|
@@ -1,283 +0,0 @@
|
|
-/* clang-format off */
|
|
|
|
-[vertex]
|
|
|
|
-
|
|
|
|
-layout(location = 0) in highp vec4 vertex_attrib;
|
|
|
|
-/* clang-format on */
|
|
|
|
-
|
|
|
|
-void main() {
|
|
|
|
- gl_Position = vertex_attrib;
|
|
|
|
- gl_Position.z = 1.0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/* clang-format off */
|
|
|
|
-[fragment]
|
|
|
|
-
|
|
|
|
-#define TWO_PI 6.283185307179586476925286766559
|
|
|
|
-
|
|
|
|
-#ifdef SSAO_QUALITY_HIGH
|
|
|
|
-
|
|
|
|
-#define NUM_SAMPLES (80)
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#ifdef SSAO_QUALITY_LOW
|
|
|
|
-
|
|
|
|
-#define NUM_SAMPLES (15)
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
|
|
|
|
-
|
|
|
|
-#define NUM_SAMPLES (40)
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
|
|
|
|
-// miplevel to maintain reasonable spatial locality in the cache
|
|
|
|
-// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
|
|
|
|
-// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
|
|
|
|
-#define LOG_MAX_OFFSET (3)
|
|
|
|
-
|
|
|
|
-// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
|
|
|
|
-#define MAX_MIP_LEVEL (4)
|
|
|
|
-
|
|
|
|
-// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
|
|
|
|
-// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
|
|
|
|
-
|
|
|
|
-const int ROTATIONS[] = int[](
|
|
|
|
- 1, 1, 2, 3, 2, 5, 2, 3, 2,
|
|
|
|
- 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
|
|
|
|
- 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
|
|
|
|
- 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
|
|
|
|
- 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
|
|
|
|
- 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
|
|
|
|
- 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
|
|
|
|
- 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
|
|
|
|
- 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
|
|
|
|
- 19, 27, 21, 25, 39, 29, 17, 21, 27);
|
|
|
|
-/* clang-format on */
|
|
|
|
-
|
|
|
|
-//#define NUM_SPIRAL_TURNS (7)
|
|
|
|
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
|
|
|
|
-
|
|
|
|
-uniform sampler2D source_depth; //texunit:0
|
|
|
|
-uniform highp usampler2D source_depth_mipmaps; //texunit:1
|
|
|
|
-uniform sampler2D source_normal; //texunit:2
|
|
|
|
-
|
|
|
|
-uniform ivec2 screen_size;
|
|
|
|
-uniform float camera_z_far;
|
|
|
|
-uniform float camera_z_near;
|
|
|
|
-
|
|
|
|
-uniform float intensity_div_r6;
|
|
|
|
-uniform float radius;
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_RADIUS2
|
|
|
|
-uniform float intensity_div_r62;
|
|
|
|
-uniform float radius2;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
-uniform float bias;
|
|
|
|
-uniform float proj_scale;
|
|
|
|
-
|
|
|
|
-layout(location = 0) out float visibility;
|
|
|
|
-
|
|
|
|
-uniform vec4 proj_info;
|
|
|
|
-
|
|
|
|
-vec3 reconstructCSPosition(vec2 S, float z) {
|
|
|
|
-#ifdef USE_ORTHOGONAL_PROJECTION
|
|
|
|
- return vec3((S.xy * proj_info.xy + proj_info.zw), z);
|
|
|
|
-#else
|
|
|
|
- return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-vec3 getPosition(ivec2 ssP) {
|
|
|
|
- vec3 P;
|
|
|
|
- P.z = texelFetch(source_depth, ssP, 0).r;
|
|
|
|
-
|
|
|
|
- P.z = P.z * 2.0 - 1.0;
|
|
|
|
-#ifdef USE_ORTHOGONAL_PROJECTION
|
|
|
|
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
|
|
|
-#else
|
|
|
|
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
|
|
|
-#endif
|
|
|
|
- P.z = -P.z;
|
|
|
|
-
|
|
|
|
- // Offset to pixel center
|
|
|
|
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
|
|
|
- return P;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Reconstructs screen-space unit normal from screen-space position */
|
|
|
|
-vec3 reconstructCSFaceNormal(vec3 C) {
|
|
|
|
- return normalize(cross(dFdy(C), dFdx(C)));
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
|
|
|
|
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
|
|
|
|
- // Radius relative to ssR
|
|
|
|
- float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
|
|
|
|
- float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
|
|
|
|
-
|
|
|
|
- ssR = alpha;
|
|
|
|
- return vec2(cos(angle), sin(angle));
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
|
|
|
|
-vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
|
|
|
|
- // Derivation:
|
|
|
|
- // mipLevel = floor(log(ssR / MAX_OFFSET));
|
|
|
|
- int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
|
|
|
|
-
|
|
|
|
- ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
|
|
|
|
-
|
|
|
|
- vec3 P;
|
|
|
|
-
|
|
|
|
- // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
|
|
|
|
- // Manually clamp to the texture size because texelFetch bypasses the texture unit
|
|
|
|
- ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
|
|
|
|
-
|
|
|
|
- if (mipLevel < 1) {
|
|
|
|
- //read from depth buffer
|
|
|
|
- P.z = texelFetch(source_depth, mipP, 0).r;
|
|
|
|
- P.z = P.z * 2.0 - 1.0;
|
|
|
|
-#ifdef USE_ORTHOGONAL_PROJECTION
|
|
|
|
- P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
|
|
|
|
-#else
|
|
|
|
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
|
|
|
|
-
|
|
|
|
-#endif
|
|
|
|
- P.z = -P.z;
|
|
|
|
-
|
|
|
|
- } else {
|
|
|
|
- //read from mipmaps
|
|
|
|
- uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
|
|
|
|
- P.z = -(float(d) / 65535.0) * camera_z_far;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // Offset to pixel center
|
|
|
|
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
|
|
|
|
-
|
|
|
|
- return P;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
|
|
|
|
- to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
|
|
|
|
-
|
|
|
|
- Note that units of H() in the HPG12 paper are meters, not
|
|
|
|
- unitless. The whole falloff/sampling function is therefore
|
|
|
|
- unitless. In this implementation, we factor out (9 / radius).
