Răsfoiți Sursa

Allow picking similar colours using OKHSL.

K. S. Ernest (iFire) Lee 3 ani în urmă
părinte
comite
1b776a6e7a

+ 6 - 0
COPYRIGHT.txt

@@ -321,6 +321,12 @@ Comment: Tangent Space Normal Maps implementation
 Copyright: 2011, Morten S. Mikkelsen
 License: Zlib
 
+Files: ./thirdparty/misc/ok_color.h
+ ./thirdparty/misc/ok_color_shader.h
+Comment: OK Lab color space
+Copyright: 2021, Björn Ottosson
+License: Expat
+
 Files: ./thirdparty/noise/FastNoiseLite.h
 Comment: FastNoise Lite
 Copyright: 2020, Jordan Peck and contributors

+ 61 - 0
core/math/color.cpp

@@ -35,6 +35,8 @@
 #include "core/string/print_string.h"
 #include "core/templates/rb_map.h"
 
+#include "thirdparty/misc/ok_color.h"
+
 uint32_t Color::to_argb32() const {
 	uint32_t c = (uint8_t)Math::round(a * 255);
 	c <<= 8;
@@ -240,6 +242,20 @@ void Color::set_hsv(float p_h, float p_s, float p_v, float p_alpha) {
 	}
 }
 
+void Color::set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) {
+	ok_color::HSL hsl;
+	hsl.h = p_h;
+	hsl.s = p_s;
+	hsl.l = p_l;
+	ok_color new_ok_color;
+	ok_color::RGB rgb = new_ok_color.okhsl_to_srgb(hsl);
+	Color c = Color(rgb.r, rgb.g, rgb.b, p_alpha).clamp();
+	r = c.r;
+	g = c.g;
+	b = c.b;
+	a = c.a;
+}
+
 bool Color::is_equal_approx(const Color &p_color) const {
 	return Math::is_equal_approx(r, p_color.r) && Math::is_equal_approx(g, p_color.g) && Math::is_equal_approx(b, p_color.b) && Math::is_equal_approx(a, p_color.a);
 }
@@ -568,3 +584,48 @@ Color Color::operator-() const {
 			1.0f - b,
 			1.0f - a);
 }
+
+Color Color::from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha) {
+	Color c;
+	c.set_ok_hsl(p_h, p_s, p_l, p_alpha);
+	return c;
+}
+
+float Color::get_ok_hsl_h() const {
+	ok_color::RGB rgb;
+	rgb.r = r;
+	rgb.g = g;
+	rgb.b = b;
+	ok_color new_ok_color;
+	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	if (Math::is_nan(ok_hsl.h)) {
+		return 0.0f;
+	}
+	return CLAMP(ok_hsl.h, 0.0f, 1.0f);
+}
+
+float Color::get_ok_hsl_s() const {
+	ok_color::RGB rgb;
+	rgb.r = r;
+	rgb.g = g;
+	rgb.b = b;
+	ok_color new_ok_color;
+	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	if (Math::is_nan(ok_hsl.s)) {
+		return 0.0f;
+	}
+	return CLAMP(ok_hsl.s, 0.0f, 1.0f);
+}
+
+float Color::get_ok_hsl_l() const {
+	ok_color::RGB rgb;
+	rgb.r = r;
+	rgb.g = g;
+	rgb.b = b;
+	ok_color new_ok_color;
+	ok_color::HSL ok_hsl = new_ok_color.srgb_to_okhsl(rgb);
+	if (Math::is_nan(ok_hsl.l)) {
+		return 0.0f;
+	}
+	return CLAMP(ok_hsl.l, 0.0f, 1.0f);
+}

+ 8 - 0
core/math/color.h

@@ -56,6 +56,10 @@ struct _NO_DISCARD_ Color {
 	float get_s() const;
 	float get_v() const;
 	void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
+	float get_ok_hsl_h() const;
+	float get_ok_hsl_s() const;
+	float get_ok_hsl_l() const;
+	void set_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
 
 	_FORCE_INLINE_ float &operator[](int p_idx) {
 		return components[p_idx];
@@ -195,6 +199,7 @@ struct _NO_DISCARD_ Color {
 	static Color get_named_color(int p_idx);
 	static Color from_string(const String &p_string, const Color &p_default);
 	static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
+	static Color from_ok_hsl(float p_h, float p_s, float p_l, float p_alpha = 1.0);
 	static Color from_rgbe9995(uint32_t p_rgbe);
 
 	_FORCE_INLINE_ bool operator<(const Color &p_color) const; //used in set keys
@@ -213,6 +218,9 @@ struct _NO_DISCARD_ Color {
 	_FORCE_INLINE_ void set_h(float p_h) { set_hsv(p_h, get_s(), get_v()); }
 	_FORCE_INLINE_ void set_s(float p_s) { set_hsv(get_h(), p_s, get_v()); }
 	_FORCE_INLINE_ void set_v(float p_v) { set_hsv(get_h(), get_s(), p_v); }
+	_FORCE_INLINE_ void set_ok_hsl_h(float p_h) { set_ok_hsl(p_h, get_ok_hsl_s(), get_ok_hsl_l()); }
+	_FORCE_INLINE_ void set_ok_hsl_s(float p_s) { set_ok_hsl(get_ok_hsl_h(), p_s, get_ok_hsl_l()); }
+	_FORCE_INLINE_ void set_ok_hsl_l(float p_l) { set_ok_hsl(get_ok_hsl_h(), get_ok_hsl_s(), p_l); }
 
 	_FORCE_INLINE_ Color() {}
 

+ 2 - 0
core/variant/variant_call.cpp

@@ -1675,6 +1675,8 @@ static void _register_variant_builtin_methods() {
 	bind_static_method(Color, get_named_color, sarray("idx"), varray());
 	bind_static_method(Color, from_string, sarray("str", "default"), varray());
 	bind_static_method(Color, from_hsv, sarray("h", "s", "v", "alpha"), varray(1.0));
+	bind_static_method(Color, from_ok_hsl, sarray("h", "s", "l", "alpha"), varray(1.0));
+
 	bind_static_method(Color, from_rgbe9995, sarray("rgbe"), varray());
 
 	/* RID */

+ 4 - 0
core/variant/variant_setget.h

@@ -329,4 +329,8 @@ SETGET_NUMBER_STRUCT_FUNC(Color, double, h, set_h, get_h)
 SETGET_NUMBER_STRUCT_FUNC(Color, double, s, set_s, get_s)
 SETGET_NUMBER_STRUCT_FUNC(Color, double, v, set_v, get_v)
 
+SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_h, set_ok_hsl_h, get_ok_hsl_h)
+SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_s, set_ok_hsl_s, get_ok_hsl_s)
+SETGET_NUMBER_STRUCT_FUNC(Color, double, ok_hsl_l, set_ok_hsl_l, get_ok_hsl_l)
+
 #endif // VARIANT_SETGET_H

+ 18 - 0
doc/classes/Color.xml

@@ -165,6 +165,24 @@
 				[/codeblocks]
 			</description>
 		</method>
+		<method name="from_ok_hsl" qualifiers="static">
+			<return type="Color" />
+			<argument index="0" name="h" type="float" />
+			<argument index="1" name="s" type="float" />
+			<argument index="2" name="l" type="float" />
+			<argument index="3" name="alpha" type="float" default="1.0" />
+			<description>
+				Constructs a color from an [url=https://bottosson.github.io/posts/colorpicker/]OK HSL profile[/url]. [code]h[/code] (hue), [code]s[/code] (saturation), and [code]v[/code] (value) are typically between 0 and 1.
+				[codeblocks]
+				[gdscript]
+				var c = Color.from_ok_hsl(0.58, 0.5, 0.79, 0.8)
+				[/gdscript]
+				[csharp]
+				var c = Color.FromOkHsl(0.58f, 0.5f, 0.79f, 0.8f);
+				[/csharp]
+				[/codeblocks]
+			</description>
+		</method>
 		<method name="from_rgbe9995" qualifiers="static">
 			<return type="Color" />
 			<argument index="0" name="rgbe" type="int" />

