rembg is a python library which utilizes Neural Network AI models and ONNX to remove the backgrounds from supplied image files. Can be used as a library or a CLI tool.

#image-processing #background-removal #python #library #ai #neuralnet #machine-learning #ml

Daniel Gatis eeddfae18c add anime model 2 yıl önce
.github c27f4e20f3 refactoring 2 yıl önce
examples eeddfae18c add anime model 2 yıl önce
rembg eeddfae18c add anime model 2 yıl önce
tests eeddfae18c add anime model 2 yıl önce
.dockerignore 2bca04e2dd fix docker img 3 yıl önce
.editorconfig 7fb6683169 initial 5 yıl önce
.gitattributes fe0823e513 fix build 3 yıl önce
.gitignore e7a8a209db add tests 2 yıl önce
Dockerfile d6a5602e1c fix docker 2 yıl önce
LICENSE.txt 7fb6683169 initial 5 yıl önce
MANIFEST.in e7a8a209db add tests 2 yıl önce
README.md eeddfae18c add anime model 2 yıl önce
USAGE.md f95e0cd456 fixed mistake in usage.md 2 yıl önce
build-exe 738dd1f59f add build-exe 2 yıl önce
onnxruntime-installation-matrix.png 1586c1d5d6 update readme 2 yıl önce
pyproject.toml e7884e2aaf Require younger setuptools 2 yıl önce
pytest.ini e7a8a209db add tests 2 yıl önce
rembg.py 2473aa72b9 fix version 3 yıl önce
requirements-gpu.txt 1ca14ce058 refactoring 2 yıl önce
requirements.txt 1ca14ce058 refactoring 2 yıl önce
setup.cfg fe0823e513 fix build 3 yıl önce
setup.py 808a64b8eb refactoring 2 yıl önce
versioneer.py eba6b2dbf3 fix project layout 3 yıl önce

README.md

Rembg

Downloads Downloads Downloads License Hugging Face Spaces Streamlit App

Rembg is a tool to remove images background.

If this project has helped you, please consider making a donation.

Sponsor

Unsplash PhotoRoom Remove Background API
https://photoroom.com/api

Fast and accurate background remover API

Requirements

python: >3.7, <3.11

Installation

CPU support:

pip install rembg

GPU support:

First of all, you need to check if your system supports the onnxruntime-gpu.

Go to https://onnxruntime.ai and check the installation matrix.

If yes, just run:

pip install rembg[gpu]

Usage as a cli

After the installation step you can use rembg just typing rembg in your terminal window.

The rembg command has 4 subcommands, one for each input type:

  • i for files
  • p for folders
  • s for http server
  • b for RGB24 pixel binary stream

You can get help about the main command using:

rembg --help

As well, about all the subcommands using:

rembg <COMMAND> --help

rembg i

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png | rembg i > output.png

Remove the background from a local file

rembg i path/to/input.png path/to/output.png

Remove the background specifying a model

rembg i -m u2netp path/to/input.png path/to/output.png

Remove the background returning only the mask

rembg i -om path/to/input.png path/to/output.png

Remove the background applying an alpha matting

rembg i -a path/to/input.png path/to/output.png

Passing extras parameters

rembg i -m sam -x '{"input_labels": [1], "input_points": [[100,100]]}' path/to/input.png path/to/output.png

rembg p

Used when input and output are folders.

Remove the background from all images in a folder

rembg p path/to/input path/to/output

Same as before, but watching for new/changed files to process

rembg p -w path/to/input path/to/output

rembg s

Used to start http server.

To see the complete endpoints documentation, go to: http://localhost:5000/docs.

Remove the background from an image url

curl -s "http://localhost:5000/?url=http://input.png" -o output.png

Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg "http://localhost:5000"  -o output.png

rembg b

Process a sequence of RGB24 images from stdin. This is intended to be used with another program, such as FFMPEG, that outputs RGB24 pixel data to stdout, which is piped into the stdin of this program, although nothing prevents you from manually typing in images at stdin.

rembg b image_width image_height -o output_specifier

Arguments:

  • image_width : width of input image(s)
  • image_height : height of input image(s)
  • output_specifier: printf-style specifier for output filenames, for example if output-%03u.png, then output files will be named output-000.png, output-001.png, output-002.png, etc. Output files will be saved in PNG format regardless of the extension specified. You can omit it to write results to stdout.

Example usage with FFMPEG:

ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1 | rembg b 1280 720 -o folder/output-%03u.png

The width and height values must match the dimension of output images from FFMPEG. Note for FFMPEG, the "-an -f rawvideo -pix_fmt rgb24 pipe:1" part is required for the whole thing to work.

Usage as a library

Input and output as bytes

from rembg import remove

input_path = 'input.png'
output_path = 'output.png'

with open(input_path, 'rb') as i:
    with open(output_path, 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image

from rembg import remove
from PIL import Image

input_path = 'input.png'
output_path = 'output.png'

input = Image.open(input_path)
output = remove(input)
output.save(output_path)

Input and output as a numpy array

from rembg import remove
import cv2

input_path = 'input.png'
output_path = 'output.png'

input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)

How to iterate over files in a performatic way

from pathlib import Path
from rembg import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

To see a full list of examples on how to use rembg, go to the examples page.

Usage as a docker

Just replace the rembg command for docker run danielgatis/rembg.

Try this:

docker run danielgatis/rembg i path/to/input.png path/to/output.png

Models

All models are downloaded and saved in the user home folder in the .u2net directory.

The available models are:

  • u2net (download, source): A pre-trained model for general use cases.
  • u2netp (download, source): A lightweight version of u2net model.
  • u2net_human_seg (download, source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.
  • isnet-general-use (download, source): A new pre-trained model for general use cases.
  • sam (download encoder, download decoder, source): A pre-trained model for any use cases.

Some differences between the models result

original u2net u2netp u2net_human_seg u2net_cloth_seg silueta isnet-general-use sam

How to train your own model

If You need more fine tunned models try this: https://github.com/danielgatis/rembg/issues/193#issuecomment-1055534289

Some video tutorials

References

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

License

Copyright (c) 2020-present Daniel Gatis

Licensed under MIT License