|
@@ -207,6 +207,14 @@ vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
|
|
|
|
|
#endif // !USE_GLOW_FILTER_BICUBIC
|
|
|
|
|
|
+// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
|
|
|
+vec3 tonemap_reinhard(vec3 color, float white) {
|
|
|
+ float white_squared = white * white;
|
|
|
+ vec3 white_squared_color = white_squared * color;
|
|
|
+ // Equivalent to color * (1 + color / white_squared) / (1 + color)
|
|
|
+ return (white_squared_color + color * color) / (white_squared_color + white_squared);
|
|
|
+}
|
|
|
+
|
|
|
vec3 tonemap_filmic(vec3 color, float white) {
|
|
|
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
|
|
|
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
|
|
@@ -256,12 +264,74 @@ vec3 tonemap_aces(vec3 color, float white) {
|
|
|
return color_tonemapped / white_tonemapped;
|
|
|
}
|
|
|
|
|
|
-// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
|
|
|
-vec3 tonemap_reinhard(vec3 color, float white) {
|
|
|
- float white_squared = white * white;
|
|
|
- vec3 white_squared_color = white_squared * color;
|
|
|
- // Equivalent to color * (1 + color / white_squared) / (1 + color)
|
|
|
- return (white_squared_color + color * color) / (white_squared_color + white_squared);
|
|
|
+// Polynomial approximation of EaryChow's AgX sigmoid curve.
|
|
|
+// In Blender's implementation, numbers could go a little bit over 1.0, so it's best to ensure
|
|
|
+// this behaves the same as Blender's with values up to 1.1. Input values cannot be lower than 0.
|
|
|
+vec3 agx_default_contrast_approx(vec3 x) {
|
|
|
+ // Generated with Excel trendline
|
|
|
+ // Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
|
|
|
+ // 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
|
|
|
+ vec3 x2 = x * x;
|
|
|
+ vec3 x4 = x2 * x2;
|
|
|
+ return -0.20687445 * x + 6.80888933 * x2 - 37.60519607 * x2 * x + 93.32681938 * x4 - 95.2780858 * x4 * x + 33.96372259 * x4 * x2;
|
|
|
+}
|
|
|
+
|
|
|
+const mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(
|
|
|
+ vec3(0.6274, 0.0691, 0.0164),
|
|
|
+ vec3(0.3293, 0.9195, 0.0880),
|
|
|
+ vec3(0.0433, 0.0113, 0.8956));
|
|
|
+
|
|
|
+// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
|
|
|
+// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
|
|
|
+// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
|
|
|
+vec3 tonemap_agx(vec3 color) {
|
|
|
+ const mat3 agx_inset_matrix = mat3(
|
|
|
+ 0.856627153315983, 0.137318972929847, 0.11189821299995,
|
|
|
+ 0.0951212405381588, 0.761241990602591, 0.0767994186031903,
|
|
|
+ 0.0482516061458583, 0.101439036467562, 0.811302368396859);
|
|
|
+
|
|
|
+ // Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
|
|
|
+ const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
|
|
|
+ 1.9648846919172409596, -0.29937618452442253746, -0.16440106280678278299,
|
|
|
+ -0.85594737466675834968, 1.3263980951083531115, -0.23819967517076844919,
|
|
|
+ -0.10883731725048386702, -0.02702191058393112346, 1.4025007379775505276);
|
|
|
+
|
|
|
+ // LOG2_MIN = -10.0
|
|
|
+ // LOG2_MAX = +6.5
|
|
|
+ // MIDDLE_GRAY = 0.18
|
|
|
+ const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
|
|
|
+ const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
|
|
|
+
|
|
|
+ // Do AGX in rec2020 to match Blender.
|
|
|
+ color = LINEAR_SRGB_TO_LINEAR_REC2020 * color;
|
|
|
+
|
|
|
+ // Preventing negative values is required for the AgX inset matrix to behave correctly.
|
|
|
+ // This could also be done before the Rec. 2020 transform, allowing the transform to
|
|
|
+ // be combined with the AgX inset matrix, but doing this causes a loss of color information
|
|
|
+ // that could be correctly interpreted within the Rec. 2020 color space.
|
|
|
+ color = max(color, vec3(0.0));
|
|
|
+
|
|
|
+ color = agx_inset_matrix * color;
|
|
|
+
|
|
|
+ // Log2 space encoding.
|
|
|
+ color = max(color, 1e-10); // Prevent log2(0.0). Possibly unnecessary.
|
|
|
+ // Must be clamped because agx_blender_default_contrast_approx may not work well with values above 1.0
|
|
|
+ color = clamp(log2(color), min_ev, max_ev);
|
|
|
+ color = (color - min_ev) / (max_ev - min_ev);
|
|
|
+
|
|
|
+ // Apply sigmoid function approximation.
|
|
|
+ color = agx_default_contrast_approx(color);
|
|
|
+
|
|
|
+ // Convert back to linear before applying outset matrix.
|
|
|
+ color = pow(color, vec3(2.4));
|
|
|
+
|
|
|
+ // Apply outset to make the result more chroma-laden and then go back to linear sRGB.
|
|
|
+ color = agx_outset_rec2020_to_srgb_matrix * color;
|
|
|
+
|
|
|
+ // Simply hard clip instead of Blender's complex lusRGB.compensate_low_side.
|
|
|
+ color = max(color, vec3(0.0));
|
|
|
+
|
|
|
+ return color;
|
|
|
}
|
|
|
|
|
|
vec3 linear_to_srgb(vec3 color) {
|
|
@@ -275,6 +345,7 @@ vec3 linear_to_srgb(vec3 color) {
|
|
|
#define TONEMAPPER_REINHARD 1
|
|
|
#define TONEMAPPER_FILMIC 2
|
|
|
#define TONEMAPPER_ACES 3
|
|
|
+#define TONEMAPPER_AGX 4
|
|
|
|
|
|
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
|
|
|
// Ensure color values passed to tonemappers are positive.
|
|
@@ -285,8 +356,10 @@ vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
|
|
|
return tonemap_reinhard(max(vec3(0.0f), color), white);
|
|
|
} else if (params.tonemapper == TONEMAPPER_FILMIC) {
|
|
|
return tonemap_filmic(max(vec3(0.0f), color), white);
|
|
|
- } else { // TONEMAPPER_ACES
|
|
|
+ } else if (params.tonemapper == TONEMAPPER_ACES) {
|
|
|
return tonemap_aces(max(vec3(0.0f), color), white);
|
|
|
+ } else { // TONEMAPPER_AGX
|
|
|
+ return tonemap_agx(color);
|
|
|
}
|
|
|
}
|
|
|
|