+ 3 - 0
doc/classes/ColorPicker.xml

@@ -91,6 +91,9 @@
 		<constant name="SHAPE_VHS_CIRCLE" value="2" enum="PickerShapeType">
 			HSV Color Model circle color space. Use Saturation as a radius.
 		</constant>
+		<constant name="SHAPE_OKHSL_CIRCLE" value="3" enum="PickerShapeType">
+			HSL OK Color Model circle color space.
+		</constant>
 	</constants>
 	<theme_items>
 		<theme_item name="h_width" data_type="constant" type="int" default="30">

+ 2 - 2
editor/editor_node.cpp

@@ -6109,8 +6109,8 @@ EditorNode::EditorNode() {
 	EDITOR_DEF("interface/inspector/resources_to_open_in_new_inspector", "Script,MeshLibrary");
 	EDITOR_DEF("interface/inspector/default_color_picker_mode", 0);
 	EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_mode", PROPERTY_HINT_ENUM, "RGB,HSV,RAW", PROPERTY_USAGE_DEFAULT));
-	EDITOR_DEF("interface/inspector/default_color_picker_shape", (int32_t)ColorPicker::SHAPE_VHS_CIRCLE);
-	EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle", PROPERTY_USAGE_DEFAULT));
+	EDITOR_DEF("interface/inspector/default_color_picker_shape", (int32_t)ColorPicker::SHAPE_OKHSL_CIRCLE);
+	EditorSettings::get_singleton()->add_property_hint(PropertyInfo(Variant::INT, "interface/inspector/default_color_picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle,OKHSL Circle", PROPERTY_USAGE_DEFAULT));
 
 	ED_SHORTCUT("canvas_item_editor/pan_view", TTR("Pan View"), Key::SPACE);
 

+ 137 - 36
scene/gui/color_picker.cpp

@@ -31,6 +31,7 @@
 #include "color_picker.h"
 
 #include "core/input/input.h"
+#include "core/math/color.h"
 #include "core/os/keyboard.h"
 #include "core/os/os.h"
 #include "scene/main/window.h"
@@ -39,6 +40,9 @@
 #include "editor/editor_settings.h"
 #endif
 
+#include "thirdparty/misc/ok_color.h"
+#include "thirdparty/misc/ok_color_shader.h"
+
 List<Color> ColorPicker::preset_cache;
 
 void ColorPicker::_notification(int p_what) {
@@ -102,6 +106,7 @@ void ColorPicker::_notification(int p_what) {
 
 Ref<Shader> ColorPicker::wheel_shader;
 Ref<Shader> ColorPicker::circle_shader;
+Ref<Shader> ColorPicker::circle_ok_color_shader;
 
 void ColorPicker::init_shaders() {
 	wheel_shader.instantiate();
@@ -152,11 +157,36 @@ void fragment() {
 
 	COLOR = vec4(mix(vec3(1.0), clamp(abs(fract(vec3((a - TAU) / TAU) + vec3(1.0, 2.0 / 3.0, 1.0 / 3.0)) * 6.0 - vec3(3.0)) - vec3(1.0), 0.0, 1.0), ((float(sqrt(x * x + y * y)) * 2.0)) / 1.0) * vec3(v), (b + b2 + b3 + b4) / 4.00);
 })");
+
+	circle_ok_color_shader.instantiate();
+	circle_ok_color_shader->set_code(OK_COLOR_SHADER + R"(
+// ColorPicker ok color hsv circle shader.
+
+uniform float v = 1.0;
+
+void fragment() {
+	float x = UV.x - 0.5;
+	float y = UV.y - 0.5;
+	x += 0.001;
+	y += 0.001;
+	float b = float(sqrt(x * x + y * y) < 0.5);
+	x -= 0.002;
+	float b2 = float(sqrt(x * x + y * y) < 0.5);
+	y -= 0.002;
+	float b3 = float(sqrt(x * x + y * y) < 0.5);
+	x += 0.002;
+	float b4 = float(sqrt(x * x + y * y) < 0.5);
+	float s = sqrt(x * x + y * y);
+	float h = atan(y, x) / (2.0*M_PI);
+	vec3 col = okhsl_to_srgb(vec3(h, s, v));
+	COLOR = vec4(col, (b + b2 + b3 + b4) / 4.00);
+})");
 }
 
 void ColorPicker::finish_shaders() {
 	wheel_shader.unref();
 	circle_shader.unref();
+	circle_ok_color_shader.unref();
 }
 
 void ColorPicker::set_focus_on_line_edit() {
@@ -166,8 +196,12 @@ void ColorPicker::set_focus_on_line_edit() {
 void ColorPicker::_update_controls() {
 	const char *rgb[3] = { "R", "G", "B" };
 	const char *hsv[3] = { "H", "S", "V" };
-
-	if (hsv_mode_enabled) {
+	const char *hsl[3] = { "H", "S", "L" };
+	if (hsv_mode_enabled && picker_type == SHAPE_OKHSL_CIRCLE) {
+		for (int i = 0; i < 3; i++) {
+			labels[i]->set_text(hsl[i]);
+		}
+	} else if (hsv_mode_enabled && picker_type != SHAPE_OKHSL_CIRCLE) {
 		for (int i = 0; i < 3; i++) {
 			labels[i]->set_text(hsv[i]);
 		}
@@ -176,14 +210,23 @@ void ColorPicker::_update_controls() {
 			labels[i]->set_text(rgb[i]);
 		}
 	}
-
+	if (picker_type == SHAPE_OKHSL_CIRCLE) {
+		btn_hsv->set_text(RTR("OKHSL"));
+	} else {
+		btn_hsv->set_text(RTR("HSV"));
+	}
 	if (hsv_mode_enabled) {
 		set_raw_mode(false);
+		set_hsv_mode(true);
 		btn_raw->set_disabled(true);
 	} else if (raw_mode_enabled) {
+		set_raw_mode(true);
 		set_hsv_mode(false);
+		btn_raw->set_disabled(false);
 		btn_hsv->set_disabled(true);
 	} else {
+		set_raw_mode(false);
+		set_hsv_mode(false);
 		btn_raw->set_disabled(false);
 		btn_hsv->set_disabled(false);
 	}
@@ -236,8 +279,15 @@ void ColorPicker::_update_controls() {
 			wheel_edit->show();
 			w_edit->show();
 			uv_edit->hide();
-
 			wheel->set_material(circle_mat);
+			circle_mat->set_shader(circle_shader);
+			break;
+		case SHAPE_OKHSL_CIRCLE:
+			wheel_edit->show();
+			w_edit->show();
+			uv_edit->hide();
+			wheel->set_material(circle_mat);
+			circle_mat->set_shader(circle_ok_color_shader);
 			break;
 		default: {
 		}
@@ -246,11 +296,17 @@ void ColorPicker::_update_controls() {
 
 void ColorPicker::_set_pick_color(const Color &p_color, bool p_update_sliders) {
 	color = p_color;
-	if (color != last_hsv) {
-		h = color.get_h();
-		s = color.get_s();
-		v = color.get_v();
-		last_hsv = color;
+	if (color != last_color) {
+		if (picker_type == SHAPE_OKHSL_CIRCLE) {
+			h = color.get_ok_hsl_h();
+			s = color.get_ok_hsl_s();
+			v = color.get_ok_hsl_l();
+		} else {
+			h = color.get_h();
+			s = color.get_s();
+			v = color.get_v();
+		}
+		last_color = color;
 	}
 
 	if (!is_inside_tree()) {
@@ -301,10 +357,13 @@ void ColorPicker::_value_changed(double) {
 		h = scroll[0]->get_value() / 360.0;
 		s = scroll[1]->get_value() / 100.0;
 		v = scroll[2]->get_value() / 100.0;
-		color.set_hsv(h, s, v, scroll[3]->get_value() / 255.0);
-
-		last_hsv = color;
+		if (picker_type == SHAPE_OKHSL_CIRCLE) {
+			color.set_ok_hsl(h, s, v, Math::round(scroll[3]->get_value() / 255.0));
+		} else {
+			color.set_hsv(h, s, v, Math::round(scroll[3]->get_value() / 255.0));
+		}
 
