瀏覽代碼

Merge pull request #94441 from Repiteo/core/math-namespace

Core: Convert `Math` class to namespace
Thaddeus Crews 5 月之前
父節點
當前提交
2eec0fc526

+ 2 - 1
core/io/resource.cpp

@@ -32,6 +32,7 @@
 
 #include "core/io/resource_loader.h"
 #include "core/math/math_funcs.h"
+#include "core/math/random_pcg.h"
 #include "core/os/os.h"
 #include "scene/main/node.h" //only so casting works
 
@@ -113,7 +114,7 @@ void Resource::set_path_cache(const String &p_path) {
 	GDVIRTUAL_CALL(_set_path_cache, p_path);
 }
 
-static thread_local RandomPCG unique_id_gen(0, RandomPCG::DEFAULT_INC);
+static thread_local RandomPCG unique_id_gen = RandomPCG(0);
 
 void Resource::seed_scene_unique_id(uint32_t p_seed) {
 	unique_id_gen.seed(p_seed);

+ 15 - 14
core/math/math_funcs.cpp

@@ -31,18 +31,19 @@
 #include "math_funcs.h"
 
 #include "core/error/error_macros.h"
+#include "core/math/random_pcg.h"
 
-RandomPCG Math::default_rand(RandomPCG::DEFAULT_SEED, RandomPCG::DEFAULT_INC);
+static RandomPCG default_rand;
 
-uint32_t Math::rand_from_seed(uint64_t *seed) {
-	RandomPCG rng = RandomPCG(*seed, RandomPCG::DEFAULT_INC);
+uint32_t Math::rand_from_seed(uint64_t *p_seed) {
+	RandomPCG rng = RandomPCG(*p_seed);
 	uint32_t r = rng.rand();
-	*seed = rng.get_seed();
+	*p_seed = rng.get_seed();
 	return r;
 }
 
-void Math::seed(uint64_t x) {
-	default_rand.seed(x);
+void Math::seed(uint64_t p_value) {
+	default_rand.seed(p_value);
 }
 
 void Math::randomize() {
@@ -53,8 +54,8 @@ uint32_t Math::rand() {
 	return default_rand.rand();
 }
 
-double Math::randfn(double mean, double deviation) {
-	return default_rand.randfn(mean, deviation);
+double Math::randfn(double p_mean, double p_deviation) {
+	return default_rand.randfn(p_mean, p_deviation);
 }
 
 int Math::step_decimals(double p_step) {
@@ -168,14 +169,14 @@ uint32_t Math::larger_prime(uint32_t p_val) {
 	}
 }
 
-double Math::random(double from, double to) {
-	return default_rand.random(from, to);
+double Math::random(double p_from, double p_to) {
+	return default_rand.random(p_from, p_to);
 }
 
-float Math::random(float from, float to) {
-	return default_rand.random(from, to);
+float Math::random(float p_from, float p_to) {
+	return default_rand.random(p_from, p_to);
 }
 
-int Math::random(int from, int to) {
-	return default_rand.random(from, to);
+int Math::random(int p_from, int p_to) {
+	return default_rand.random(p_from, p_to);
 }

+ 806 - 683
core/math/math_funcs.h

@@ -32,724 +32,847 @@
 
 #include "core/error/error_macros.h"
 #include "core/math/math_defs.h"
-#include "core/math/random_pcg.h"
 #include "core/typedefs.h"
 
