|
@@ -0,0 +1,49 @@
|
|
|
+import os
|
|
|
+from typing import List
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import pooch
|
|
|
+from PIL import Image
|
|
|
+from PIL.Image import Image as PILImage
|
|
|
+
|
|
|
+from .base import BaseSession
|
|
|
+
|
|
|
+
|
|
|
+class DisSession(BaseSession):
|
|
|
+ def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
|
|
|
+ ort_outs = self.inner_session.run(
|
|
|
+ None,
|
|
|
+ self.normalize(img, (0.485, 0.456, 0.406), (1.0, 1.0, 1.0), (1024, 1024)),
|
|
|
+ )
|
|
|
+
|
|
|
+ pred = ort_outs[0][:, 0, :, :]
|
|
|
+
|
|
|
+ ma = np.max(pred)
|
|
|
+ mi = np.min(pred)
|
|
|
+
|
|
|
+ pred = (pred - mi) / (ma - mi)
|
|
|
+ pred = np.squeeze(pred)
|
|
|
+
|
|
|
+ mask = Image.fromarray((pred * 255).astype("uint8"), mode="L")
|
|
|
+ mask = mask.resize(img.size, Image.LANCZOS)
|
|
|
+
|
|
|
+ return [mask]
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def download_models(cls, *args, **kwargs):
|
|
|
+ fname = f"{cls.name()}.onnx"
|
|
|
+ pooch.retrieve(
|
|
|
+ "https://github.com/danielgatis/rembg/releases/download/v0.0.0/isnet-anime.onnx",
|
|
|
+ None
|
|
|
+ if cls.checksum_disabled(*args, **kwargs)
|
|
|
+ else "md5:6f184e756bb3bd901c8849220a83e38e",
|
|
|
+ fname=fname,
|
|
|
+ path=cls.u2net_home(*args, **kwargs),
|
|
|
+ progressbar=True,
|
|
|
+ )
|
|
|
+
|
|
|
+ return os.path.join(cls.u2net_home(), fname)
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def name(cls, *args, **kwargs):
|
|
|
+ return "isnet-anime"
|