+		last_color = color;
 	} else {
 		for (int i = 0; i < 4; i++) {
 			color.components[i] = scroll[i]->get_value() / (raw_mode_enabled ? 1.0 : 255.0);
@@ -342,7 +401,6 @@ void ColorPicker::_update_color(bool p_update_sliders) {
 			for (int i = 0; i < 4; i++) {
 				scroll[i]->set_step(1.0);
 			}
-
 			scroll[0]->set_max(359);
 			scroll[0]->set_value(h * 360.0);
 			scroll[1]->set_max(100);
@@ -350,7 +408,7 @@ void ColorPicker::_update_color(bool p_update_sliders) {
 			scroll[2]->set_max(100);
 			scroll[2]->set_value(v * 100.0);
 			scroll[3]->set_max(255);
-			scroll[3]->set_value(color.components[3] * 255.0);
+			scroll[3]->set_value(Math::round(color.components[3] * 255.0));
 		} else {
 			for (int i = 0; i < 4; i++) {
 				if (raw_mode_enabled) {
@@ -362,7 +420,7 @@ void ColorPicker::_update_color(bool p_update_sliders) {
 					scroll[i]->set_value(color.components[i]);
 				} else {
 					scroll[i]->set_step(1);
-					const float byte_value = color.components[i] * 255.0;
+					const float byte_value = Math::round(color.components[i] * 255.0);
 					scroll[i]->set_max(next_power_of_2(MAX(255, byte_value)) - 1);
 					scroll[i]->set_value(byte_value);
 				}
@@ -426,7 +484,6 @@ Color ColorPicker::get_pick_color() const {
 void ColorPicker::set_picker_shape(PickerShapeType p_picker_type) {
 	ERR_FAIL_INDEX(p_picker_type, SHAPE_MAX);
 	picker_type = p_picker_type;
-
 	_update_controls();
 	_update_color();
 }
@@ -702,7 +759,7 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
 		Ref<Texture2D> cursor = get_theme_icon(SNAME("picker_cursor"), SNAME("ColorPicker"));
 		int x;
 		int y;
-		if (picker_type == SHAPE_VHS_CIRCLE) {
+		if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 			x = center.x + (center.x * Math::cos(h * Math_TAU) * s) - (cursor->get_width() / 2);
 			y = center.y + (center.y * Math::sin(h * Math_TAU) * s) - (cursor->get_height() / 2);
 		} else {
@@ -735,6 +792,25 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
 			Color col;
 			col.set_hsv(h, 1, 1);
 			c->draw_line(Point2(0, y), Point2(c->get_size().x, y), col.inverted());
+		} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
+			Vector<Point2> points;
+			Vector<Color> colors;
+			Color col;
+			col.set_ok_hsl(h, s, 1);
+			points.resize(4);
+			colors.resize(4);
+			points.set(0, Vector2());
+			points.set(1, Vector2(c->get_size().x, 0));
+			points.set(2, c->get_size());
+			points.set(3, Vector2(0, c->get_size().y));
+			colors.set(0, col);
+			colors.set(1, col);
+			colors.set(2, Color(0, 0, 0));
+			colors.set(3, Color(0, 0, 0));
+			c->draw_polygon(points, colors);
+			int y = c->get_size().y - c->get_size().y * CLAMP(v, 0, 1);
+			col.set_ok_hsl(h, 1, v);
+			c->draw_line(Point2(0, y), Point2(c->get_size().x, y), col.inverted());
 		} else if (picker_type == SHAPE_VHS_CIRCLE) {
 			Vector<Point2> points;
 			Vector<Color> colors;
@@ -757,7 +833,7 @@ void ColorPicker::_hsv_draw(int p_which, Control *c) {
 		}
 	} else if (p_which == 2) {
 		c->draw_rect(Rect2(Point2(), c->get_size()), Color(1, 1, 1));
-		if (picker_type == SHAPE_VHS_CIRCLE) {
+		if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 			circle_mat->set_shader_param("v", v);
 		}
 	}
@@ -793,10 +869,19 @@ void ColorPicker::_slider_draw(int p_which) {
 			}
 			Color s_col;
 			Color v_col;
-			s_col.set_hsv(h, 0, v);
+			if (picker_type == SHAPE_OKHSL_CIRCLE) {
+				s_col.set_ok_hsl(h, 0, v);
+			} else {
+				s_col.set_hsv(h, 0, v);
+			}
 			left_color = (p_which == 1) ? s_col : Color(0, 0, 0);
-			s_col.set_hsv(h, 1, v);
-			v_col.set_hsv(h, s, 1);
+			if (picker_type == SHAPE_OKHSL_CIRCLE) {
+				s_col.set_ok_hsl(h, 1, v);
+				v_col.set_ok_hsl(h, s, 1);
+			} else {
+				s_col.set_hsv(h, 1, v);
+				v_col.set_hsv(h, s, 1);
+			}
 			right_color = (p_which == 1) ? s_col : v_col;
 		} else {
 			left_color = Color(
@@ -828,9 +913,8 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
 	if (bev.is_valid()) {
 		if (bev->is_pressed() && bev->get_button_index() == MouseButton::LEFT) {
 			Vector2 center = c->get_size() / 2.0;
-			if (picker_type == SHAPE_VHS_CIRCLE) {
+			if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 				real_t dist = center.distance_to(bev->get_position());
-
 				if (dist <= center.x) {
 					real_t rad = center.angle_to_point(bev->get_position());
 					h = ((rad >= 0) ? rad : (Math_TAU + rad)) / Math_TAU;
@@ -867,8 +951,13 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
 				}
 			}
 			changing_color = true;
-			color.set_hsv(h, s, v, color.a);
-			last_hsv = color;
+			if (picker_type == SHAPE_OKHSL_CIRCLE) {
+				color.set_ok_hsl(h, s, v, color.a);
+			} else if (picker_type != SHAPE_OKHSL_CIRCLE) {
+				color.set_hsv(h, s, v, color.a);
+			}
+			last_color = color;
+
 			set_pick_color(color);
 			_update_color();
 			if (!deferred_mode_enabled) {
@@ -892,7 +981,7 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
 		}
 