 #include <float.h>
 #include <math.h>
 
-class Math {
-	static RandomPCG default_rand;
-
-public:
-	Math() {} // useless to instance
-
-	// Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD).
-	static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF;
-
-	static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
-	static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
-
-	static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
-	static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
-
-	static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
-	static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
-
-	static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
-	static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
-
-	static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
-	static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
-
-	static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); }
-	static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
-
-	static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
-	static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
-
-	static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
-	static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
-
-	// Always does clamping so always safe to use.
-	static _ALWAYS_INLINE_ double asin(double p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asin(p_x)); }
-	static _ALWAYS_INLINE_ float asin(float p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asinf(p_x)); }
-
-	// Always does clamping so always safe to use.
-	static _ALWAYS_INLINE_ double acos(double p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acos(p_x)); }
-	static _ALWAYS_INLINE_ float acos(float p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acosf(p_x)); }
-
-	static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
-	static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
-
-	static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
-	static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
-
-	static _ALWAYS_INLINE_ double asinh(double p_x) { return ::asinh(p_x); }
-	static _ALWAYS_INLINE_ float asinh(float p_x) { return ::asinhf(p_x); }
-
-	// Always does clamping so always safe to use.
-	static _ALWAYS_INLINE_ double acosh(double p_x) { return p_x < 1 ? 0 : ::acosh(p_x); }
-	static _ALWAYS_INLINE_ float acosh(float p_x) { return p_x < 1 ? 0 : ::acoshf(p_x); }
-
-	// Always does clamping so always safe to use.
-	static _ALWAYS_INLINE_ double atanh(double p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanh(p_x)); }
-	static _ALWAYS_INLINE_ float atanh(float p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanhf(p_x)); }
-
-	static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
-	static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
-
-	static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
-	static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
-
-	static _ALWAYS_INLINE_ double modf(double p_x, double *r_y) { return ::modf(p_x, r_y); }
-	static _ALWAYS_INLINE_ float modf(float p_x, float *r_y) { return ::modff(p_x, r_y); }
-
-	static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
-	static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
-
-	static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
-	static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
-
-	static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
-	static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
-
-	static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
-	static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
-
-	static _ALWAYS_INLINE_ double log1p(double p_x) { return ::log1p(p_x); }
-	static _ALWAYS_INLINE_ float log1p(float p_x) { return ::log1pf(p_x); }
-
-	static _ALWAYS_INLINE_ double log2(double p_x) { return ::log2(p_x); }
-	static _ALWAYS_INLINE_ float log2(float p_x) { return ::log2f(p_x); }
-
-	static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
-	static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
-
-	static _ALWAYS_INLINE_ bool is_nan(double p_val) {
+namespace Math {
+
+_ALWAYS_INLINE_ double sin(double p_x) {
+	return ::sin(p_x);
+}
+_ALWAYS_INLINE_ float sin(float p_x) {
+	return ::sinf(p_x);
+}
+
+_ALWAYS_INLINE_ double cos(double p_x) {
+	return ::cos(p_x);
+}
+_ALWAYS_INLINE_ float cos(float p_x) {
+	return ::cosf(p_x);
+}
+
+_ALWAYS_INLINE_ double tan(double p_x) {
+	return ::tan(p_x);
+}
+_ALWAYS_INLINE_ float tan(float p_x) {
+	return ::tanf(p_x);
+}
+
+_ALWAYS_INLINE_ double sinh(double p_x) {
+	return ::sinh(p_x);
+}
+_ALWAYS_INLINE_ float sinh(float p_x) {
+	return ::sinhf(p_x);
+}
+
+_ALWAYS_INLINE_ double sinc(double p_x) {
+	return p_x == 0 ? 1 : sin(p_x) / p_x;
+}
+_ALWAYS_INLINE_ float sinc(float p_x) {
+	return p_x == 0 ? 1 : sin(p_x) / p_x;
+}
+
+_ALWAYS_INLINE_ double sincn(double p_x) {
+	return sinc(Math_PI * p_x);
+}
+_ALWAYS_INLINE_ float sincn(float p_x) {
+	return sinc((float)Math_PI * p_x);
+}
+
+_ALWAYS_INLINE_ double cosh(double p_x) {
+	return ::cosh(p_x);
+}
+_ALWAYS_INLINE_ float cosh(float p_x) {
+	return ::coshf(p_x);
+}
+
+_ALWAYS_INLINE_ double tanh(double p_x) {
+	return ::tanh(p_x);
+}
+_ALWAYS_INLINE_ float tanh(float p_x) {
+	return ::tanhf(p_x);
+}
+
+// Always does clamping so always safe to use.
+_ALWAYS_INLINE_ double asin(double p_x) {
+	return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asin(p_x));
+}
+_ALWAYS_INLINE_ float asin(float p_x) {
+	return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asinf(p_x));
+}
+
+// Always does clamping so always safe to use.
+_ALWAYS_INLINE_ double acos(double p_x) {
+	return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acos(p_x));
+}
+_ALWAYS_INLINE_ float acos(float p_x) {
+	return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acosf(p_x));
+}
+
+_ALWAYS_INLINE_ double atan(double p_x) {
+	return ::atan(p_x);
+}
+_ALWAYS_INLINE_ float atan(float p_x) {
+	return ::atanf(p_x);
+}
+
+_ALWAYS_INLINE_ double atan2(double p_y, double p_x) {
+	return ::atan2(p_y, p_x);
+}
+_ALWAYS_INLINE_ float atan2(float p_y, float p_x) {
+	return ::atan2f(p_y, p_x);
+}
+
+_ALWAYS_INLINE_ double asinh(double p_x) {
+	return ::asinh(p_x);
+}
+_ALWAYS_INLINE_ float asinh(float p_x) {
+	return ::asinhf(p_x);
+}
+
+// Always does clamping so always safe to use.
+_ALWAYS_INLINE_ double acosh(double p_x) {
+	return p_x < 1 ? 0 : ::acosh(p_x);
+}
+_ALWAYS_INLINE_ float acosh(float p_x) {
+	return p_x < 1 ? 0 : ::acoshf(p_x);
+}
+
+// Always does clamping so always safe to use.
+_ALWAYS_INLINE_ double atanh(double p_x) {
+	return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanh(p_x));
+}
+_ALWAYS_INLINE_ float atanh(float p_x) {
+	return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanhf(p_x));
+}
+
+_ALWAYS_INLINE_ double sqrt(double p_x) {
+	return ::sqrt(p_x);
+}
+_ALWAYS_INLINE_ float sqrt(float p_x) {
+	return ::sqrtf(p_x);
+}
+
+_ALWAYS_INLINE_ double fmod(double p_x, double p_y) {
+	return ::fmod(p_x, p_y);
+}
+_ALWAYS_INLINE_ float fmod(float p_x, float p_y) {
+	return ::fmodf(p_x, p_y);
+}
+
+_ALWAYS_INLINE_ double modf(double p_x, double *r_y) {
+	return ::modf(p_x, r_y);
+}
+_ALWAYS_INLINE_ float modf(float p_x, float *r_y) {
+	return ::modff(p_x, r_y);
+}
+
+_ALWAYS_INLINE_ double floor(double p_x) {
+	return ::floor(p_x);
+}
+_ALWAYS_INLINE_ float floor(float p_x) {
+	return ::floorf(p_x);
+}
+
+_ALWAYS_INLINE_ double ceil(double p_x) {
+	return ::ceil(p_x);
+}
+_ALWAYS_INLINE_ float ceil(float p_x) {
+	return ::ceilf(p_x);
+}
+
+_ALWAYS_INLINE_ double pow(double p_x, double p_y) {
+	return ::pow(p_x, p_y);
+}
+_ALWAYS_INLINE_ float pow(float p_x, float p_y) {
+	return ::powf(p_x, p_y);
+}
+
+_ALWAYS_INLINE_ double log(double p_x) {
+	return ::log(p_x);
+}
+_ALWAYS_INLINE_ float log(float p_x) {
+	return ::logf(p_x);
+}
+
+_ALWAYS_INLINE_ double log1p(double p_x) {
+	return ::log1p(p_x);
+}
+_ALWAYS_INLINE_ float log1p(float p_x) {
+	return ::log1pf(p_x);
+}
+
+_ALWAYS_INLINE_ double log2(double p_x) {
+	return ::log2(p_x);
+}
+_ALWAYS_INLINE_ float log2(float p_x) {
+	return ::log2f(p_x);
+}
+
+_ALWAYS_INLINE_ double exp(double p_x) {
+	return ::exp(p_x);
+}
+_ALWAYS_INLINE_ float exp(float p_x) {
+	return ::expf(p_x);
+}
+
+_ALWAYS_INLINE_ bool is_nan(double p_val) {
 #ifdef _MSC_VER
-		return _isnan(p_val);
+	return _isnan(p_val);
 #elif defined(__GNUC__) && __GNUC__ < 6
-		union {
-			uint64_t u;
-			double f;
-		} ieee754;
-		ieee754.f = p_val;
-		// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
-		return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
+	union {
+		uint64_t u;
+		double f;
+	} ieee754;
+	ieee754.f = p_val;
+	// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
+	return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
 #else
-		return isnan(p_val);
+	return isnan(p_val);
 #endif
-	}
+}
 
-	static _ALWAYS_INLINE_ bool is_nan(float p_val) {
+_ALWAYS_INLINE_ bool is_nan(float p_val) {
 #ifdef _MSC_VER
-		return _isnan(p_val);
+	return _isnan(p_val);
 #elif defined(__GNUC__) && __GNUC__ < 6
-		union {
-			uint32_t u;
-			float f;
-		} ieee754;
-		ieee754.f = p_val;
-		// -----------------------------------
-		// (single-precision floating-point)
-		// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
-		//     : (> 0x7f800000)
-		// where,
-		//   s : sign
-		//   x : non-zero number
-		// -----------------------------------
-		return ((ieee754.u & 0x7fffffff) > 0x7f800000);
+	union {
+		uint32_t u;
+		float f;
+	} ieee754;
+	ieee754.f = p_val;
+	// -----------------------------------
+	// (single-precision floating-point)
+	// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
+	//     : (> 0x7f800000)
+	// where,
+	//   s : sign
+	//   x : non-zero number
+	// -----------------------------------
+	return ((ieee754.u & 0x7fffffff) > 0x7f800000);
 #else
-		return isnan(p_val);
+	return isnan(p_val);
 #endif
-	}
+}
 
