Преглед на файлове

[Core] Codestyle improvements to math types

A Thousand Ships преди 1 година
родител
ревизия
3fb36bf395
променени са 12 файла, в които са добавени 223 реда и са изтрити 223 реда
  1. 22 22
      core/color.cpp
  2. 8 8
      core/color.h
  3. 15 15
      core/hashfuncs.h
  4. 4 4
      core/math/basis.cpp
  5. 53 53
      core/math/basis.h
  6. 9 9
      core/math/quat.cpp
  7. 41 41
      core/math/quat.h
  8. 1 1
      core/math/rect2.h
  9. 23 23
      core/math/vector2.cpp
  10. 37 37
      core/math/vector2.h
  11. 4 4
      core/math/vector3.cpp
  12. 6 6
      core/math/vector3.h

+ 22 - 22
core/color.cpp

@@ -496,12 +496,12 @@ Color Color::operator*(const Color &p_color) const {
 			a * p_color.a);
 }
 
-Color Color::operator*(const real_t &rvalue) const {
+Color Color::operator*(real_t p_scalar) const {
 	return Color(
-			r * rvalue,
-			g * rvalue,
-			b * rvalue,
-			a * rvalue);
+			r * p_scalar,
+			g * p_scalar,
+			b * p_scalar,
+			a * p_scalar);
 }
 
 void Color::operator*=(const Color &p_color) {
@@ -511,11 +511,11 @@ void Color::operator*=(const Color &p_color) {
 	a = a * p_color.a;
 }
 
-void Color::operator*=(const real_t &rvalue) {
-	r = r * rvalue;
-	g = g * rvalue;
-	b = b * rvalue;
-	a = a * rvalue;
+void Color::operator*=(real_t p_scalar) {
+	r = r * p_scalar;
+	g = g * p_scalar;
+	b = b * p_scalar;
+	a = a * p_scalar;
 }
 
 Color Color::operator/(const Color &p_color) const {
@@ -526,12 +526,12 @@ Color Color::operator/(const Color &p_color) const {
 			a / p_color.a);
 }
 
-Color Color::operator/(const real_t &rvalue) const {
+Color Color::operator/(real_t p_scalar) const {
 	return Color(
-			r / rvalue,
-			g / rvalue,
-			b / rvalue,
-			a / rvalue);
+			r / p_scalar,
+			g / p_scalar,
+			b / p_scalar,
+			a / p_scalar);
 }
 
 void Color::operator/=(const Color &p_color) {
@@ -541,19 +541,19 @@ void Color::operator/=(const Color &p_color) {
 	a = a / p_color.a;
 }
 
-void Color::operator/=(const real_t &rvalue) {
-	if (rvalue == 0) {
+void Color::operator/=(real_t p_scalar) {
+	if (p_scalar == 0) {
 		r = 1.0;
 		g = 1.0;
 		b = 1.0;
 		a = 1.0;
 	} else {
-		r = r / rvalue;
-		g = g / rvalue;
-		b = b / rvalue;
-		a = a / rvalue;
+		r = r / p_scalar;
+		g = g / p_scalar;
+		b = b / p_scalar;
+		a = a / p_scalar;
 	}
-};
+}
 
 Color Color::operator-() const {
 	return Color(

+ 8 - 8
core/color.h

@@ -60,11 +60,11 @@ struct _NO_DISCARD_CLASS_ Color {
 	float get_v() const;
 	void set_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0);
 
-	_FORCE_INLINE_ float &operator[](int idx) {
-		return components[idx];
+	_FORCE_INLINE_ float &operator[](int p_idx) {
+		return components[p_idx];
 	}
-	_FORCE_INLINE_ const float &operator[](int idx) const {
-		return components[idx];
+	_FORCE_INLINE_ const float &operator[](int p_idx) const {
+		return components[p_idx];
 	}
 
 	Color operator+(const Color &p_color) const;
@@ -75,14 +75,14 @@ struct _NO_DISCARD_CLASS_ Color {
 	void operator-=(const Color &p_color);
 