 		Vector2 center = c->get_size() / 2.0;
-		if (picker_type == SHAPE_VHS_CIRCLE) {
+		if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 			real_t dist = center.distance_to(mev->get_position());
 			real_t rad = center.angle_to_point(mev->get_position());
 			h = ((rad >= 0) ? rad : (Math_TAU + rad)) / Math_TAU;
@@ -913,9 +1002,12 @@ void ColorPicker::_uv_input(const Ref<InputEvent> &p_event, Control *c) {
 				v = 1.0 - (y - corner_y) / real_size.y;
 			}
 		}
-
-		color.set_hsv(h, s, v, color.a);
-		last_hsv = color;
+		if (picker_type != SHAPE_OKHSL_CIRCLE) {
+			color.set_hsv(h, s, v, color.a);
+		} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
+			color.set_ok_hsl(h, s, v, color.a);
+		}
+		last_color = color;
 		set_pick_color(color);
 		_update_color();
 		if (!deferred_mode_enabled) {
@@ -931,7 +1023,7 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
 		if (bev->is_pressed() && bev->get_button_index() == MouseButton::LEFT) {
 			changing_color = true;
 			float y = CLAMP((float)bev->get_position().y, 0, w_edit->get_size().height);
-			if (picker_type == SHAPE_VHS_CIRCLE) {
+			if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 				v = 1.0 - (y / w_edit->get_size().height);
 			} else {
 				h = y / w_edit->get_size().height;
@@ -939,8 +1031,12 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
 		} else {
 			changing_color = false;
 		}
-		color.set_hsv(h, s, v, color.a);
-		last_hsv = color;
+		if (picker_type != SHAPE_OKHSL_CIRCLE) {
+			color.set_hsv(h, s, v, color.a);
+		} else if (picker_type == SHAPE_OKHSL_CIRCLE) {
+			color.set_ok_hsl(h, s, v, color.a);
+		}
+		last_color = color;
 		set_pick_color(color);
 		_update_color();
 		if (!deferred_mode_enabled) {
@@ -957,13 +1053,17 @@ void ColorPicker::_w_input(const Ref<InputEvent> &p_event) {
 			return;
 		}
 		float y = CLAMP((float)mev->get_position().y, 0, w_edit->get_size().height);
-		if (picker_type == SHAPE_VHS_CIRCLE) {
+		if (picker_type == SHAPE_VHS_CIRCLE || picker_type == SHAPE_OKHSL_CIRCLE) {
 			v = 1.0 - (y / w_edit->get_size().height);
 		} else {
 			h = y / w_edit->get_size().height;
 		}
-		color.set_hsv(h, s, v, color.a);
-		last_hsv = color;
+		if (hsv_mode_enabled && picker_type != SHAPE_OKHSL_CIRCLE) {
+			color.set_hsv(h, s, v, color.a);
+		} else if (hsv_mode_enabled && picker_type == SHAPE_OKHSL_CIRCLE) {
+			color.set_ok_hsl(h, s, v, color.a);
+		}
+		last_color = color;
 		set_pick_color(color);
 		_update_color();
 		if (!deferred_mode_enabled) {
@@ -1128,7 +1228,7 @@ void ColorPicker::_bind_methods() {
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "hsv_mode"), "set_hsv_mode", "is_hsv_mode");
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "raw_mode"), "set_raw_mode", "is_raw_mode");
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "deferred_mode"), "set_deferred_mode", "is_deferred_mode");
-	ADD_PROPERTY(PropertyInfo(Variant::INT, "picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle"), "set_picker_shape", "get_picker_shape");
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "picker_shape", PROPERTY_HINT_ENUM, "HSV Rectangle,HSV Rectangle Wheel,VHS Circle,OKHSL Circle"), "set_picker_shape", "get_picker_shape");
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "presets_enabled"), "set_presets_enabled", "are_presets_enabled");
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "presets_visible"), "set_presets_visible", "are_presets_visible");
 
@@ -1139,6 +1239,7 @@ void ColorPicker::_bind_methods() {
 	BIND_ENUM_CONSTANT(SHAPE_HSV_RECTANGLE);
 	BIND_ENUM_CONSTANT(SHAPE_HSV_WHEEL);
 	BIND_ENUM_CONSTANT(SHAPE_VHS_CIRCLE);
+	BIND_ENUM_CONSTANT(SHAPE_OKHSL_CIRCLE);
 }
 
 ColorPicker::ColorPicker() :

+ 5 - 1
scene/gui/color_picker.h

@@ -68,6 +68,7 @@ public:
 		SHAPE_HSV_RECTANGLE,
 		SHAPE_HSV_WHEEL,
 		SHAPE_VHS_CIRCLE,
+		SHAPE_OKHSL_CIRCLE,
 
 		SHAPE_MAX
 	};
@@ -75,6 +76,7 @@ public:
 private:
 	static Ref<Shader> wheel_shader;
 	static Ref<Shader> circle_shader;
+	static Ref<Shader> circle_ok_color_shader;
 	static List<Color> preset_cache;
 
 	Control *screen = nullptr;
@@ -124,7 +126,7 @@ private:
 	float h = 0.0;
 	float s = 0.0;
 	float v = 0.0;
-	Color last_hsv;
+	Color last_color;
 
 	void _html_submitted(const String &p_html);
 	void _value_changed(double);
@@ -161,6 +163,8 @@ public:
 	void set_edit_alpha(bool p_show);
 	bool is_editing_alpha() const;
 
+	int get_preset_size();
+
 	void _set_pick_color(const Color &p_color, bool p_update_sliders);
 	void set_pick_color(const Color &p_color);
 	Color get_pick_color() const;

+ 9 - 0
thirdparty/README.md

@@ -432,6 +432,15 @@ Collection of single-file libraries used in Godot components.
   * Upstream: https://github.com/Auburn/FastNoiseLite
   * Version: git (6be3d6bf7fb408de341285f9ee8a29b67fd953f1, 2022) + custom changes
   * License: MIT
+- `ok_color.h`
+  * Upstream: https://github.com/bottosson/bottosson.github.io/blob/master/misc/ok_color.h
+  * Version: git (d69831edb90ffdcd08b7e64da3c5405acd48ad2c, 2022)
+  * License: MIT
+  * Modifications: License included in header.
+- `ok_color_shader.h`
+  * https://www.shadertoy.com/view/7sK3D1
+  * Version: 2021-09-13
+  * License: MIT
 - `pcg.{cpp,h}`
   * Upstream: http://www.pcg-random.org
   * Version: minimal C implementation, http://www.pcg-random.org/download.html