-	static _ALWAYS_INLINE_ bool is_inf(double p_val) {
+_ALWAYS_INLINE_ bool is_inf(double p_val) {
 #ifdef _MSC_VER
-		return !_finite(p_val);
+	return !_finite(p_val);
 // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
 #elif defined(__GNUC__) && __GNUC__ < 6
-		union {
-			uint64_t u;
-			double f;
-		} ieee754;
-		ieee754.f = p_val;
-		return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
-				((unsigned)ieee754.u == 0);
+	union {
+		uint64_t u;
+		double f;
+	} ieee754;
+	ieee754.f = p_val;
+	return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
+			((unsigned)ieee754.u == 0);
 #else
-		return isinf(p_val);
+	return isinf(p_val);
 #endif
-	}
+}
 
-	static _ALWAYS_INLINE_ bool is_inf(float p_val) {
+_ALWAYS_INLINE_ bool is_inf(float p_val) {
 #ifdef _MSC_VER
-		return !_finite(p_val);
+	return !_finite(p_val);
 // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
 #elif defined(__GNUC__) && __GNUC__ < 6
-		union {
-			uint32_t u;
-			float f;
-		} ieee754;
-		ieee754.f = p_val;
-		return (ieee754.u & 0x7fffffff) == 0x7f800000;
+	union {
+		uint32_t u;
+		float f;
+	} ieee754;
+	ieee754.f = p_val;
+	return (ieee754.u & 0x7fffffff) == 0x7f800000;
 #else
-		return isinf(p_val);
+	return isinf(p_val);
 #endif
-	}
-
-	// These methods assume (p_num + p_den) doesn't overflow.
-	static _ALWAYS_INLINE_ int32_t division_round_up(int32_t p_num, int32_t p_den) {
-		int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
-		return (p_num + p_den + offset) / p_den;
-	}
-	static _ALWAYS_INLINE_ uint32_t division_round_up(uint32_t p_num, uint32_t p_den) {
-		return (p_num + p_den - 1) / p_den;
-	}
-	static _ALWAYS_INLINE_ int64_t division_round_up(int64_t p_num, int64_t p_den) {
-		int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
-		return (p_num + p_den + offset) / p_den;
-	}
-	static _ALWAYS_INLINE_ uint64_t division_round_up(uint64_t p_num, uint64_t p_den) {
-		return (p_num + p_den - 1) / p_den;
-	}
-
-	static _ALWAYS_INLINE_ bool is_finite(double p_val) { return isfinite(p_val); }
-	static _ALWAYS_INLINE_ bool is_finite(float p_val) { return isfinite(p_val); }
-
-	static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
-	static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
-	static _ALWAYS_INLINE_ int8_t abs(int8_t g) { return g > 0 ? g : -g; }
-	static _ALWAYS_INLINE_ int16_t abs(int16_t g) { return g > 0 ? g : -g; }
-	static _ALWAYS_INLINE_ int32_t abs(int32_t g) { return ::abs(g); }
-	static _ALWAYS_INLINE_ int64_t abs(int64_t g) { return ::llabs(g); }
-
-	static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
-		double value = Math::fmod(p_x, p_y);
-		if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
-			value += p_y;
-		}
-		value += 0.0;
-		return value;
-	}
-	static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
-		float value = Math::fmod(p_x, p_y);
-		if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
-			value += p_y;
-		}
-		value += 0.0f;
-		return value;
-	}
-	static _ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) {
-		float value = Math::fmod(p_x, p_y);
-		if (value < 0) {
-			value += p_y;
-		}
-		value += 0.0f;
-		return value;
-	}
-	static _ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) {
-		double value = Math::fmod(p_x, p_y);
-		if (value < 0) {
-			value += p_y;
-		}
-		value += 0.0;
-		return value;
-	}
-
-	static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
-		ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback.");
-		int64_t value = p_x % p_y;
-		if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
-			value += p_y;
+}
+
+// These methods assume (p_num + p_den) doesn't overflow.
+_ALWAYS_INLINE_ int32_t division_round_up(int32_t p_num, int32_t p_den) {
+	int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
+	return (p_num + p_den + offset) / p_den;
+}
+_ALWAYS_INLINE_ uint32_t division_round_up(uint32_t p_num, uint32_t p_den) {
+	return (p_num + p_den - 1) / p_den;
+}
+_ALWAYS_INLINE_ int64_t division_round_up(int64_t p_num, int64_t p_den) {
+	int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
+	return (p_num + p_den + offset) / p_den;
+}
+_ALWAYS_INLINE_ uint64_t division_round_up(uint64_t p_num, uint64_t p_den) {
+	return (p_num + p_den - 1) / p_den;
+}
+
+_ALWAYS_INLINE_ bool is_finite(double p_val) {
+	return isfinite(p_val);
+}
+_ALWAYS_INLINE_ bool is_finite(float p_val) {
+	return isfinite(p_val);
+}
+
+_ALWAYS_INLINE_ double absd(double p_value) {
+	return ::fabs(p_value);
+}
+_ALWAYS_INLINE_ float absf(float p_value) {
+	return ::fabsf(p_value);
+}
+
+_ALWAYS_INLINE_ double abs(double p_value) {
+	return absd(p_value);
+}
+_ALWAYS_INLINE_ float abs(float p_value) {
+	return absf(p_value);
+}
+_ALWAYS_INLINE_ int8_t abs(int8_t p_value) {
+	return p_value > 0 ? p_value : -p_value;
+}
+_ALWAYS_INLINE_ int16_t abs(int16_t p_value) {
+	return p_value > 0 ? p_value : -p_value;
+}
+_ALWAYS_INLINE_ int32_t abs(int32_t p_value) {
+	return ::abs(p_value);
+}
+_ALWAYS_INLINE_ int64_t abs(int64_t p_value) {
+	return ::llabs(p_value);
+}
+
+_ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
+	double value = fmod(p_x, p_y);
+	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
+		value += p_y;
+	}
+	value += 0.0;
+	return value;
+}
+_ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
+	float value = fmod(p_x, p_y);
+	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
+		value += p_y;
+	}
+	value += 0.0f;
+	return value;
+}
+
+_ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) {
+	double value = fmod(p_x, p_y);
+	if (value < 0) {
+		value += p_y;
+	}
+	value += 0.0;
+	return value;
+}
+_ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) {
+	float value = fmod(p_x, p_y);
+	if (value < 0) {
+		value += p_y;
+	}
+	value += 0.0f;
+	return value;
+}
+
+_ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
+	ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback.");
+	int64_t value = p_x % p_y;
+	if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
+		value += p_y;
+	}
+	return value;
+}
+
+_ALWAYS_INLINE_ double deg_to_rad(double p_y) {
+	return p_y * (Math_PI / 180.0);
+}
+_ALWAYS_INLINE_ float deg_to_rad(float p_y) {
+	return p_y * (float)(Math_PI / 180.0);
+}
+
+_ALWAYS_INLINE_ double rad_to_deg(double p_y) {
+	return p_y * (180.0 / Math_PI);
+}
+_ALWAYS_INLINE_ float rad_to_deg(float p_y) {
+	return p_y * (float)(180.0 / Math_PI);
+}
+
+_ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) {
+	return p_from + (p_to - p_from) * p_weight;
+}
+_ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) {
+	return p_from + (p_to - p_from) * p_weight;
+}
+
+_ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
+	return 0.5 *
+			((p_from * 2.0) +
+					(-p_pre + p_to) * p_weight +
+					(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
+					(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
+}
+_ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
+	return 0.5f *
+			((p_from * 2.0f) +
+					(-p_pre + p_to) * p_weight +
+					(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
+					(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
+}
+
+_ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
+	double from_rot = fmod(p_from, Math_TAU);
+
+	double pre_diff = fmod(p_pre - from_rot, Math_TAU);
+	double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
+
+	double to_diff = fmod(p_to - from_rot, Math_TAU);
+	double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
+
+	double post_diff = fmod(p_post - to_rot, Math_TAU);
+	double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
+
+	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
+}