 	Color operator*(const Color &p_color) const;
-	Color operator*(const real_t &rvalue) const;
+	Color operator*(real_t p_scalar) const;
 	void operator*=(const Color &p_color);
-	void operator*=(const real_t &rvalue);
+	void operator*=(real_t p_scalar);
 
 	Color operator/(const Color &p_color) const;
-	Color operator/(const real_t &rvalue) const;
+	Color operator/(real_t p_scalar) const;
 	void operator/=(const Color &p_color);
-	void operator/=(const real_t &rvalue);
+	void operator/=(real_t p_scalar);
 
 	bool is_equal_approx(const Color &p_color) const;
 

+ 15 - 15
core/hashfuncs.h

@@ -73,7 +73,7 @@ static inline uint32_t hash_djb2_one_32(uint32_t p_in, uint32_t p_prev = 5381) {
 	return ((p_prev << 5) + p_prev) + p_in;
 }
 
-static inline uint32_t hash_one_uint64(const uint64_t p_int) {
+static inline uint32_t hash_one_uint64(uint64_t p_int) {
 	uint64_t v = p_int;
 	v = (~v) + (v << 18); // v = (v << 18) - v - 1;
 	v = v ^ (v >> 31);
@@ -132,18 +132,18 @@ static inline uint64_t make_uint64_t(T p_in) {
 struct HashMapHasherDefault {
 	static _FORCE_INLINE_ uint32_t hash(const String &p_string) { return p_string.hash(); }
 	static _FORCE_INLINE_ uint32_t hash(const char *p_cstr) { return hash_djb2(p_cstr); }
-	static _FORCE_INLINE_ uint32_t hash(const uint64_t p_int) { return hash_one_uint64(p_int); }
-
-	static _FORCE_INLINE_ uint32_t hash(const int64_t p_int) { return hash(uint64_t(p_int)); }
-	static _FORCE_INLINE_ uint32_t hash(const float p_float) { return hash_djb2_one_float(p_float); }
-	static _FORCE_INLINE_ uint32_t hash(const double p_double) { return hash_djb2_one_float(p_double); }
-	static _FORCE_INLINE_ uint32_t hash(const uint32_t p_int) { return p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const int32_t p_int) { return (uint32_t)p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const uint16_t p_int) { return p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const int16_t p_int) { return (uint32_t)p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const uint8_t p_int) { return p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const int8_t p_int) { return (uint32_t)p_int; }
-	static _FORCE_INLINE_ uint32_t hash(const wchar_t p_wchar) { return (uint32_t)p_wchar; }
+	static _FORCE_INLINE_ uint32_t hash(uint64_t p_int) { return hash_one_uint64(p_int); }
+
+	static _FORCE_INLINE_ uint32_t hash(int64_t p_int) { return hash(uint64_t(p_int)); }
+	static _FORCE_INLINE_ uint32_t hash(float p_float) { return hash_djb2_one_float(p_float); }
+	static _FORCE_INLINE_ uint32_t hash(double p_double) { return hash_djb2_one_float(p_double); }
+	static _FORCE_INLINE_ uint32_t hash(uint32_t p_int) { return p_int; }
+	static _FORCE_INLINE_ uint32_t hash(int32_t p_int) { return (uint32_t)p_int; }
+	static _FORCE_INLINE_ uint32_t hash(uint16_t p_int) { return p_int; }
+	static _FORCE_INLINE_ uint32_t hash(int16_t p_int) { return (uint32_t)p_int; }
+	static _FORCE_INLINE_ uint32_t hash(uint8_t p_int) { return p_int; }
+	static _FORCE_INLINE_ uint32_t hash(int8_t p_int) { return (uint32_t)p_int; }
+	static _FORCE_INLINE_ uint32_t hash(wchar_t p_wchar) { return (uint32_t)p_wchar; }
 
 	static _FORCE_INLINE_ uint32_t hash(const StringName &p_string_name) { return p_string_name.hash(); }
 	static _FORCE_INLINE_ uint32_t hash(const NodePath &p_path) { return p_path.hash(); }
@@ -157,11 +157,11 @@ struct HashMapComparatorDefault {
 		return p_lhs == p_rhs;
 	}
 