|
|
|
|
-
|
|
|
|
- Four versions of the falloff function are implemented below
|
|
|
|
-*/
|
|
|
|
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
|
|
|
|
- // Offset on the unit disk, spun for this pixel
|
|
|
|
- float ssR;
|
|
|
|
- vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
|
|
|
|
- ssR *= ssDiskRadius;
|
|
|
|
-
|
|
|
|
- // The occluding point in camera space
|
|
|
|
- vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
|
|
|
|
-
|
|
|
|
- vec3 v = Q - C;
|
|
|
|
-
|
|
|
|
- float vv = dot(v, v);
|
|
|
|
- float vn = dot(v, n_C);
|
|
|
|
-
|
|
|
|
- const float epsilon = 0.01;
|
|
|
|
- float radius2 = p_radius * p_radius;
|
|
|
|
-
|
|
|
|
- // A: From the HPG12 paper
|
|
|
|
- // Note large epsilon to avoid overdarkening within cracks
|
|
|
|
- //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
|
|
|
|
-
|
|
|
|
- // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
|
|
|
|
- float f = max(radius2 - vv, 0.0);
|
|
|
|
- return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
|
|
|
|
-
|
|
|
|
- // C: Medium contrast (which looks better at high radii), no division. Note that the
|
|
|
|
- // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
|
|
|
|
- // more computationally efficient and happens to be aesthetically pleasing.
|
|
|
|
- // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
|
|
|
|
-
|
|
|
|
- // D: Low contrast, no division operation
|
|
|
|
- // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void main() {
|
|
|
|
- // Pixel being shaded
|
|
|
|
- ivec2 ssC = ivec2(gl_FragCoord.xy);
|
|
|
|
-
|
|
|
|
- // World space point being shaded
|
|
|
|
- vec3 C = getPosition(ssC);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- if (C.z <= -camera_z_far*0.999) {
|
|
|
|
- // We're on the skybox
|
|
|
|
- visibility=1.0;
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- //visibility=-C.z/camera_z_far;
|
|
|
|
- //return;
|
|
|
|
-#if 0
|
|
|
|
- vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
|
|
|
|
-#else
|
|
|
|
- vec3 n_C = reconstructCSFaceNormal(C);
|
|
|
|
- n_C = -n_C;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- // Hash function used in the HPG12 AlchemyAO paper
|
|
|
|
- float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);
|
|
|
|
-
|
|
|
|
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
|
|
|
|
- // at depth discontinuities, however the blur will wipe those out so they are not visible
|
|
|
|
- // in the final image.
|
|
|
|
-
|
|
|
|
- // Choose the screen-space sample radius
|
|
|
|
- // proportional to the projected area of the sphere
|
|
|
|
-#ifdef USE_ORTHOGONAL_PROJECTION
|
|
|
|
- float ssDiskRadius = -proj_scale * radius;
|
|
|
|
-#else
|
|
|
|
- float ssDiskRadius = -proj_scale * radius / C.z;
|
|
|
|
-#endif
|
|
|
|
- float sum = 0.0;
|
|
|
|
- for (int i = 0; i < NUM_SAMPLES; ++i) {
|
|
|
|
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
|
|
|
|
-
|
|
|
|
-#ifdef ENABLE_RADIUS2
|
|
|
|
-
|
|
|
|
- //go again for radius2
|
|
|
|
- randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);
|
|
|
|
-
|
|
|
|
- // Reconstruct normals from positions. These will lead to 1-pixel black lines
|
|
|
|
- // at depth discontinuities, however the blur will wipe those out so they are not visible
|
|
|
|
- // in the final image.
|
|
|
|
-
|
|
|
|
- // Choose the screen-space sample radius
|
|
|
|
- // proportional to the projected area of the sphere
|
|
|
|
- ssDiskRadius = -proj_scale * radius2 / C.z;
|
|
|
|
-
|
|
|
|
- sum = 0.0;
|
|
|
|
- for (int i = 0; i < NUM_SAMPLES; ++i) {
|
|
|
|
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
|
|
|
|
-#endif
|
|
|
|
- // Bilateral box-filter over a quad for free, respecting depth edges
|
|
|
|
- // (the difference that this makes is subtle)
|
|
|
|
- if (abs(dFdx(C.z)) < 0.02) {
|
|
|
|
- A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
|
|
|
|
- }
|
|
|
|
- if (abs(dFdy(C.z)) < 0.02) {
|
|
|
|
- A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- visibility = A;
|
|
|
|
-}
|
|
|