+
+_ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
+	float from_rot = fmod(p_from, (float)Math_TAU);
+
+	float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
+	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
+
+	float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
+	float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
+
+	float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
+	float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
+
+	return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
+}
+
+_ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
+		double p_to_t, double p_pre_t, double p_post_t) {
+	/* Barry-Goldman method */
+	double t = lerp(0.0, p_to_t, p_weight);
+	double a1 = lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
+	double a2 = lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
+	double a3 = lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
+	double b1 = lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
+	double b2 = lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
+	return lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
+}
+_ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
+		float p_to_t, float p_pre_t, float p_post_t) {
+	/* Barry-Goldman method */
+	float t = lerp(0.0f, p_to_t, p_weight);
+	float a1 = lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
+	float a2 = lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
+	float a3 = lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
+	float b1 = lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
+	float b2 = lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
+	return lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
+}
+
+_ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
+		double p_to_t, double p_pre_t, double p_post_t) {
+	double from_rot = fmod(p_from, Math_TAU);
+
+	double pre_diff = fmod(p_pre - from_rot, Math_TAU);
+	double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
+
+	double to_diff = fmod(p_to - from_rot, Math_TAU);
+	double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
+
+	double post_diff = fmod(p_post - to_rot, Math_TAU);
+	double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
+
+	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
+}
+_ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
+		float p_to_t, float p_pre_t, float p_post_t) {
+	float from_rot = fmod(p_from, (float)Math_TAU);
+
+	float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
+	float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
+
+	float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
+	float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
+
+	float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
+	float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
+
+	return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
+}
+
+_ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
+	/* Formula from Wikipedia article on Bezier curves. */
+	double omt = (1.0 - p_t);
+	double omt2 = omt * omt;
+	double omt3 = omt2 * omt;
+	double t2 = p_t * p_t;
+	double t3 = t2 * p_t;
+
+	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
+}
+_ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
+	/* Formula from Wikipedia article on Bezier curves. */
+	float omt = (1.0f - p_t);
+	float omt2 = omt * omt;
+	float omt3 = omt2 * omt;
+	float t2 = p_t * p_t;
+	float t3 = t2 * p_t;
+
+	return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
+}
+
+_ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
+	/* Formula from Wikipedia article on Bezier curves. */
+	double omt = (1.0 - p_t);
+	double omt2 = omt * omt;
+	double t2 = p_t * p_t;
+
+	double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
+	return d;
+}
+_ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
+	/* Formula from Wikipedia article on Bezier curves. */
+	float omt = (1.0f - p_t);
+	float omt2 = omt * omt;
+	float t2 = p_t * p_t;
+
+	float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2;
+	return d;
+}
+
+_ALWAYS_INLINE_ double angle_difference(double p_from, double p_to) {
+	double difference = fmod(p_to - p_from, Math_TAU);
+	return fmod(2.0 * difference, Math_TAU) - difference;
+}
+_ALWAYS_INLINE_ float angle_difference(float p_from, float p_to) {
+	float difference = fmod(p_to - p_from, (float)Math_TAU);
+	return fmod(2.0f * difference, (float)Math_TAU) - difference;
+}
+
+_ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
+	return p_from + angle_difference(p_from, p_to) * p_weight;
+}
+_ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
+	return p_from + angle_difference(p_from, p_to) * p_weight;
+}
+
+_ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
+	return (p_value - p_from) / (p_to - p_from);
+}
+_ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
+	return (p_value - p_from) / (p_to - p_from);
+}
+
+_ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
+	return lerp(p_ostart, p_ostop, inverse_lerp(p_istart, p_istop, p_value));
+}
+_ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
+	return lerp(p_ostart, p_ostop, inverse_lerp(p_istart, p_istop, p_value));
+}
+
+_ALWAYS_INLINE_ bool is_equal_approx(double p_left, double p_right, double p_tolerance) {
+	// Check for exact equality first, required to handle "infinity" values.
+	if (p_left == p_right) {
+		return true;
+	}
+	// Then check for approximate equality.
+	return abs(p_left - p_right) < p_tolerance;
+}
+_ALWAYS_INLINE_ bool is_equal_approx(float p_left, float p_right, float p_tolerance) {
+	// Check for exact equality first, required to handle "infinity" values.
+	if (p_left == p_right) {
+		return true;
+	}
+	// Then check for approximate equality.
+	return abs(p_left - p_right) < p_tolerance;
+}
+
+_ALWAYS_INLINE_ bool is_equal_approx(double p_left, double p_right) {
+	// Check for exact equality first, required to handle "infinity" values.
+	if (p_left == p_right) {
+		return true;
+	}
+	// Then check for approximate equality.
+	double tolerance = CMP_EPSILON * abs(p_left);
+	if (tolerance < CMP_EPSILON) {
+		tolerance = CMP_EPSILON;
+	}
+	return abs(p_left - p_right) < tolerance;
+}
+_ALWAYS_INLINE_ bool is_equal_approx(float p_left, float p_right) {
+	// Check for exact equality first, required to handle "infinity" values.
+	if (p_left == p_right) {
+		return true;
+	}
+	// Then check for approximate equality.
+	float tolerance = (float)CMP_EPSILON * abs(p_left);
+	if (tolerance < (float)CMP_EPSILON) {
+		tolerance = (float)CMP_EPSILON;
+	}
+	return abs(p_left - p_right) < tolerance;
+}
+
+_ALWAYS_INLINE_ bool is_zero_approx(double p_value) {
+	return abs(p_value) < CMP_EPSILON;
+}
+_ALWAYS_INLINE_ bool is_zero_approx(float p_value) {
+	return abs(p_value) < (float)CMP_EPSILON;
+}
+
+_ALWAYS_INLINE_ bool is_same(double p_left, double p_right) {
+	return (p_left == p_right) || (is_nan(p_left) && is_nan(p_right));
+}
+_ALWAYS_INLINE_ bool is_same(float p_left, float p_right) {
+	return (p_left == p_right) || (is_nan(p_left) && is_nan(p_right));
+}
+
+_ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
+	if (is_equal_approx(p_from, p_to)) {
+		if (likely(p_from <= p_to)) {
+			return p_s <= p_from ? 0.0 : 1.0;
+		} else {
+			return p_s <= p_to ? 1.0 : 0.0;
 		}
-		return value;
-	}
-
-	static _ALWAYS_INLINE_ double deg_to_rad(double p_y) { return p_y * (Math_PI / 180.0); }
-	static _ALWAYS_INLINE_ float deg_to_rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
-
-	static _ALWAYS_INLINE_ double rad_to_deg(double p_y) { return p_y * (180.0 / Math_PI); }
-	static _ALWAYS_INLINE_ float rad_to_deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