-	bool compare(const float &p_lhs, const float &p_rhs) {
+	bool compare(float p_lhs, float p_rhs) {
 		return (p_lhs == p_rhs) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs));
 	}
 
-	bool compare(const double &p_lhs, const double &p_rhs) {
+	bool compare(double p_lhs, double p_rhs) {
 		return (p_lhs == p_rhs) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs));
 	}
 };

+ 4 - 4
core/math/basis.cpp

@@ -278,7 +278,7 @@ Vector3 Basis::get_scale() const {
 // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
 // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
 // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
-Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
+Vector3 Basis::rotref_posscale_decomposition(Basis &r_rotref) const {
 #ifdef MATH_CHECKS
 	ERR_FAIL_COND_V(determinant() == 0, Vector3());
 
@@ -287,10 +287,10 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
 #endif
 	Vector3 scale = get_scale();
 	Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
-	rotref = (*this) * inv_scale;
+	r_rotref = (*this) * inv_scale;
 
 #ifdef MATH_CHECKS
-	ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
+	ERR_FAIL_COND_V(!r_rotref.is_orthogonal(), Vector3());
 #endif
 	return scale.abs();
 }
@@ -1009,7 +1009,7 @@ void Basis::set_diagonal(const Vector3 &p_diag) {
 	elements[2][2] = p_diag.z;
 }
 
-Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
+Basis Basis::slerp(const Basis &p_to, real_t p_weight) const {
 	//consider scale
 	Quat from(*this);
 	Quat to(p_to);

+ 53 - 53
core/math/basis.h

@@ -42,11 +42,11 @@ public:
 		Vector3(0, 0, 1)
 	};
 
-	_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
-		return elements[axis];
+	_FORCE_INLINE_ const Vector3 &operator[](int p_axis) const {
+		return elements[p_axis];
 	}
-	_FORCE_INLINE_ Vector3 &operator[](int axis) {
-		return elements[axis];
+	_FORCE_INLINE_ Vector3 &operator[](int p_axis) {
+		return elements[p_axis];
 	}
 
 	void invert();
@@ -60,11 +60,11 @@ public:
 	void from_z(const Vector3 &p_z);
 
 	_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
-		// get actual basis axis (elements is transposed for performance)
+		// Get actual basis axis (elements is transposed for performance).
 		return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
 	}
 	_FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
-		// get actual basis axis (elements is transposed for performance)
+		// Get actual basis axis (elements is transposed for performance).
 		elements[0][p_axis] = p_value.x;
 		elements[1][p_axis] = p_value.y;
 		elements[2][p_axis] = p_value.z;
@@ -86,9 +86,9 @@ public:
 	void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
 	void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
 	Quat get_rotation_quat() const;
-	Vector3 get_rotation() const { return get_rotation_euler(); };
+	Vector3 get_rotation() const { return get_rotation_euler(); }
 
-	Vector3 rotref_posscale_decomposition(Basis &rotref) const;
+	Vector3 rotref_posscale_decomposition(Basis &r_rotref) const;
 
 	Vector3 get_euler_xyz() const;
 	void set_euler_xyz(const Vector3 &p_euler);
@@ -132,20 +132,20 @@ public:
 	void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
 
 	// transposed dot products
-	_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
-		return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
+	_FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const {
+		return elements[0][0] * p_v[0] + elements[1][0] * p_v[1] + elements[2][0] * p_v[2];
 	}
-	_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
-		return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
+	_FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const {
+		return elements[0][1] * p_v[0] + elements[1][1] * p_v[1] + elements[2][1] * p_v[2];
 	}
-	_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
-		return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
+	_FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const {
+		return elements[0][2] * p_v[0] + elements[1][2] * p_v[1] + elements[2][2] * p_v[2];
 	}
 
 	bool is_equal_approx(const Basis &p_basis) const;
 	// For complicated reasons, the second argument is always discarded. See #45062.
-	bool is_equal_approx(const Basis &a, const Basis &b) const { return is_equal_approx(a); }
-	bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const;
+	bool is_equal_approx(const Basis &p_a, const Basis &p_b) const { return is_equal_approx(p_a); }
+	bool is_equal_approx_ratio(const Basis &p_a, const Basis &p_b, real_t p_epsilon = UNIT_EPSILON) const;
 
 	bool operator==(const Basis &p_matrix) const;
 	bool operator!=(const Basis &p_matrix) const;
@@ -170,44 +170,44 @@ public:
 	bool is_diagonal() const;
 	bool is_rotation() const;
 
