|
@@ -51,7 +51,8 @@ real_t Triangulate::get_area(const Vector<Vector2> &contour) {
|
|
|
bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay,
|
|
|
real_t Bx, real_t By,
|
|
|
real_t Cx, real_t Cy,
|
|
|
- real_t Px, real_t Py)
|
|
|
+ real_t Px, real_t Py,
|
|
|
+ bool include_edges)
|
|
|
|
|
|
{
|
|
|
real_t ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
|
@@ -74,10 +75,14 @@ bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay,
|
|
|
cCROSSap = cx * apy - cy * apx;
|
|
|
bCROSScp = bx * cpy - by * cpx;
|
|
|
|
|
|
- return ((aCROSSbp > 0.0) && (bCROSScp > 0.0) && (cCROSSap > 0.0));
|
|
|
+ if (include_edges) {
|
|
|
+ return ((aCROSSbp > 0.0) && (bCROSScp > 0.0) && (cCROSSap > 0.0));
|
|
|
+ } else {
|
|
|
+ return ((aCROSSbp >= 0.0) && (bCROSScp >= 0.0) && (cCROSSap >= 0.0));
|
|
|
+ }
|
|
|
};
|
|
|
|
|
|
-bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V) {
|
|
|
+bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V, bool relaxed) {
|
|
|
int p;
|
|
|
real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
|
|
const Vector2 *contour = &p_contour[0];
|
|
@@ -91,13 +96,20 @@ bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, in
|
|
|
Cx = contour[V[w]].x;
|
|
|
Cy = contour[V[w]].y;
|
|
|
|
|
|
- if (CMP_EPSILON > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax)))) return false;
|
|
|
+ // It can happen that the triangulation ends up with three aligned vertices to deal with.
|
|
|
+ // In this scenario, making the check below strict may reject the possibility of
|
|
|
+ // forming a last triangle with these aligned vertices, preventing the triangulatiom
|
|
|
+ // from completing.
|
|
|
+ // To avoid that we allow zero-area triangles if all else failed.
|
|
|
+ float threshold = relaxed ? -CMP_EPSILON : CMP_EPSILON;
|
|
|
+
|
|
|
+ if (threshold > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax)))) return false;
|
|
|
|
|
|
for (p = 0; p < n; p++) {
|
|
|
if ((p == u) || (p == v) || (p == w)) continue;
|
|
|
Px = contour[V[p]].x;
|
|
|
Py = contour[V[p]].y;
|
|
|
- if (is_inside_triangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py)) return false;
|
|
|
+ if (is_inside_triangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py, relaxed)) return false;
|
|
|
}
|
|
|
|
|
|
return true;
|
|
@@ -121,6 +133,8 @@ bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &resul
|
|
|
for (int v = 0; v < n; v++)
|
|
|
V[v] = (n - 1) - v;
|
|
|
|
|
|
+ bool relaxed = false;
|
|
|
+
|
|
|
int nv = n;
|
|
|
|
|
|
/* remove nv-2 Vertices, creating 1 triangle every time */
|
|
@@ -129,8 +143,20 @@ bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &resul
|
|
|
for (int v = nv - 1; nv > 2;) {
|
|
|
/* if we loop, it is probably a non-simple polygon */
|
|
|
if (0 >= (count--)) {
|
|
|
- //** Triangulate: ERROR - probable bad polygon!
|
|
|
- return false;
|
|
|
+ if (relaxed) {
|
|
|
+ //** Triangulate: ERROR - probable bad polygon!
|
|
|
+ return false;
|
|
|
+ } else {
|
|
|
+ // There may be aligned vertices that the strict
|
|
|
+ // checks prevent from triangulating. In this situation
|
|
|
+ // we are better off adding flat triangles than
|
|
|
+ // failing, so we relax the checks and try one last
|
|
|
+ // round.
|
|
|
+ // Only relaxing the constraints as a last resort avoids
|
|
|
+ // degenerate triangles when they aren't necessary.
|
|
|
+ count = 2 * nv;
|
|
|
+ relaxed = true;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* three consecutive vertices in current polygon, <u,v,w> */
|
|
@@ -141,7 +167,7 @@ bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &resul
|
|
|
int w = v + 1;
|
|
|
if (nv <= w) w = 0; /* next */
|
|
|
|
|
|
- if (snip(contour, u, v, w, nv, V)) {
|
|
|
+ if (snip(contour, u, v, w, nv, V, relaxed)) {
|
|
|
int a, b, c, s, t;
|
|
|
|
|
|
/* true names of the vertices */
|