-
-	static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
-	static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
-
-	static _ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
-		return 0.5 *
-				((p_from * 2.0) +
-						(-p_pre + p_to) * p_weight +
-						(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
-						(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
-	}
-	static _ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
-		return 0.5f *
-				((p_from * 2.0f) +
-						(-p_pre + p_to) * p_weight +
-						(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
-						(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
-	}
-
-	static _ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
-		double from_rot = fmod(p_from, Math_TAU);
-
-		double pre_diff = fmod(p_pre - from_rot, Math_TAU);
-		double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
-
-		double to_diff = fmod(p_to - from_rot, Math_TAU);
-		double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
-
-		double post_diff = fmod(p_post - to_rot, Math_TAU);
-		double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
-
-		return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
-	}
-
-	static _ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
-		float from_rot = fmod(p_from, (float)Math_TAU);
-
-		float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
-		float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
-
-		float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
-		float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
-
-		float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
-		float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
-
-		return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
-	}
-
-	static _ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
-			double p_to_t, double p_pre_t, double p_post_t) {
-		/* Barry-Goldman method */
-		double t = Math::lerp(0.0, p_to_t, p_weight);
-		double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
-		double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
-		double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
-		double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
-		double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
-		return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
-	}
-
-	static _ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
-			float p_to_t, float p_pre_t, float p_post_t) {
-		/* Barry-Goldman method */
-		float t = Math::lerp(0.0f, p_to_t, p_weight);
-		float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
-		float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
-		float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
-		float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
-		float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
-		return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
-	}
-
-	static _ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
-			double p_to_t, double p_pre_t, double p_post_t) {
-		double from_rot = fmod(p_from, Math_TAU);
-
-		double pre_diff = fmod(p_pre - from_rot, Math_TAU);
-		double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
-
-		double to_diff = fmod(p_to - from_rot, Math_TAU);
-		double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
-
-		double post_diff = fmod(p_post - to_rot, Math_TAU);
-		double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
-
-		return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
 	}
-
-	static _ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
-			float p_to_t, float p_pre_t, float p_post_t) {
-		float from_rot = fmod(p_from, (float)Math_TAU);
-
-		float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
-		float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
-
-		float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
-		float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
-
-		float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
-		float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
-
-		return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
-	}
-
-	static _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
-		/* Formula from Wikipedia article on Bezier curves. */
-		double omt = (1.0 - p_t);
-		double omt2 = omt * omt;
-		double omt3 = omt2 * omt;
-		double t2 = p_t * p_t;
-		double t3 = t2 * p_t;
-
-		return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
-	}
-
-	static _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
-		/* Formula from Wikipedia article on Bezier curves. */
-		float omt = (1.0f - p_t);
-		float omt2 = omt * omt;
-		float omt3 = omt2 * omt;
-		float t2 = p_t * p_t;
-		float t3 = t2 * p_t;
-
-		return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
-	}
-
-	static _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
-		/* Formula from Wikipedia article on Bezier curves. */
-		double omt = (1.0 - p_t);
-		double omt2 = omt * omt;
-		double t2 = p_t * p_t;
-
-		double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
-		return d;
-	}
-
-	static _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
-		/* Formula from Wikipedia article on Bezier curves. */
-		float omt = (1.0f - p_t);
-		float omt2 = omt * omt;
-		float t2 = p_t * p_t;
-
-		float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2;
-		return d;
-	}
-
-	static _ALWAYS_INLINE_ double angle_difference(double p_from, double p_to) {
-		double difference = fmod(p_to - p_from, Math_TAU);
-		return fmod(2.0 * difference, Math_TAU) - difference;
-	}
-	static _ALWAYS_INLINE_ float angle_difference(float p_from, float p_to) {
-		float difference = fmod(p_to - p_from, (float)Math_TAU);
-		return fmod(2.0f * difference, (float)Math_TAU) - difference;
-	}
-
-	static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
-		return p_from + Math::angle_difference(p_from, p_to) * p_weight;
-	}
-	static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
-		return p_from + Math::angle_difference(p_from, p_to) * p_weight;
-	}
-
-	static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
-		return (p_value - p_from) / (p_to - p_from);
-	}
-	static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
-		return (p_value - p_from) / (p_to - p_from);
-	}
-
-	static _ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
-		return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
-	}
-	static _ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
-		return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
-	}
-
-	static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
-		if (is_equal_approx(p_from, p_to)) {
-			if (likely(p_from <= p_to)) {
-				return p_s <= p_from ? 0.0 : 1.0;
-			} else {
-				return p_s <= p_to ? 1.0 : 0.0;
-			}
+	double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
+	return s * s * (3.0 - 2.0 * s);
+}
+_ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) {
+	if (is_equal_approx(p_from, p_to)) {
+		if (likely(p_from <= p_to)) {
+			return p_s <= p_from ? 0.0f : 1.0f;
+		} else {
+			return p_s <= p_to ? 1.0f : 0.0f;
 		}
-		double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
-		return s * s * (3.0 - 2.0 * s);
 	}
-	static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) {
-		if (is_equal_approx(p_from, p_to)) {
-			if (likely(p_from <= p_to)) {
-				return p_s <= p_from ? 0.0f : 1.0f;
-			} else {
-				return p_s <= p_to ? 1.0f : 0.0f;
+	float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
+	return s * s * (3.0f - 2.0f * s);
+}
+
+_ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
+	return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