-	Basis slerp(const Basis &p_to, const real_t &p_weight) const;
-	_FORCE_INLINE_ Basis lerp(const Basis &p_to, const real_t &p_weight) const;
+	Basis slerp(const Basis &p_to, real_t p_weight) const;
+	_FORCE_INLINE_ Basis lerp(const Basis &p_to, real_t p_weight) const;
 
 	operator String() const;
 
 	/* create / set */
 
-	_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-		elements[0][0] = xx;
-		elements[0][1] = xy;
-		elements[0][2] = xz;
-		elements[1][0] = yx;
-		elements[1][1] = yy;
-		elements[1][2] = yz;
-		elements[2][0] = zx;
-		elements[2][1] = zy;
-		elements[2][2] = zz;
+	_FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
+		elements[0][0] = p_xx;
+		elements[0][1] = p_xy;
+		elements[0][2] = p_xz;
+		elements[1][0] = p_yx;
+		elements[1][1] = p_yy;
+		elements[1][2] = p_yz;
+		elements[2][0] = p_zx;
+		elements[2][1] = p_zy;
+		elements[2][2] = p_zz;
 	}
 	_FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
 		set_axis(0, p_x);
 		set_axis(1, p_y);
 		set_axis(2, p_z);
 	}
-	_FORCE_INLINE_ Vector3 get_column(int i) const {
-		return Vector3(elements[0][i], elements[1][i], elements[2][i]);
+	_FORCE_INLINE_ Vector3 get_column(int p_i) const {
+		return Vector3(elements[0][p_i], elements[1][p_i], elements[2][p_i]);
 	}
 
-	_FORCE_INLINE_ Vector3 get_row(int i) const {
-		return Vector3(elements[i][0], elements[i][1], elements[i][2]);
+	_FORCE_INLINE_ Vector3 get_row(int p_i) const {
+		return Vector3(elements[p_i][0], elements[p_i][1], elements[p_i][2]);
 	}
 	_FORCE_INLINE_ Vector3 get_main_diagonal() const {
 		return Vector3(elements[0][0], elements[1][1], elements[2][2]);
 	}
 
-	_FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
-		elements[i][0] = p_row.x;
-		elements[i][1] = p_row.y;
-		elements[i][2] = p_row.z;
+	_FORCE_INLINE_ void set_row(int p_i, const Vector3 &p_row) {
+		elements[p_i][0] = p_row.x;
+		elements[p_i][1] = p_row.y;
+		elements[p_i][2] = p_row.z;
 	}
 
 	_FORCE_INLINE_ void set_zero() {
@@ -216,20 +216,20 @@ public:
 		elements[2].zero();
 	}
 
-	_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
+	_FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const {
 		return Basis(
-				elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
-				elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
-				elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
-				elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
-				elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
-				elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
-				elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
-				elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
-				elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
+				elements[0].x * p_m[0].x + elements[1].x * p_m[1].x + elements[2].x * p_m[2].x,
+				elements[0].x * p_m[0].y + elements[1].x * p_m[1].y + elements[2].x * p_m[2].y,
+				elements[0].x * p_m[0].z + elements[1].x * p_m[1].z + elements[2].x * p_m[2].z,
+				elements[0].y * p_m[0].x + elements[1].y * p_m[1].x + elements[2].y * p_m[2].x,
+				elements[0].y * p_m[0].y + elements[1].y * p_m[1].y + elements[2].y * p_m[2].y,
+				elements[0].y * p_m[0].z + elements[1].y * p_m[1].z + elements[2].y * p_m[2].z,
+				elements[0].z * p_m[0].x + elements[1].z * p_m[1].x + elements[2].z * p_m[2].x,
+				elements[0].z * p_m[0].y + elements[1].z * p_m[1].y + elements[2].z * p_m[2].y,
+				elements[0].z * p_m[0].z + elements[1].z * p_m[1].z + elements[2].z * p_m[2].z);
 	}
-	Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
-		set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
+	Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
+		set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz);
 	}
 
 	void orthonormalize();
@@ -263,10 +263,10 @@ public:
 	Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
 	Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
 