+ 688 - 0
thirdparty/misc/ok_color.h

@@ -0,0 +1,688 @@
+// Copyright(c) 2021 Björn Ottosson
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files(the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
+// of the Software, and to permit persons to whom the Software is furnished to do
+// so, subject to the following conditions :
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef OK_COLOR_H
+#define OK_COLOR_H
+
+#include <cmath>
+#include <cfloat>
+
+class ok_color
+{
+public:
+
+struct Lab { float L; float a; float b; };
+struct RGB { float r; float g; float b; };
+struct HSV { float h; float s; float v; };
+struct HSL { float h; float s; float l; };
+struct LC { float L; float C; };
+
+// Alternative representation of (L_cusp, C_cusp)
+// Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) 
+// The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L
+struct ST { float S; float T; };
+
+static constexpr float pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062f;
+
+float clamp(float x, float min, float max)
+{
+	if (x < min)
+		return min;
+	if (x > max)
+		return max;
+
+	return x;
+}
+
+float sgn(float x)
+{
+	return (float)(0.f < x) - (float)(x < 0.f);
+}
+
+float srgb_transfer_function(float a)
+{
+	return .0031308f >= a ? 12.92f * a : 1.055f * powf(a, .4166666666666667f) - .055f;
+}
+
+float srgb_transfer_function_inv(float a)
+{
+	return .04045f < a ? powf((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
+}
+
+Lab linear_srgb_to_oklab(RGB c)
+{
+	float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
+	float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
+	float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
+
+	float l_ = cbrtf(l);
+	float m_ = cbrtf(m);
+	float s_ = cbrtf(s);
+
+	return {
+		0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
+		1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
+		0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_,
+	};
+}
+
+RGB oklab_to_linear_srgb(Lab c)
+{
+	float l_ = c.L + 0.3963377774f * c.a + 0.2158037573f * c.b;
+	float m_ = c.L - 0.1055613458f * c.a - 0.0638541728f * c.b;
+	float s_ = c.L - 0.0894841775f * c.a - 1.2914855480f * c.b;
+
+	float l = l_ * l_ * l_;
+	float m = m_ * m_ * m_;
+	float s = s_ * s_ * s_;
+
+	return {
+		+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
+		-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
+		-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s,
+	};
+}
+
+// Finds the maximum saturation possible for a given hue that fits in sRGB
+// Saturation here is defined as S = C/L
+// a and b must be normalized so a^2 + b^2 == 1
+float compute_max_saturation(float a, float b)
+{
+	// Max saturation will be when one of r, g or b goes below zero.
+
+	// Select different coefficients depending on which component goes below zero first
+	float k0, k1, k2, k3, k4, wl, wm, ws;
+
+	if (-1.88170328f * a - 0.80936493f * b > 1)
+	{
+		// Red component
+		k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
+		wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
+	}
+	else if (1.81444104f * a - 1.19445276f * b > 1)
+	{
+		// Green component
+		k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
+		wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
+	}
+	else
+	{
+		// Blue component
+		k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
+		wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
+	}
+
+	// Approximate max saturation using a polynomial:
+	float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
+
+	// Do one step Halley's method to get closer
+	// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
+	// this should be sufficient for most applications, otherwise do two/three steps 
+
+	float k_l = +0.3963377774f * a + 0.2158037573f * b;
+	float k_m = -0.1055613458f * a - 0.0638541728f * b;
+	float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+	{
+		float l_ = 1.f + S * k_l;
+		float m_ = 1.f + S * k_m;
+		float s_ = 1.f + S * k_s;
+
+		float l = l_ * l_ * l_;
+		float m = m_ * m_ * m_;
+		float s = s_ * s_ * s_;
+
+		float l_dS = 3.f * k_l * l_ * l_;
+		float m_dS = 3.f * k_m * m_ * m_;
+		float s_dS = 3.f * k_s * s_ * s_;
+
+		float l_dS2 = 6.f * k_l * k_l * l_;
+		float m_dS2 = 6.f * k_m * k_m * m_;
+		float s_dS2 = 6.f * k_s * k_s * s_;
+
+		float f = wl * l + wm * m + ws * s;
+		float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
+		float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
+
+		S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
+	}
+
+	return S;
+}
+
+// finds L_cusp and C_cusp for a given hue
+// a and b must be normalized so a^2 + b^2 == 1
+LC find_cusp(float a, float b)
+{
+	// First, find the maximum saturation (saturation S = C/L)
+	float S_cusp = compute_max_saturation(a, b);
+
+	// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
+	RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b });
+	float L_cusp = cbrtf(1.f / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
+	float C_cusp = L_cusp * S_cusp;
+
+	return { L_cusp , C_cusp };
+}
+
+// Finds intersection of the line defined by 
+// L = L0 * (1 - t) + t * L1;
+// C = t * C1;
+// a and b must be normalized so a^2 + b^2 == 1
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0, LC cusp)
+{
+	// Find the intersection for upper and lower half seprately
+	float t;
+	if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.f)
+	{
+		// Lower half
+
+		t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1));
+	}
+	else
+	{
+		// Upper half
+
+		// First intersect with triangle
+		t = cusp.C * (L0 - 1.f) / (C1 * (cusp.L - 1.f) + cusp.C * (L0 - L1));
+
+		// Then one step Halley's method
+		{
+			float dL = L1 - L0;
+			float dC = C1;
+
+			float k_l = +0.3963377774f * a + 0.2158037573f * b;
+			float k_m = -0.1055613458f * a - 0.0638541728f * b;
+			float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+			float l_dt = dL + dC * k_l;
+			float m_dt = dL + dC * k_m;
+			float s_dt = dL + dC * k_s;
+
+
+			// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
+			{
+				float L = L0 * (1.f - t) + t * L1;
+				float C = t * C1;
+
+				float l_ = L + C * k_l;
+				float m_ = L + C * k_m;
+				float s_ = L + C * k_s;
+
+				float l = l_ * l_ * l_;
+				float m = m_ * m_ * m_;
+				float s = s_ * s_ * s_;
+
+				float ldt = 3 * l_dt * l_ * l_;
+				float mdt = 3 * m_dt * m_ * m_;
+				float sdt = 3 * s_dt * s_ * s_;
+
+				float ldt2 = 6 * l_dt * l_dt * l_;
+				float mdt2 = 6 * m_dt * m_dt * m_;
+				float sdt2 = 6 * s_dt * s_dt * s_;
+
+				float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1;
+				float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
+				float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
+
+				float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
+				float t_r = -r * u_r;
+
+				float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1;
+				float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
+				float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
+
+				float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
+				float t_g = -g * u_g;
+
+				b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1;
+				float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
+				float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
+
+				float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
+				float t_b = -b * u_b;
+
+				t_r = u_r >= 0.f ? t_r : FLT_MAX;
+				t_g = u_g >= 0.f ? t_g : FLT_MAX;
+				t_b = u_b >= 0.f ? t_b : FLT_MAX;
+
+				t += fmin(t_r, fmin(t_g, t_b));
+			}
+		}
+	}
+
+	return t;
+}
+
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0)
+{
+	// Find the cusp of the gamut triangle
+	LC cusp = find_cusp(a, b);
+
+	return find_gamut_intersection(a, b, L1, C1, L0, cusp);
+}
+
+RGB gamut_clip_preserve_chroma(RGB rgb)
+{
+	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+		return rgb;
+
+	Lab lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.L;
+	float eps = 0.00001f;
+	float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	float L0 = clamp(L, 0, 1);
+
+	float t = find_gamut_intersection(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1 - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_project_to_0_5(RGB rgb)
+{
+	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+		return rgb;
+
+	Lab lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.L;