+}
+_ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
+	return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
+}
+
+_ALWAYS_INLINE_ double rotate_toward(double p_from, double p_to, double p_delta) {
+	double difference = angle_difference(p_from, p_to);
+	double abs_difference = abs(difference);
+	// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
+	return p_from + CLAMP(p_delta, abs_difference - Math_PI, abs_difference) * (difference >= 0.0 ? 1.0 : -1.0);
+}
+_ALWAYS_INLINE_ float rotate_toward(float p_from, float p_to, float p_delta) {
+	float difference = angle_difference(p_from, p_to);
+	float abs_difference = abs(difference);
+	// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
+	return p_from + CLAMP(p_delta, abs_difference - (float)Math_PI, abs_difference) * (difference >= 0.0f ? 1.0f : -1.0f);
+}
+
+_ALWAYS_INLINE_ double linear_to_db(double p_linear) {
+	return log(p_linear) * 8.6858896380650365530225783783321;
+}
+_ALWAYS_INLINE_ float linear_to_db(float p_linear) {
+	return log(p_linear) * (float)8.6858896380650365530225783783321;
+}
+
+_ALWAYS_INLINE_ double db_to_linear(double p_db) {
+	return exp(p_db * 0.11512925464970228420089957273422);
+}
+_ALWAYS_INLINE_ float db_to_linear(float p_db) {
+	return exp(p_db * (float)0.11512925464970228420089957273422);
+}
+
+_ALWAYS_INLINE_ double round(double p_val) {
+	return ::round(p_val);
+}
+_ALWAYS_INLINE_ float round(float p_val) {
+	return ::roundf(p_val);
+}
+
+_ALWAYS_INLINE_ double wrapf(double p_value, double p_min, double p_max) {
+	double range = p_max - p_min;
+	if (is_zero_approx(range)) {
+		return p_min;
+	}
+	double result = p_value - (range * floor((p_value - p_min) / range));
+	if (is_equal_approx(result, p_max)) {
+		return p_min;
+	}
+	return result;
+}
+_ALWAYS_INLINE_ float wrapf(float p_value, float p_min, float p_max) {
+	float range = p_max - p_min;
+	if (is_zero_approx(range)) {
+		return p_min;
+	}
+	float result = p_value - (range * floor((p_value - p_min) / range));
+	if (is_equal_approx(result, p_max)) {
+		return p_min;
+	}
+	return result;
+}
+
+_ALWAYS_INLINE_ int64_t wrapi(int64_t p_value, int64_t p_min, int64_t p_max) {
+	int64_t range = p_max - p_min;
+	return range == 0 ? p_min : p_min + ((((p_value - p_min) % range) + range) % range);
+}
+
+_ALWAYS_INLINE_ double fract(double p_value) {
+	return p_value - floor(p_value);
+}
+_ALWAYS_INLINE_ float fract(float p_value) {
+	return p_value - floor(p_value);
+}
+
+_ALWAYS_INLINE_ double pingpong(double p_value, double p_length) {
+	return (p_length != 0.0) ? abs(fract((p_value - p_length) / (p_length * 2.0)) * p_length * 2.0 - p_length) : 0.0;
+}
+_ALWAYS_INLINE_ float pingpong(float p_value, float p_length) {
+	return (p_length != 0.0f) ? abs(fract((p_value - p_length) / (p_length * 2.0f)) * p_length * 2.0f - p_length) : 0.0f;
+}
+
+// double only, as these functions are mainly used by the editor and not performance-critical,
+double ease(double p_x, double p_c);
+int step_decimals(double p_step);
+int range_step_decimals(double p_step); // For editor use only.
+double snapped(double p_value, double p_step);
+
+uint32_t larger_prime(uint32_t p_val);
+
+void seed(uint64_t p_seed);
+void randomize();
+uint32_t rand_from_seed(uint64_t *p_seed);
+uint32_t rand();
+_ALWAYS_INLINE_ double randd() {
+	return (double)rand() / (double)UINT32_MAX;
+}
+_ALWAYS_INLINE_ float randf() {
+	return (float)rand() / (float)UINT32_MAX;
+}
+double randfn(double p_mean, double p_deviation);
+
+double random(double p_from, double p_to);
+float random(float p_from, float p_to);
+int random(int p_from, int p_to);
+
+// This function should be as fast as possible and rounding mode should not matter.
+_ALWAYS_INLINE_ int fast_ftoi(float p_value) {
+	// Assuming every supported compiler has `lrint()`.
+	return lrintf(p_value);
+}
+
+_ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t p_half) {
+	uint16_t h_exp, h_sig;
+	uint32_t f_sgn, f_exp, f_sig;
+
+	h_exp = (p_half & 0x7c00u);
+	f_sgn = ((uint32_t)p_half & 0x8000u) << 16;
+	switch (h_exp) {
+		case 0x0000u: /* 0 or subnormal */
+			h_sig = (p_half & 0x03ffu);
+			/* Signed zero */
+			if (h_sig == 0) {
+				return f_sgn;
 			}
-		}
-		float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
-		return s * s * (3.0f - 2.0f * s);
-	}
-
-	static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
-		return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
-	}
-	static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
-		return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
-	}
-
-	static _ALWAYS_INLINE_ double rotate_toward(double p_from, double p_to, double p_delta) {
-		double difference = Math::angle_difference(p_from, p_to);
-		double abs_difference = Math::abs(difference);
-		// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
-		return p_from + CLAMP(p_delta, abs_difference - Math_PI, abs_difference) * (difference >= 0.0 ? 1.0 : -1.0);
-	}
-	static _ALWAYS_INLINE_ float rotate_toward(float p_from, float p_to, float p_delta) {
-		float difference = Math::angle_difference(p_from, p_to);
-		float abs_difference = Math::abs(difference);
-		// When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
-		return p_from + CLAMP(p_delta, abs_difference - (float)Math_PI, abs_difference) * (difference >= 0.0f ? 1.0f : -1.0f);
-	}
-
-	static _ALWAYS_INLINE_ double linear_to_db(double p_linear) {
-		return Math::log(p_linear) * 8.6858896380650365530225783783321;
-	}
-	static _ALWAYS_INLINE_ float linear_to_db(float p_linear) {
-		return Math::log(p_linear) * (float)8.6858896380650365530225783783321;
-	}
-
-	static _ALWAYS_INLINE_ double db_to_linear(double p_db) {
-		return Math::exp(p_db * 0.11512925464970228420089957273422);
-	}
-	static _ALWAYS_INLINE_ float db_to_linear(float p_db) {
-		return Math::exp(p_db * (float)0.11512925464970228420089957273422);
-	}
-
-	static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); }
-	static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); }
-
-	static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) {
-		int64_t range = max - min;
-		return range == 0 ? min : min + ((((value - min) % range) + range) % range);
-	}
-	static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
-		double range = max - min;
-		if (is_zero_approx(range)) {
-			return min;
-		}
-		double result = value - (range * Math::floor((value - min) / range));
-		if (is_equal_approx(result, max)) {
-			return min;
-		}
-		return result;
-	}
-	static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
-		float range = max - min;
-		if (is_zero_approx(range)) {
-			return min;
-		}
-		float result = value - (range * Math::floor((value - min) / range));
-		if (is_equal_approx(result, max)) {
-			return min;
-		}
-		return result;
-	}
-
-	static _ALWAYS_INLINE_ float fract(float value) {
-		return value - floor(value);
-	}
-	static _ALWAYS_INLINE_ double fract(double value) {
-		return value - floor(value);
-	}
-	static _ALWAYS_INLINE_ float pingpong(float value, float length) {
-		return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
-	}
-	static _ALWAYS_INLINE_ double pingpong(double value, double length) {
-		return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
-	}
-
-	// double only, as these functions are mainly used by the editor and not performance-critical,
-	static double ease(double p_x, double p_c);
-	static int step_decimals(double p_step);
-	static int range_step_decimals(double p_step); // For editor use only.
-	static double snapped(double p_value, double p_step);
-
-	static uint32_t larger_prime(uint32_t p_val);
-
-	static void seed(uint64_t x);