-	_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
-		elements[0] = row0;
-		elements[1] = row1;
-		elements[2] = row2;
+	_FORCE_INLINE_ Basis(const Vector3 &p_row0, const Vector3 &p_row1, const Vector3 &p_row2) {
+		elements[0] = p_row0;
+		elements[1] = p_row1;
+		elements[2] = p_row2;
 	}
 
 	_FORCE_INLINE_ Basis() {}
@@ -342,7 +342,7 @@ real_t Basis::determinant() const {
 			elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
 }
 
-Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
+Basis Basis::lerp(const Basis &p_to, real_t p_weight) const {
 	Basis b;
 	b.elements[0] = elements[0].linear_interpolate(p_to.elements[0], p_weight);
 	b.elements[1] = elements[1].linear_interpolate(p_to.elements[1], p_weight);

+ 9 - 9
core/math/quat.cpp

@@ -153,7 +153,7 @@ Quat Quat::inverse() const {
 	return Quat(-x, -y, -z, w);
 }
 
-Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
+Quat Quat::slerp(const Quat &p_to, real_t p_weight) const {
 #ifdef MATH_CHECKS
 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
@@ -200,7 +200,7 @@ Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
 			scale0 * w + scale1 * to1.w);
 }
 
-Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
+Quat Quat::slerpni(const Quat &p_to, real_t p_weight) const {
 #ifdef MATH_CHECKS
 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
@@ -224,7 +224,7 @@ Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
 			invFactor * from.w + newFactor * p_to.w);
 }
 
-Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
+Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, real_t p_weight) const {
 #ifdef MATH_CHECKS
 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
@@ -240,18 +240,18 @@ Quat::operator String() const {
 	return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
 }
 
-void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) {
+void Quat::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
 #ifdef MATH_CHECKS
-	ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized.");
+	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
 #endif
-	real_t d = axis.length();
+	real_t d = p_axis.length();
 	if (d == 0) {
 		set(0, 0, 0, 0);
 	} else {
-		real_t sin_angle = Math::sin(angle * 0.5f);
-		real_t cos_angle = Math::cos(angle * 0.5f);
+		real_t sin_angle = Math::sin(p_angle * 0.5f);
+		real_t cos_angle = Math::cos(p_angle * 0.5f);
 		real_t s = sin_angle / d;
-		set(axis.x * s, axis.y * s, axis.z * s,
+		set(p_axis.x * s, p_axis.y * s, p_axis.z * s,
 				cos_angle);
 	}
 }

+ 41 - 41
core/math/quat.h

@@ -55,14 +55,14 @@ public:
 	void set_euler_yxz(const Vector3 &p_euler);
 	Vector3 get_euler_yxz() const;
 
-	void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); };
-	Vector3 get_euler() const { return get_euler_yxz(); };
+	void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
+	Vector3 get_euler() const { return get_euler_yxz(); }
 
-	Quat slerp(const Quat &p_to, const real_t &p_weight) const;
-	Quat slerpni(const Quat &p_to, const real_t &p_weight) const;
-	Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const;
+	Quat slerp(const Quat &p_to, real_t p_weight) const;
+	Quat slerpni(const Quat &p_to, real_t p_weight) const;
+	Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, real_t p_weight) const;
 
-	void set_axis_angle(const Vector3 &axis, const real_t &angle);
+	void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
 	_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
 		r_angle = 2 * Math::acos(w);
 		real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
@@ -74,31 +74,31 @@ public:
 	void operator*=(const Quat &p_q);
 	Quat operator*(const Quat &p_q) const;
 
