xmake.lua 1.3 KB

12345678910111213141516171819202122232425262728293031
  1. package("spectra")
  2. set_kind("library", {headeronly = true})
  3. set_homepage("https://spectralib.org/")
  4. set_description("Sparse Eigenvalue Computation Toolkit as a Redesigned ARPACK")
  5. set_license("MPL-2.0")
  6. add_urls("https://github.com/yixuan/spectra/archive/refs/tags/$(version).tar.gz",
  7. "https://github.com/yixuan/spectra.git")
  8. add_versions("v1.1.0", "d29671e3d1b8036728933cadfddb05668a3cd6133331e91fc4535a9b85bedc79")
  9. add_versions("v1.0.1", "919e3fbc8c539a321fd5a0766966922b7637cc52eb50a969241a997c733789f3")
  10. add_deps("cmake", "eigen")
  11. on_install("windows", "macosx", "linux", "mingw", "cross", function (package)
  12. import("package.tools.cmake").install(package)
  13. end)
  14. on_test(function (package)
  15. assert(package:check_cxxsnippets({test = [[
  16. #include <Eigen/Core>
  17. #include <Spectra/SymEigsSolver.h>
  18. void test() {
  19. Eigen::MatrixXd A = Eigen::MatrixXd::Random(10, 10);
  20. Eigen::MatrixXd M = A + A.transpose();
  21. Spectra::DenseSymMatProd<double> op(M);
  22. Spectra::SymEigsSolver<Spectra::DenseSymMatProd<double>> eigs(op, 3, 6);
  23. eigs.init();
  24. int nconv = eigs.compute(Spectra::SortRule::LargestAlge);
  25. }
  26. ]]}, {configs = {languages = "c++14"}}))
  27. end)