+	float eps = 0.00001f;
+	float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	float L0 = 0.5;
+
+	float t = find_gamut_intersection(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1 - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_project_to_L_cusp(RGB rgb)
+{
+	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+		return rgb;
+
+	Lab lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.L;
+	float eps = 0.00001f;
+	float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+	LC cusp = find_cusp(a_, b_);
+
+	float L0 = cusp.L;
+
+	float t = find_gamut_intersection(a_, b_, L, C, L0);
+
+	float L_clipped = L0 * (1 - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_adaptive_L0_0_5(RGB rgb, float alpha = 0.05f)
+{
+	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+		return rgb;
+
+	Lab lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.L;
+	float eps = 0.00001f;
+	float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	float Ld = L - 0.5f;
+	float e1 = 0.5f + fabs(Ld) + alpha * C;
+	float L0 = 0.5f * (1.f + sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * fabs(Ld))));
+
+	float t = find_gamut_intersection(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, float alpha = 0.05f)
+{
+	if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0)
+		return rgb;
+
+	Lab lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.L;
+	float eps = 0.00001f;
+	float C = fmax(eps, sqrtf(lab.a * lab.a + lab.b * lab.b));
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+	LC cusp = find_cusp(a_, b_);
+
+	float Ld = L - cusp.L;
+	float k = 2.f * (Ld > 0 ? 1.f - cusp.L : cusp.L);
+
+	float e1 = 0.5f * k + fabs(Ld) + alpha * C / k;
+	float L0 = cusp.L + 0.5f * (sgn(Ld) * (e1 - sqrtf(e1 * e1 - 2.f * k * fabs(Ld))));
+
+	float t = find_gamut_intersection(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ });
+}
+
+float toe(float x)
+{
+	constexpr float k_1 = 0.206f;
+	constexpr float k_2 = 0.03f;
+	constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
+	return 0.5f * (k_3 * x - k_1 + sqrtf((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x));
+}
+
+float toe_inv(float x)
+{
+	constexpr float k_1 = 0.206f;
+	constexpr float k_2 = 0.03f;
+	constexpr float k_3 = (1.f + k_1) / (1.f + k_2);
+	return (x * x + k_1 * x) / (k_3 * (x + k_2));
+}
+
+ST to_ST(LC cusp)
+{
+	float L = cusp.L;
+	float C = cusp.C;
+	return { C / L, C / (1 - L) };
+}
+
+// Returns a smooth approximation of the location of the cusp
+// This polynomial was created by an optimization process
+// It has been designed so that S_mid < S_max and T_mid < T_max
+ST get_ST_mid(float a_, float b_)
+{
+	float S = 0.11516993f + 1.f / (
+		+7.44778970f + 4.15901240f * b_
+		+ a_ * (-2.19557347f + 1.75198401f * b_
+			+ a_ * (-2.13704948f - 10.02301043f * b_
+				+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
+					)))
+		);
+
+	float T = 0.11239642f + 1.f / (
+		+1.61320320f - 0.68124379f * b_
+		+ a_ * (+0.40370612f + 0.90148123f * b_
+			+ a_ * (-0.27087943f + 0.61223990f * b_
+				+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
+					)))
+		);
+
+	return { S, T };
+}
+
+struct Cs { float C_0; float C_mid; float C_max; };
+Cs get_Cs(float L, float a_, float b_)
+{
+	LC cusp = find_cusp(a_, b_);
+
+	float C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp);
+	ST ST_max = to_ST(cusp);
+	
+	// Scale factor to compensate for the curved part of gamut shape:
+	float k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T);
+
+	float C_mid;
+	{
+		ST ST_mid = get_ST_mid(a_, b_);
+
+		// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+		float C_a = L * ST_mid.S;
+		float C_b = (1.f - L) * ST_mid.T;
+		C_mid = 0.9f * k * sqrtf(sqrtf(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
+	}
+
+	float C_0;
+	{
+		// for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST.
+		float C_a = L * 0.4f;
+		float C_b = (1.f - L) * 0.8f;
+
+		// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+		C_0 = sqrtf(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
+	}
+
+	return { C_0, C_mid, C_max };
+}
+
+RGB okhsl_to_srgb(HSL hsl)
+{
+	float h = hsl.h;
+	float s = hsl.s;
+	float l = hsl.l;
+
+	if (l == 1.0f)
+	{
+		return { 1.f, 1.f, 1.f };
+	}
+
+	else if (l == 0.f)
+	{
+		return { 0.f, 0.f, 0.f };
+	}
+
+	float a_ = cosf(2.f * pi * h);
+	float b_ = sinf(2.f * pi * h);
+	float L = toe_inv(l);
+
+	Cs cs = get_Cs(L, a_, b_);
+	float C_0 = cs.C_0;
+	float C_mid = cs.C_mid;
+	float C_max = cs.C_max;
+
+	float mid = 0.8f;
+	float mid_inv = 1.25f;
+
+	float C, t, k_0, k_1, k_2;
+
+	if (s < mid)
+	{
+		t = mid_inv * s;
+
+		k_1 = mid * C_0;
+		k_2 = (1.f - k_1 / C_mid);
+
+		C = t * k_1 / (1.f - k_2 * t);
+	}
+	else
+	{
+		t = (s - mid)/ (1 - mid);
+
+		k_0 = C_mid;
+		k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+		k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+		C = k_0 + t * k_1 / (1.f - k_2 * t);
+	}
+
+	RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
+	return {
+		srgb_transfer_function(rgb.r),
+		srgb_transfer_function(rgb.g),
+		srgb_transfer_function(rgb.b),
+	};
+}
+
+HSL srgb_to_okhsl(RGB rgb)
+{
+	Lab lab = linear_srgb_to_oklab({
+		srgb_transfer_function_inv(rgb.r),
+		srgb_transfer_function_inv(rgb.g),
+		srgb_transfer_function_inv(rgb.b)
+		});
+
+	float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	float L = lab.L;
+	float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
+
+	Cs cs = get_Cs(L, a_, b_);
+	float C_0 = cs.C_0;
+	float C_mid = cs.C_mid;
+	float C_max = cs.C_max;
+
+	// Inverse of the interpolation in okhsl_to_srgb:
+
+	float mid = 0.8f;
+	float mid_inv = 1.25f;
+
+	float s;
+	if (C < C_mid)
+	{
+		float k_1 = mid * C_0;
+		float k_2 = (1.f - k_1 / C_mid);
+
+		float t = C / (k_1 + k_2 * C);
+		s = t * mid;
+	}
+	else
+	{
+		float k_0 = C_mid;
+		float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+		float k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+		float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
+		s = mid + (1.f - mid) * t;
+	}
+
+	float l = toe(L);
+	return { h, s, l };
+}
+
+
+RGB okhsv_to_srgb(HSV hsv)
+{
+	float h = hsv.h;
+	float s = hsv.s;
+	float v = hsv.v;
+
+	float a_ = cosf(2.f * pi * h);
+	float b_ = sinf(2.f * pi * h);
+	
+	LC cusp = find_cusp(a_, b_);
+	ST ST_max = to_ST(cusp);
+	float S_max = ST_max.S;
+	float T_max = ST_max.T;
+	float S_0 = 0.5f;
+	float k = 1 - S_0 / S_max;
+
+	// first we compute L and V as if the gamut is a perfect triangle:
+
+	// L, C when v==1:
+	float L_v = 1     - s * S_0 / (S_0 + T_max - T_max * k * s);
+	float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
+
+	float L = v * L_v;
+	float C = v * C_v;
+
+	// then we compensate for both toe and the curved top part of the triangle:
+	float L_vt = toe_inv(L_v);
+	float C_vt = C_v * L_vt / L_v;
+
+	float L_new = toe_inv(L);
+	C = C * L_new / L;
+	L = L_new;
+
+	RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
+	float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
+
+	L = L * scale_L;
+	C = C * scale_L;
+
+	RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ });
+	return {
+		srgb_transfer_function(rgb.r),
+		srgb_transfer_function(rgb.g),
+		srgb_transfer_function(rgb.b),
+	};
+}
+
+HSV srgb_to_okhsv(RGB rgb)
+{
+	Lab lab = linear_srgb_to_oklab({
+		srgb_transfer_function_inv(rgb.r),
+		srgb_transfer_function_inv(rgb.g),
+		srgb_transfer_function_inv(rgb.b)
+		});
+
+	float C = sqrtf(lab.a * lab.a + lab.b * lab.b);
+	float a_ = lab.a / C;
+	float b_ = lab.b / C;
+
+	float L = lab.L;
+	float h = 0.5f + 0.5f * atan2f(-lab.b, -lab.a) / pi;
+
+	LC cusp = find_cusp(a_, b_);
+	ST ST_max = to_ST(cusp);
+	float S_max = ST_max.S;
+	float T_max = ST_max.T;
+	float S_0 = 0.5f;
+	float k = 1 - S_0 / S_max;
+
+	// first we find L_v, C_v, L_vt and C_vt
+
+	float t = T_max / (C + L * T_max);
+	float L_v = t * L;
+	float C_v = t * C;
+
+	float L_vt = toe_inv(L_v);
+	float C_vt = C_v * L_vt / L_v;
+
+	// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
+	RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt });
+	float scale_L = cbrtf(1.f / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.f)));
+
+	L = L / scale_L;
+	C = C / scale_L;
+
+	C = C * toe(L) / L;
+	L = toe(L);
+
+	// we can now compute v and s:
+
+	float v = L / L_v;
+	float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
+
+	return { h, s, v };
+}
+
+};
+#endif // OK_COLOR_H