-	Quat operator*(const Vector3 &v) const {
-		return Quat(w * v.x + y * v.z - z * v.y,
-				w * v.y + z * v.x - x * v.z,
-				w * v.z + x * v.y - y * v.x,
-				-x * v.x - y * v.y - z * v.z);
+	Quat operator*(const Vector3 &p_v) const {
+		return Quat(w * p_v.x + y * p_v.z - z * p_v.y,
+				w * p_v.y + z * p_v.x - x * p_v.z,
+				w * p_v.z + x * p_v.y - y * p_v.x,
+				-x * p_v.x - y * p_v.y - z * p_v.z);
 	}
 
-	_FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
+	_FORCE_INLINE_ Vector3 xform(const Vector3 &p_v) const {
 #ifdef MATH_CHECKS
-		ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
+		ERR_FAIL_COND_V_MSG(!is_normalized(), p_v, "The quaternion must be normalized.");
 #endif
 		Vector3 u(x, y, z);
-		Vector3 uv = u.cross(v);
-		return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
+		Vector3 uv = u.cross(p_v);
+		return p_v + ((uv * w) + u.cross(uv)) * ((real_t)2);
 	}
 
 	_FORCE_INLINE_ void operator+=(const Quat &p_q);
 	_FORCE_INLINE_ void operator-=(const Quat &p_q);
-	_FORCE_INLINE_ void operator*=(const real_t &s);
-	_FORCE_INLINE_ void operator/=(const real_t &s);
-	_FORCE_INLINE_ Quat operator+(const Quat &q2) const;
-	_FORCE_INLINE_ Quat operator-(const Quat &q2) const;
+	_FORCE_INLINE_ void operator*=(real_t p_s);
+	_FORCE_INLINE_ void operator/=(real_t p_s);
+	_FORCE_INLINE_ Quat operator+(const Quat &p_q2) const;
+	_FORCE_INLINE_ Quat operator-(const Quat &p_q2) const;
 	_FORCE_INLINE_ Quat operator-() const;
-	_FORCE_INLINE_ Quat operator*(const real_t &s) const;
-	_FORCE_INLINE_ Quat operator/(const real_t &s) const;
+	_FORCE_INLINE_ Quat operator*(real_t p_s) const;
+	_FORCE_INLINE_ Quat operator/(real_t p_s) const;
 
 	_FORCE_INLINE_ bool operator==(const Quat &p_quat) const;
 	_FORCE_INLINE_ bool operator!=(const Quat &p_quat) const;
@@ -117,9 +117,9 @@ public:
 			z(p_z),
 			w(p_w) {
 	}
-	Quat(const Vector3 &axis, const real_t &angle) { set_axis_angle(axis, angle); }
+	Quat(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
 
-	Quat(const Vector3 &euler) { set_euler(euler); }
+	Quat(const Vector3 &p_euler) { set_euler(p_euler); }
 	Quat(const Quat &p_q) :
 			x(p_q.x),
 			y(p_q.y),
@@ -135,10 +135,10 @@ public:
 		return *this;
 	}
 
-	Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
+	Quat(const Vector3 &p_v0, const Vector3 &p_v1) // shortest arc
 	{
-		Vector3 c = v0.cross(v1);
-		real_t d = v0.dot(v1);
+		Vector3 c = p_v0.cross(p_v1);
+		real_t d = p_v0.dot(p_v1);
 
 		if (d < -1 + (real_t)CMP_EPSILON) {
 			x = 0;
@@ -186,25 +186,25 @@ void Quat::operator-=(const Quat &p_q) {
 	w -= p_q.w;
 }
 
-void Quat::operator*=(const real_t &s) {
-	x *= s;
-	y *= s;
-	z *= s;
-	w *= s;
+void Quat::operator*=(real_t p_s) {
+	x *= p_s;
+	y *= p_s;
+	z *= p_s;
+	w *= p_s;
 }
 
-void Quat::operator/=(const real_t &s) {
-	*this *= 1 / s;
+void Quat::operator/=(real_t p_s) {
+	*this *= 1 / p_s;
 }
 
-Quat Quat::operator+(const Quat &q2) const {
+Quat Quat::operator+(const Quat &p_q2) const {
 	const Quat &q1 = *this;
-	return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
+	return Quat(q1.x + p_q2.x, q1.y + p_q2.y, q1.z + p_q2.z, q1.w + p_q2.w);
 }
 