-	static void randomize();
-	static uint32_t rand_from_seed(uint64_t *seed);
-	static uint32_t rand();
-	static _ALWAYS_INLINE_ double randd() { return (double)rand() / (double)Math::RANDOM_32BIT_MAX; }
-	static _ALWAYS_INLINE_ float randf() { return (float)rand() / (float)Math::RANDOM_32BIT_MAX; }
-	static double randfn(double mean, double deviation);
-
-	static double random(double from, double to);
-	static float random(float from, float to);
-	static int random(int from, int to);
-
-	static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) {
-		// Check for exact equality first, required to handle "infinity" values.
-		if (a == b) {
-			return true;
-		}
-		// Then check for approximate equality.
-		float tolerance = (float)CMP_EPSILON * abs(a);
-		if (tolerance < (float)CMP_EPSILON) {
-			tolerance = (float)CMP_EPSILON;
-		}
-		return abs(a - b) < tolerance;
-	}
-
-	static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) {
-		// Check for exact equality first, required to handle "infinity" values.
-		if (a == b) {
-			return true;
-		}
-		// Then check for approximate equality.
-		return abs(a - b) < tolerance;
-	}
-
-	static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
-		return abs(s) < (float)CMP_EPSILON;
-	}
-
-	static _ALWAYS_INLINE_ bool is_same(float a, float b) {
-		return (a == b) || (is_nan(a) && is_nan(b));
-	}
-
-	static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
-		// Check for exact equality first, required to handle "infinity" values.
-		if (a == b) {
-			return true;
-		}
-		// Then check for approximate equality.
-		double tolerance = CMP_EPSILON * abs(a);
-		if (tolerance < CMP_EPSILON) {
-			tolerance = CMP_EPSILON;
-		}
-		return abs(a - b) < tolerance;
-	}
-
-	static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) {
-		// Check for exact equality first, required to handle "infinity" values.
-		if (a == b) {
-			return true;
-		}
-		// Then check for approximate equality.
-		return abs(a - b) < tolerance;
-	}
-
-	static _ALWAYS_INLINE_ bool is_zero_approx(double s) {
-		return abs(s) < CMP_EPSILON;
-	}
-
-	static _ALWAYS_INLINE_ bool is_same(double a, double b) {
-		return (a == b) || (is_nan(a) && is_nan(b));
-	}
-
-	static _ALWAYS_INLINE_ float absf(float g) {
-		return ::fabsf(g);
-	}
-
-	static _ALWAYS_INLINE_ double absd(double g) {
-		return ::fabs(g);
-	}
-
-	// This function should be as fast as possible and rounding mode should not matter.
-	static _ALWAYS_INLINE_ int fast_ftoi(float a) {
-		// Assuming every supported compiler has `lrint()`.
-		return lrintf(a);
-	}
-
-	static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
-		uint16_t h_exp, h_sig;
-		uint32_t f_sgn, f_exp, f_sig;
-
-		h_exp = (h & 0x7c00u);
-		f_sgn = ((uint32_t)h & 0x8000u) << 16;
-		switch (h_exp) {
-			case 0x0000u: /* 0 or subnormal */
-				h_sig = (h & 0x03ffu);
-				/* Signed zero */
-				if (h_sig == 0) {
-					return f_sgn;
-				}
-				/* Subnormal */
+			/* Subnormal */
+			h_sig <<= 1;
+			while ((h_sig & 0x0400u) == 0) {
 				h_sig <<= 1;
-				while ((h_sig & 0x0400u) == 0) {
-					h_sig <<= 1;
-					h_exp++;
-				}
-				f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
-				f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
-				return f_sgn + f_exp + f_sig;
-			case 0x7c00u: /* inf or NaN */
-				/* All-ones exponent and a copy of the significand */
-				return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
-			default: /* normalized */
-				/* Just need to adjust the exponent and shift */
-				return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
-		}
-	}
-
-	static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
-		union {
-			uint32_t u32;
-			float f32;
-		} u;
-
-		u.u32 = halfbits_to_floatbits(*h);
-		return u.f32;
-	}
-
-	static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
-		return halfptr_to_float(&h);
-	}
-
-	static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
-		union {
-			float fv;
-			uint32_t ui;
-		} ci;
-		ci.fv = f;
-
-		uint32_t x = ci.ui;
-		uint32_t sign = (unsigned short)(x >> 31);
-		uint32_t mantissa;
-		uint32_t exponent;
-		uint16_t hf;
-
-		// get mantissa
-		mantissa = x & ((1 << 23) - 1);
-		// get exponent bits
-		exponent = x & (0xFF << 23);
-		if (exponent >= 0x47800000) {
-			// check if the original single precision float number is a NaN
-			if (mantissa && (exponent == (0xFF << 23))) {
-				// we have a single precision NaN
-				mantissa = (1 << 23) - 1;
-			} else {
-				// 16-bit half-float representation stores number as Inf
-				mantissa = 0;
+				h_exp++;
 			}
-			hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
-					(uint16_t)(mantissa >> 13);
+			f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
+			f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
+			return f_sgn + f_exp + f_sig;
+		case 0x7c00u: /* inf or NaN */
+			/* All-ones exponent and a copy of the significand */
+			return f_sgn + 0x7f800000u + (((uint32_t)(p_half & 0x03ffu)) << 13);
+		default: /* normalized */
+			/* Just need to adjust the exponent and shift */
+			return f_sgn + (((uint32_t)(p_half & 0x7fffu) + 0x1c000u) << 13);
+	}
+}
+
+_ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *p_half) {
+	union {
+		uint32_t u32;
+		float f32;
+	} u;
+
+	u.u32 = halfbits_to_floatbits(*p_half);
+	return u.f32;
+}
+
+_ALWAYS_INLINE_ float half_to_float(const uint16_t p_half) {
+	return halfptr_to_float(&p_half);
+}
+
+_ALWAYS_INLINE_ uint16_t make_half_float(float p_value) {
+	union {
+		float fv;
+		uint32_t ui;
+	} ci;
+	ci.fv = p_value;
+
+	uint32_t x = ci.ui;
+	uint32_t sign = (unsigned short)(x >> 31);
+	uint32_t mantissa;
+	uint32_t exponent;
+	uint16_t hf;
+
+	// get mantissa
+	mantissa = x & ((1 << 23) - 1);
+	// get exponent bits
+	exponent = x & (0xFF << 23);
+	if (exponent >= 0x47800000) {
+		// check if the original single precision float number is a NaN
+		if (mantissa && (exponent == (0xFF << 23))) {
+			// we have a single precision NaN
+			mantissa = (1 << 23) - 1;
+		} else {
+			// 16-bit half-float representation stores number as Inf
+			mantissa = 0;
 		}
-		// check if exponent is <= -15
-		else if (exponent <= 0x38000000) {
-			/*
-			// store a denorm half-float value or zero
-			exponent = (0x38000000 - exponent) >> 23;
-			mantissa >>= (14 + exponent);
-
-			hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
-			*/
-			hf = 0; //denormals do not work for 3D, convert to zero
+		hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
+				(uint16_t)(mantissa >> 13);
+	}
+	// check if exponent is <= -15
+	else if (exponent <= 0x38000000) {
+		/*
+		// store a denorm half-float value or zero
+		exponent = (0x38000000 - exponent) >> 23;
+		mantissa >>= (14 + exponent);
+
+		hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
+		*/
+		hf = 0; //denormals do not work for 3D, convert to zero
+	} else {
+		hf = (((uint16_t)sign) << 15) |
+				(uint16_t)((exponent - 0x38000000) >> 13) |
+				(uint16_t)(mantissa >> 13);
+	}
+
+	return hf;
+}
+
+_ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
+	return p_step != 0 ? snapped(p_target - p_offset, p_step) + p_offset : p_target;
+}
+
+_ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
+	if (p_step != 0) {
+		float a = snapped(p_target - p_offset, p_step + p_separation) + p_offset;
+		float b = a;
+		if (p_target >= 0) {
+			b -= p_separation;
 		} else {
-			hf = (((uint16_t)sign) << 15) |
-					(uint16_t)((exponent - 0x38000000) >> 13) |
-					(uint16_t)(mantissa >> 13);
+			b += p_step;
 		}
-
-		return hf;
+		return (abs(p_target - a) < abs(p_target - b)) ? a : b;
 	}
+	return p_target;
+}
 