+ 663 - 0
thirdparty/misc/ok_color_shader.h

@@ -0,0 +1,663 @@
+// Copyright(c) 2021 Björn Ottosson
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy of
+// this software and associated documentation files(the "Software"), to deal in
+// the Software without restriction, including without limitation the rights to
+// use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies
+// of the Software, and to permit persons to whom the Software is furnished to do
+// so, subject to the following conditions :
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef OK_COLOR_SHADER_H
+#define OK_COLOR_SHADER_H
+
+#include "core/string/ustring.h"
+
+static String OK_COLOR_SHADER = R"(shader_type canvas_item;
+
+const float M_PI = 3.1415926535897932384626433832795;
+
+float cbrt( float x )
+{
+    return sign(x)*pow(abs(x),1.0f/3.0f);
+}
+
+float srgb_transfer_function(float a)
+{
+	return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
+}
+
+float srgb_transfer_function_inv(float a)
+{
+	return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
+}
+
+vec3 linear_srgb_to_oklab(vec3 c)
+{
+	float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
+	float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
+	float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
+
+	float l_ = cbrt(l);
+	float m_ = cbrt(m);
+	float s_ = cbrt(s);
+
+	return vec3(
+		0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
+		1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
+		0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
+	);
+}
+
+vec3 oklab_to_linear_srgb(vec3 c)
+{
+	float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
+	float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
+	float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
+
+	float l = l_ * l_ * l_;
+	float m = m_ * m_ * m_;
+	float s = s_ * s_ * s_;
+
+	return vec3(
+		+4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
+		-1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
+		-0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
+	);
+}
+
+// Finds the maximum saturation possible for a given hue that fits in sRGB
+// Saturation here is defined as S = C/L
+// a and b must be normalized so a^2 + b^2 == 1
+float compute_max_saturation(float a, float b)
+{
+	// Max saturation will be when one of r, g or b goes below zero.
+
+	// Select different coefficients depending on which component goes below zero first
+	float k0, k1, k2, k3, k4, wl, wm, ws;
+
+	if (-1.88170328f * a - 0.80936493f * b > 1.f)
+	{
+		// Red component
+		k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
+		wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
+	}
+	else if (1.81444104f * a - 1.19445276f * b > 1.f)
+	{
+		// Green component
+		k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
+		wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
+	}
+	else
+	{
+		// Blue component
+		k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
+		wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
+	}
+
+	// Approximate max saturation using a polynomial:
+	float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
+
+	// Do one step Halley's method to get closer
+	// this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite
+	// this should be sufficient for most applications, otherwise do two/three steps 
+
+	float k_l = +0.3963377774f * a + 0.2158037573f * b;
+	float k_m = -0.1055613458f * a - 0.0638541728f * b;
+	float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+	{
+		float l_ = 1.f + S * k_l;
+		float m_ = 1.f + S * k_m;
+		float s_ = 1.f + S * k_s;
+
+		float l = l_ * l_ * l_;
+		float m = m_ * m_ * m_;
+		float s = s_ * s_ * s_;
+
+		float l_dS = 3.f * k_l * l_ * l_;
+		float m_dS = 3.f * k_m * m_ * m_;
+		float s_dS = 3.f * k_s * s_ * s_;
+
+		float l_dS2 = 6.f * k_l * k_l * l_;
+		float m_dS2 = 6.f * k_m * k_m * m_;
+		float s_dS2 = 6.f * k_s * k_s * s_;
+
+		float f = wl * l + wm * m + ws * s;
+		float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
+		float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
+
+		S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
+	}
+
+	return S;
+}
+
+// finds L_cusp and C_cusp for a given hue
+// a and b must be normalized so a^2 + b^2 == 1
+vec2 find_cusp(float a, float b)
+{
+	// First, find the maximum saturation (saturation S = C/L)
+	float S_cusp = compute_max_saturation(a, b);
+
+	// Convert to linear sRGB to find the first point where at least one of r,g or b >= 1:
+	vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
+	float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
+	float C_cusp = L_cusp * S_cusp;
+
+	return vec2( L_cusp , C_cusp );
+} )"
+R"(// Finds intersection of the line defined by 
+// L = L0 * (1 - t) + t * L1;
+// C = t * C1;
+// a and b must be normalized so a^2 + b^2 == 1
+float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp)
+{
+	// Find the intersection for upper and lower half seprately
+	float t;
+	if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f)
+	{
+		// Lower half
+
+		t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
+	}
+	else
+	{
+		// Upper half
+
+		// First intersect with triangle
+		t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1));
+
+		// Then one step Halley's method
+		{
+			float dL = L1 - L0;
+			float dC = C1;
+
+			float k_l = +0.3963377774f * a + 0.2158037573f * b;
+			float k_m = -0.1055613458f * a - 0.0638541728f * b;
+			float k_s = -0.0894841775f * a - 1.2914855480f * b;
+
+			float l_dt = dL + dC * k_l;
+			float m_dt = dL + dC * k_m;
+			float s_dt = dL + dC * k_s;
+
+
+			// If higher accuracy is required, 2 or 3 iterations of the following block can be used:
+			{
+				float L = L0 * (1.f - t) + t * L1;
+				float C = t * C1;
+
+				float l_ = L + C * k_l;
+				float m_ = L + C * k_m;
+				float s_ = L + C * k_s;
+
+				float l = l_ * l_ * l_;
+				float m = m_ * m_ * m_;
+				float s = s_ * s_ * s_;
+
+				float ldt = 3.f * l_dt * l_ * l_;
+				float mdt = 3.f * m_dt * m_ * m_;
+				float sdt = 3.f * s_dt * s_ * s_;
+
+				float ldt2 = 6.f * l_dt * l_dt * l_;
+				float mdt2 = 6.f * m_dt * m_dt * m_;
+				float sdt2 = 6.f * s_dt * s_dt * s_;
+
+				float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
+				float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
+				float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
+
+				float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
+				float t_r = -r * u_r;
+
+				float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
+				float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
+				float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
+
+				float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
+				float t_g = -g * u_g;
+
+				float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
+				float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
+				float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
+
+				float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
+				float t_b = -b * u_b;
+
+				t_r = u_r >= 0.f ? t_r : 10000.f;
+				t_g = u_g >= 0.f ? t_g : 10000.f;
+				t_b = u_b >= 0.f ? t_b : 10000.f;
+
+				t += min(t_r, min(t_g, t_b));
+			}
+		}
+	}
+
+	return t;
+}
+
+float find_gamut_intersection_5(float a, float b, float L1, float C1, float L0)
+{
+	// Find the cusp of the gamut triangle
+	vec2 cusp = find_cusp(a, b);
+
+	return find_gamut_intersection(a, b, L1, C1, L0, cusp);
+})"
+R"(
+
+vec3 gamut_clip_preserve_chroma(vec3 rgb)
+{
+	if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+		return rgb;
+
+	vec3 lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.x;
+	float eps = 0.00001f;
+	float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	float L0 = clamp(L, 0.f, 1.f);
+
+	float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_project_to_0_5(vec3 rgb)
+{
+	if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+		return rgb;
+
+	vec3 lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.x;
+	float eps = 0.00001f;
+	float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	float L0 = 0.5;