-Quat Quat::operator-(const Quat &q2) const {
+Quat Quat::operator-(const Quat &p_q2) const {
 	const Quat &q1 = *this;
-	return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
+	return Quat(q1.x - p_q2.x, q1.y - p_q2.y, q1.z - p_q2.z, q1.w - p_q2.w);
 }
 
 Quat Quat::operator-() const {
@@ -212,12 +212,12 @@ Quat Quat::operator-() const {
 	return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
 }
 
-Quat Quat::operator*(const real_t &s) const {
-	return Quat(x * s, y * s, z * s, w * s);
+Quat Quat::operator*(real_t p_s) const {
+	return Quat(x * p_s, y * p_s, z * p_s, w * p_s);
 }
 
-Quat Quat::operator/(const real_t &s) const {
-	return *this * (1 / s);
+Quat Quat::operator/(real_t p_s) const {
+	return *this * (1 / p_s);
 }
 
 bool Quat::operator==(const Quat &p_quat) const {

+ 1 - 1
core/math/rect2.h

@@ -48,7 +48,7 @@ struct _NO_DISCARD_CLASS_ Rect2 {
 
 	_FORCE_INLINE_ Vector2 get_center() const { return position + (size * 0.5f); }
 
-	inline bool intersects(const Rect2 &p_rect, const bool p_include_borders = false) const {
+	inline bool intersects(const Rect2 &p_rect, bool p_include_borders = false) const {
 		if (p_include_borders) {
 			if (position.x > (p_rect.position.x + p_rect.size.width)) {
 				return false;

+ 23 - 23
core/math/vector2.cpp

@@ -109,7 +109,7 @@ Vector2 Vector2::rotated(real_t p_by) const {
 	return v;
 }
 
-Vector2 Vector2::posmod(const real_t p_mod) const {
+Vector2 Vector2::posmod(real_t p_mod) const {
 	return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
 }
 
@@ -139,7 +139,7 @@ Vector2 Vector2::clamped(real_t p_len) const {
 	return v;
 }
 
-Vector2 Vector2::limit_length(const real_t p_len) const {
+Vector2 Vector2::limit_length(real_t p_len) const {
 	const real_t l = length();
 	Vector2 v = *this;
 	if (l > 0 && p_len < l) {
@@ -169,7 +169,7 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
 	return out;
 }
 
-Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
+Vector2 Vector2::move_toward(const Vector2 &p_to, real_t p_delta) const {
 	Vector2 v = *this;
 	Vector2 vd = p_to - v;
 	real_t len = vd.length();
@@ -216,30 +216,30 @@ void Vector2i::operator-=(const Vector2i &p_v) {
 	y -= p_v.y;
 }
 
-Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
-	return Vector2i(x * p_v1.x, y * p_v1.y);
-};
+Vector2i Vector2i::operator*(const Vector2i &p_v) const {
+	return Vector2i(x * p_v.x, y * p_v.y);
+}
 
-Vector2i Vector2i::operator*(const int &rvalue) const {
-	return Vector2i(x * rvalue, y * rvalue);
-};
-void Vector2i::operator*=(const int &rvalue) {
-	x *= rvalue;
-	y *= rvalue;
-};
+Vector2i Vector2i::operator*(int p_scalar) const {
+	return Vector2i(x * p_scalar, y * p_scalar);
+}
+void Vector2i::operator*=(int p_scalar) {
+	x *= p_scalar;
+	y *= p_scalar;
+}
 
-Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
-	return Vector2i(x / p_v1.x, y / p_v1.y);
-};
+Vector2i Vector2i::operator/(const Vector2i &p_v) const {
+	return Vector2i(x / p_v.x, y / p_v.y);
+}
 
-Vector2i Vector2i::operator/(const int &rvalue) const {
-	return Vector2i(x / rvalue, y / rvalue);
-};
+Vector2i Vector2i::operator/(int p_scalar) const {
+	return Vector2i(x / p_scalar, y / p_scalar);
+}
 
