonDeleted<ExcalidrawLinearElement>,
- endPoint: Point,
- interval: number, // The interval between 0 to 1 for which you want to find the point on the curve,
- ) => {
- const arcLengths = getBezierCurveArcLengths(element, endPoint);
- const pointsCount = arcLengths.length - 1;
- const curveLength = arcLengths.at(-1) as number;
- const targetLength = interval * curveLength;
- let low = 0;
- let high = pointsCount;
- let index = 0;
- // Doing a binary search to find the largest length that is less than the target length
- while (low < high) {
- index = Math.floor(low + (high - low) / 2);
- if (arcLengths[index] < targetLength) {
- low = index + 1;
- } else {
- high = index;
- }
- }
- if (arcLengths[index] > targetLength) {
- index--;
- }
- if (arcLengths[index] === targetLength) {
- return index / pointsCount;
- }
- return (
- 1 -
- (index +
- (targetLength - arcLengths[index]) /
- (arcLengths[index + 1] - arcLengths[index])) /
- pointsCount
- );
- };
- export const arePointsEqual = (p1: Point, p2: Point) => {
- return p1[0] === p2[0] && p1[1] === p2[1];
- };
- export const isRightAngle = (angle: number) => {
- // if our angles were mathematically accurate, we could just check
- //
- // angle % (Math.PI / 2) === 0
- //
- // but since we're in floating point land, we need to round.
- //
- // Below, after dividing by Math.PI, a multiple of 0.5 indicates a right
- // angle, which we can check with modulo after rounding.
- return Math.round((angle / Math.PI) * 10000) % 5000 === 0;
- };
- // Given two ranges, return if the two ranges overlap with each other
- // e.g. [1, 3] overlaps with [2, 4] while [1, 3] does not overlap with [4, 5]
- export const rangesOverlap = (
- [a0, a1]: [number, number],
- [b0, b1]: [number, number],
- ) => {
- if (a0 <= b0) {
- return a1 >= b0;
- }
- if (a0 >= b0) {
- return b1 >= a0;
- }
- return false;
- };
- // Given two ranges,return ther intersection of the two ranges if any
- // e.g. the intersection of [1, 3] and [2, 4] is [2, 3]
- export const rangeIntersection = (
- rangeA: [number, number],
- rangeB: [number, number],
- ): [number, number] | null => {
- const rangeStart = Math.max(rangeA[0], rangeB[0]);
- const rangeEnd = Math.min(rangeA[1], rangeB[1]);
- if (rangeStart <= rangeEnd) {
- return [rangeStart, rangeEnd];
- }
- return null;
- };
- export const isValueInRange = (value: number, min: number, max: number) => {
- return value >= min && value <= max;
- };
|