-	static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
-		return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target;
-	}
-
-	static _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
-		if (p_step != 0) {
-			float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset;
-			float b = a;
-			if (p_target >= 0) {
-				b -= p_separation;
-			} else {
-				b += p_step;
-			}
-			return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
-		}
-		return p_target;
-	}
-};
+}; // namespace Math

+ 3 - 2
editor/export/editor_export_platform.cpp

@@ -38,6 +38,7 @@
 #include "core/io/image_loader.h"
 #include "core/io/resource_uid.h"
 #include "core/io/zip_io.h"
+#include "core/math/random_pcg.h"
 #include "core/version.h"
 #include "editor/editor_file_system.h"
 #include "editor/editor_node.h"
@@ -290,7 +291,7 @@ Error EditorExportPlatform::_save_pack_file(void *p_userdata, const String &p_pa
 				seed = ((seed << 5) + seed) ^ ptr[i];
 			}
 
-			RandomPCG rng = RandomPCG(seed, RandomPCG::DEFAULT_INC);
+			RandomPCG rng = RandomPCG(seed);
 			iv.resize(16);
 			for (int i = 0; i < 16; i++) {
 				iv.write[i] = rng.rand() % 256;
@@ -2022,7 +2023,7 @@ Error EditorExportPlatform::save_pack(const Ref<EditorExportPreset> &p_preset, b
 				seed = ((seed << 5) + seed) ^ pd.file_ofs[i].size;
 			}
 
-			RandomPCG rng = RandomPCG(seed, RandomPCG::DEFAULT_INC);
+			RandomPCG rng = RandomPCG(seed);
 			iv.resize(16);
 			for (int i = 0; i < 16; i++) {
 				iv.write[i] = rng.rand() % 256;

+ 1 - 0
editor/plugins/gizmos/navigation_region_3d_gizmo_plugin.cpp

@@ -30,6 +30,7 @@
 
 #include "navigation_region_3d_gizmo_plugin.h"
 
+#include "core/math/random_pcg.h"
 #include "scene/3d/navigation_region_3d.h"
 #include "servers/navigation_server_3d.h"
 

+ 1 - 0
editor/plugins/tiles/tile_data_editors.cpp

@@ -33,6 +33,7 @@
 #include "tile_set_editor.h"
 
 #include "core/math/geometry_2d.h"
+#include "core/math/random_pcg.h"
 #include "core/os/keyboard.h"
 
 #include "editor/editor_node.h"

+ 1 - 0
editor/plugins/tiles/tile_map_layer_editor.cpp

@@ -44,6 +44,7 @@
 
 #include "core/input/input.h"
 #include "core/math/geometry_2d.h"
+#include "core/math/random_pcg.h"
 #include "core/os/keyboard.h"
 
 TileMapLayer *TileMapLayerSubEditorPlugin::_get_edited_layer() const {

+ 1 - 0
scene/2d/navigation_region_2d.cpp

@@ -30,6 +30,7 @@
 
 #include "navigation_region_2d.h"
 
+#include "core/math/random_pcg.h"
 #include "scene/resources/world_2d.h"
 #include "servers/navigation_server_2d.h"
 

+ 1 - 0
scene/2d/tile_map_layer.cpp

@@ -32,6 +32,7 @@
 
 #include "core/io/marshalls.h"
 #include "core/math/geometry_2d.h"
+#include "core/math/random_pcg.h"
 #include "scene/2d/tile_map.h"
 #include "scene/gui/control.h"
 #include "scene/resources/2d/navigation_mesh_source_geometry_data_2d.h"

+ 1 - 0
scene/3d/navigation_region_3d.cpp

@@ -30,6 +30,7 @@
 
 #include "navigation_region_3d.h"
 
+#include "core/math/random_pcg.h"
 #include "scene/resources/3d/navigation_mesh_source_geometry_data_3d.h"
 #include "servers/navigation_server_3d.h"