+
+	float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_project_to_L_cusp(vec3 rgb)
+{
+	if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+		return rgb;
+
+	vec3 lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.x;
+	float eps = 0.00001f;
+	float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+	vec2 cusp = find_cusp(a_, b_);
+
+	float L0 = cusp.x;
+
+	float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha)
+{
+	if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+		return rgb;
+
+	vec3 lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.x;
+	float eps = 0.00001f;
+	float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	float Ld = L - 0.5f;
+	float e1 = 0.5f + abs(Ld) + alpha * C;
+	float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
+
+	float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha)
+{
+	if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
+		return rgb;
+
+	vec3 lab = linear_srgb_to_oklab(rgb);
+
+	float L = lab.x;
+	float eps = 0.00001f;
+	float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	// The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once.
+	vec2 cusp = find_cusp(a_, b_);
+
+	float Ld = L - cusp.x;
+	float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
+
+	float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
+	float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
+
+	float t = find_gamut_intersection_5(a_, b_, L, C, L0);
+	float L_clipped = L0 * (1.f - t) + t * L;
+	float C_clipped = t * C;
+
+	return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
+}
+
+float toe(float x)
+{
+	float k_1 = 0.206f;
+	float k_2 = 0.03f;
+	float k_3 = (1.f + k_1) / (1.f + k_2);
+	return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
+}
+
+float toe_inv(float x)
+{
+	float k_1 = 0.206f;
+	float k_2 = 0.03f;
+	float k_3 = (1.f + k_1) / (1.f + k_2);
+	return (x * x + k_1 * x) / (k_3 * (x + k_2));
+}
+)" 
+R"(vec2 to_ST(vec2 cusp)
+{
+	float L = cusp.x;
+	float C = cusp.y;
+	return vec2( C / L, C / (1.f - L) );
+}
+
+// Returns a smooth approximation of the location of the cusp
+// This polynomial was created by an optimization process
+// It has been designed so that S_mid < S_max and T_mid < T_max
+vec2 get_ST_mid(float a_, float b_)
+{
+	float S = 0.11516993f + 1.f / (
+		+7.44778970f + 4.15901240f * b_
+		+ a_ * (-2.19557347f + 1.75198401f * b_
+			+ a_ * (-2.13704948f - 10.02301043f * b_
+				+ a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
+					)))
+		);
+
+	float T = 0.11239642f + 1.f / (
+		+1.61320320f - 0.68124379f * b_
+		+ a_ * (+0.40370612f + 0.90148123f * b_
+			+ a_ * (-0.27087943f + 0.61223990f * b_
+				+ a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
+					)))
+		);
+
+	return vec2( S, T );
+}
+
+vec3 get_Cs(float L, float a_, float b_)
+{
+	vec2 cusp = find_cusp(a_, b_);
+
+	float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
+	vec2 ST_max = to_ST(cusp);
+	
+	// Scale factor to compensate for the curved part of gamut shape:
+	float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
+
+	float C_mid;
+	{
+		vec2 ST_mid = get_ST_mid(a_, b_);
+
+		// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+		float C_a = L * ST_mid.x;
+		float C_b = (1.f - L) * ST_mid.y;
+		C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
+	}
+
+	float C_0;
+	{
+		// for C_0, the shape is independent of hue, so vec2 are constant. Values picked to roughly be the average values of vec2.
+		float C_a = L * 0.4f;
+		float C_b = (1.f - L) * 0.8f;
+
+		// Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma.
+		C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
+	}
+
+	return vec3( C_0, C_mid, C_max );
+}
+
+vec3 okhsl_to_srgb(vec3 hsl)
+{
+	float h = hsl.x;
+	float s = hsl.y;
+	float l = hsl.z;
+
+	if (l == 1.0f)
+	{
+		return vec3( 1.f, 1.f, 1.f );
+	}
+
+	else if (l == 0.f)
+	{
+		return vec3( 0.f, 0.f, 0.f );
+	}
+
+	float a_ = cos(2.f * M_PI * h);
+	float b_ = sin(2.f * M_PI * h);
+	float L = toe_inv(l);
+
+	vec3 cs = get_Cs(L, a_, b_);
+	float C_0 = cs.x;
+	float C_mid = cs.y;
+	float C_max = cs.z;
+
+	float mid = 0.8f;
+	float mid_inv = 1.25f;
+
+	float C, t, k_0, k_1, k_2;
+
+	if (s < mid)
+	{
+		t = mid_inv * s;
+
+		k_1 = mid * C_0;
+		k_2 = (1.f - k_1 / C_mid);
+
+		C = t * k_1 / (1.f - k_2 * t);
+	}
+	else
+	{
+		t = (s - mid)/ (1.f - mid);
+
+		k_0 = C_mid;
+		k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+		k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+		C = k_0 + t * k_1 / (1.f - k_2 * t);
+	}
+
+	vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
+	return vec3(
+		srgb_transfer_function(rgb.r),
+		srgb_transfer_function(rgb.g),
+		srgb_transfer_function(rgb.b)
+	);
+}
+
+vec3 srgb_to_okhsl(vec3 rgb)
+{
+	vec3 lab = linear_srgb_to_oklab(vec3(
+		srgb_transfer_function_inv(rgb.r),
+		srgb_transfer_function_inv(rgb.g),
+		srgb_transfer_function_inv(rgb.b)
+		));
+
+	float C = sqrt(lab.y * lab.y + lab.z * lab.z);
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	float L = lab.x;
+	float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
+
+	vec3 cs = get_Cs(L, a_, b_);
+	float C_0 = cs.x;
+	float C_mid = cs.y;
+	float C_max = cs.z;
+
+	// Inverse of the interpolation in okhsl_to_srgb:
+
+	float mid = 0.8f;
+	float mid_inv = 1.25f;
+
+	float s;
+	if (C < C_mid)
+	{
+		float k_1 = mid * C_0;
+		float k_2 = (1.f - k_1 / C_mid);
+
+		float t = C / (k_1 + k_2 * C);
+		s = t * mid;
+	}
+	else
+	{
+		float k_0 = C_mid;
+		float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
+		float k_2 = (1.f - (k_1) / (C_max - C_mid));
+
+		float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
+		s = mid + (1.f - mid) * t;
+	}
+
+	float l = toe(L);
+	return vec3( h, s, l );
+}
+
+
+vec3 okhsv_to_srgb(vec3 hsv)
+{
+	float h = hsv.x;
+	float s = hsv.y;
+	float v = hsv.z;
+
+	float a_ = cos(2.f * M_PI * h);
+	float b_ = sin(2.f * M_PI * h);
+	
+	vec2 cusp = find_cusp(a_, b_);
+	vec2 ST_max = to_ST(cusp);
+	float S_max = ST_max.x;
+	float T_max = ST_max.y;
+	float S_0 = 0.5f;
+	float k = 1.f- S_0 / S_max;
+
+	// first we compute L and V as if the gamut is a perfect triangle:
+
+	// L, C when v==1:
+	float L_v = 1.f   - s * S_0 / (S_0 + T_max - T_max * k * s);
+	float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
+
+	float L = v * L_v;
+	float C = v * C_v;
+
+	// then we compensate for both toe and the curved top part of the triangle:
+	float L_vt = toe_inv(L_v);
+	float C_vt = C_v * L_vt / L_v;
+
+	float L_new = toe_inv(L);
+	C = C * L_new / L;
+	L = L_new;
+
+	vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
+	float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
+
+	L = L * scale_L;
+	C = C * scale_L;
+
+	vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
+	return vec3(
+		srgb_transfer_function(rgb.r),
+		srgb_transfer_function(rgb.g),
+		srgb_transfer_function(rgb.b)
+	);
+}
+)"
+R"(
+vec3 srgb_to_okhsv(vec3 rgb)
+{
+	vec3 lab = linear_srgb_to_oklab(vec3(
+		srgb_transfer_function_inv(rgb.r),
+		srgb_transfer_function_inv(rgb.g),
+		srgb_transfer_function_inv(rgb.b)
+		));
+
+	float C = sqrt(lab.y * lab.y + lab.z * lab.z);
+	float a_ = lab.y / C;
+	float b_ = lab.z / C;
+
+	float L = lab.x;
+	float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
+
+	vec2 cusp = find_cusp(a_, b_);
+	vec2 ST_max = to_ST(cusp);
+	float S_max = ST_max.x;
+	float T_max = ST_max.y;
+	float S_0 = 0.5f;
+	float k = 1.f - S_0 / S_max;
+
+	// first we find L_v, C_v, L_vt and C_vt
+
+	float t = T_max / (C + L * T_max);
+	float L_v = t * L;
+	float C_v = t * C;
+
+	float L_vt = toe_inv(L_v);
+	float C_vt = C_v * L_vt / L_v;
+
+	// we can then use these to invert the step that compensates for the toe and the curved top part of the triangle:
+	vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
+	float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
+
+	L = L / scale_L;
+	C = C / scale_L;
+
+	C = C * toe(L) / L;
+	L = toe(L);
+
+	// we can now compute v and s:
+
+	float v = L / L_v;
+	float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
+
+	return vec3 (h, s, v );
+})";
+
+#endif