|
@@ -3,13 +3,13 @@ extends Navigation
|
|
const SPEED = 10.0
|
|
const SPEED = 10.0
|
|
|
|
|
|
var camrot = 0.0
|
|
var camrot = 0.0
|
|
-
|
|
|
|
-var begin = Vector3()
|
|
|
|
-var end = Vector3()
|
|
|
|
var m = SpatialMaterial.new()
|
|
var m = SpatialMaterial.new()
|
|
|
|
|
|
var path = []
|
|
var path = []
|
|
-var draw_path = true
|
|
|
|
|
|
+var show_path = true
|
|
|
|
+
|
|
|
|
+onready var robot = get_node("RobotBase")
|
|
|
|
+onready var camera = get_node("CameraBase/Camera")
|
|
|
|
|
|
func _ready():
|
|
func _ready():
|
|
set_process_input(true)
|
|
set_process_input(true)
|
|
@@ -18,47 +18,54 @@ func _ready():
|
|
m.albedo_color = Color.white
|
|
m.albedo_color = Color.white
|
|
|
|
|
|
|
|
|
|
-func _process(delta):
|
|
|
|
- if path.size() > 1:
|
|
|
|
- var to_walk = delta * SPEED
|
|
|
|
- var to_watch = Vector3.UP
|
|
|
|
- while to_walk > 0 and path.size() >= 2:
|
|
|
|
- var pfrom = path[path.size() - 1]
|
|
|
|
- var pto = path[path.size() - 2]
|
|
|
|
- to_watch = (pto - pfrom).normalized()
|
|
|
|
- var d = pfrom.distance_to(pto)
|
|
|
|
- if d <= to_walk:
|
|
|
|
- path.remove(path.size() - 1)
|
|
|
|
- to_walk -= d
|
|
|
|
- else:
|
|
|
|
- path[path.size() - 1] = pfrom.linear_interpolate(pto, to_walk / d)
|
|
|
|
- to_walk = 0
|
|
|
|
-
|
|
|
|
- var atpos = path[path.size() - 1]
|
|
|
|
- var atdir = to_watch
|
|
|
|
- atdir.y = 0
|
|
|
|
-
|
|
|
|
- var t = Transform()
|
|
|
|
- t.origin = atpos
|
|
|
|
- t = t.looking_at(atpos + atdir, Vector3.UP)
|
|
|
|
- get_node("RobotBase").set_transform(t)
|
|
|
|
-
|
|
|
|
- if path.size() < 2:
|
|
|
|
- path = []
|
|
|
|
- set_process(false)
|
|
|
|
- else:
|
|
|
|
- set_process(false)
|
|
|
|
|
|
+func _physics_process(delta):
|
|
|
|
+ var direction = Vector3()
|
|
|
|
+
|
|
|
|
+ # We need to scale the movement speed by how much delta has passed,
|
|
|
|
+ # otherwise the motion won't be smooth.
|
|
|
|
+ var step_size = delta * SPEED
|
|
|
|
+
|
|
|
|
+ if path.size() > 0:
|
|
|
|
+ # Direction is the difference between where we are now
|
|
|
|
+ # and where we want to go.
|
|
|
|
+ var destination = path[0]
|
|
|
|
+ direction = destination - robot.translation
|
|
|
|
+
|
|
|
|
+ # If the next node is closer than we intend to 'step', then
|
|
|
|
+ # take a smaller step. Otherwise we would go past it and
|
|
|
|
+ # potentially go through a wall or over a cliff edge!
|
|
|
|
+ if step_size > direction.length():
|
|
|
|
+ step_size = direction.length()
|
|
|
|
+ # We should also remove this node since we're about to reach it.
|
|
|
|
+ path.remove(0)
|
|
|
|
+
|
|
|
|
+ # Move the robot towards the path node, by how far we want to travel.
|
|
|
|
+ # Note: For a KinematicBody, we would instead use move_and_slide
|
|
|
|
+ # so collisions work properly.
|
|
|
|
+ robot.translation += direction.normalized() * step_size
|
|
|
|
+
|
|
|
|
+ # Lastly let's make sure we're looking in the direction we're traveling.
|
|
|
|
+ # Clamp y to 0 so the robot only looks left and right, not up/down.
|
|
|
|
+ direction.y = 0
|
|
|
|
+ if direction:
|
|
|
|
+ # Direction is relative, so apply it to the robot's location to
|
|
|
|
+ # get a point we can actually look at.
|
|
|
|
+ var look_at_point = robot.translation + direction.normalized()
|
|
|
|
+ # Make the robot look at the point.
|
|
|
|
+ robot.look_at(look_at_point, Vector3.UP)
|
|
|
|
|
|
|
|
|
|
func _unhandled_input(event):
|
|
func _unhandled_input(event):
|
|
if event is InputEventMouseButton and event.button_index == BUTTON_LEFT and event.pressed:
|
|
if event is InputEventMouseButton and event.button_index == BUTTON_LEFT and event.pressed:
|
|
- var from = get_node("CameraBase/Camera").project_ray_origin(event.position)
|
|
|
|
- var to = from + get_node("CameraBase/Camera").project_ray_normal(event.position) * 100
|
|
|
|
- var p = get_closest_point_to_segment(from, to)
|
|
|
|
|
|
+ var from = camera.project_ray_origin(event.position)
|
|
|
|
+ var to = from + camera.project_ray_normal(event.position) * 1000
|
|
|
|
+ var target_point = get_closest_point_to_segment(from, to)
|
|
|
|
+
|
|
|
|
+ # Set the path between the robots current location and our target.
|
|
|
|
+ path = get_simple_path(robot.translation, target_point, true)
|
|
|
|
|
|
- begin = get_closest_point(get_node("RobotBase").get_translation())
|
|
|
|
- end = p
|
|
|
|
- _update_path()
|
|
|
|
|
|
+ if show_path:
|
|
|
|
+ draw_path(path)
|
|
|
|
|
|
if event is InputEventMouseMotion:
|
|
if event is InputEventMouseMotion:
|
|
if event.button_mask & (BUTTON_MASK_MIDDLE + BUTTON_MASK_RIGHT):
|
|
if event.button_mask & (BUTTON_MASK_MIDDLE + BUTTON_MASK_RIGHT):
|
|
@@ -67,21 +74,15 @@ func _unhandled_input(event):
|
|
print("Camera Rotation: ", camrot)
|
|
print("Camera Rotation: ", camrot)
|
|
|
|
|
|
|
|
|
|
-func _update_path():
|
|
|
|
- var p = get_simple_path(begin, end, true)
|
|
|
|
- path = Array(p) # Vector3 array too complex to use, convert to regular array.
|
|
|
|
- path.invert()
|
|
|
|
- set_process(true)
|
|
|
|
-
|
|
|
|
- if draw_path:
|
|
|
|
- var im = get_node("Draw")
|
|
|
|
- im.set_material_override(m)
|
|
|
|
- im.clear()
|
|
|
|
- im.begin(Mesh.PRIMITIVE_POINTS, null)
|
|
|
|
- im.add_vertex(begin)
|
|
|
|
- im.add_vertex(end)
|
|
|
|
- im.end()
|
|
|
|
- im.begin(Mesh.PRIMITIVE_LINE_STRIP, null)
|
|
|
|
- for x in p:
|
|
|
|
- im.add_vertex(x)
|
|
|
|
- im.end()
|
|
|
|
|
|
+func draw_path(path_array):
|
|
|
|
+ var im = get_node("Draw")
|
|
|
|
+ im.set_material_override(m)
|
|
|
|
+ im.clear()
|
|
|
|
+ im.begin(Mesh.PRIMITIVE_POINTS, null)
|
|
|
|
+ im.add_vertex(path_array[0])
|
|
|
|
+ im.add_vertex(path_array[path_array.size() - 1])
|
|
|
|
+ im.end()
|
|
|
|
+ im.begin(Mesh.PRIMITIVE_LINE_STRIP, null)
|
|
|
|
+ for x in path:
|
|
|
|
+ im.add_vertex(x)
|
|
|
|
+ im.end()
|