-void Vector2i::operator/=(const int &rvalue) {
-	x /= rvalue;
-	y /= rvalue;
-};
+void Vector2i::operator/=(int p_scalar) {
+	x /= p_scalar;
+	y /= p_scalar;
+}
 
 Vector2i Vector2i::operator-() const {
 	return Vector2i(-x, -y);

+ 37 - 37
core/math/vector2.h

@@ -95,20 +95,20 @@ struct _NO_DISCARD_CLASS_ Vector2 {
 
 	real_t dot(const Vector2 &p_other) const;
 	real_t cross(const Vector2 &p_other) const;
-	Vector2 posmod(const real_t p_mod) const;
+	Vector2 posmod(real_t p_mod) const;
 	Vector2 posmodv(const Vector2 &p_modv) const;
 	Vector2 project(const Vector2 &p_to) const;
 
 	Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
 
 	Vector2 clamped(real_t p_len) const;
-	Vector2 limit_length(const real_t p_len = 1.0) const;
+	Vector2 limit_length(real_t p_len = 1.0) const;
 
 	_FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_weight);
 	_FORCE_INLINE_ Vector2 linear_interpolate(const Vector2 &p_to, real_t p_weight) const;
 	_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
 	Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
-	Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
+	Vector2 move_toward(const Vector2 &p_to, real_t p_delta) const;
 
 	Vector2 slide(const Vector2 &p_normal) const;
 	Vector2 bounce(const Vector2 &p_normal) const;
@@ -120,18 +120,18 @@ struct _NO_DISCARD_CLASS_ Vector2 {
 	void operator+=(const Vector2 &p_v);
 	Vector2 operator-(const Vector2 &p_v) const;
 	void operator-=(const Vector2 &p_v);
-	Vector2 operator*(const Vector2 &p_v1) const;
+	Vector2 operator*(const Vector2 &p_v) const;
 
-	Vector2 operator*(const real_t &rvalue) const;
-	void operator*=(const real_t &rvalue);
-	void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
+	Vector2 operator*(real_t p_scalar) const;
+	void operator*=(real_t p_scalar);
+	void operator*=(const Vector2 &p_v) { *this = *this * p_v; }
 
-	Vector2 operator/(const Vector2 &p_v1) const;
+	Vector2 operator/(const Vector2 &p_v) const;
 
-	Vector2 operator/(const real_t &rvalue) const;
+	Vector2 operator/(real_t p_scalar) const;
 
-	void operator/=(const real_t &rvalue);
-	void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; }
+	void operator/=(real_t p_scalar);
+	void operator/=(const Vector2 &p_v) { *this = *this / p_v; }
 
 	Vector2 operator-() const;
 
@@ -198,30 +198,30 @@ _FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
 	y -= p_v.y;
 }
 
-_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
-	return Vector2(x * p_v1.x, y * p_v1.y);
-};
+_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v) const {
+	return Vector2(x * p_v.x, y * p_v.y);
+}
 
-_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
-	return Vector2(x * rvalue, y * rvalue);
-};
-_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
-	x *= rvalue;
-	y *= rvalue;
-};
+_FORCE_INLINE_ Vector2 Vector2::operator*(real_t p_scalar) const {
+	return Vector2(x * p_scalar, y * p_scalar);
+}
+_FORCE_INLINE_ void Vector2::operator*=(real_t p_scalar) {
+	x *= p_scalar;
+	y *= p_scalar;
+}
 
-_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
-	return Vector2(x / p_v1.x, y / p_v1.y);
-};
+_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v) const {
+	return Vector2(x / p_v.x, y / p_v.y);
+}
 
-_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
-	return Vector2(x / rvalue, y / rvalue);
-};
+_FORCE_INLINE_ Vector2 Vector2::operator/(real_t p_scalar) const {
+	return Vector2(x / p_scalar, y / p_scalar);
+}
 
-_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
-	x /= rvalue;
-	y /= rvalue;
-};
+_FORCE_INLINE_ void Vector2::operator/=(real_t p_scalar) {
+	x /= p_scalar;
+	y /= p_scalar;
+}
 
 _FORCE_INLINE_ Vector2 Vector2::operator-() const {
 	return Vector2(-x, -y);
@@ -305,16 +305,16 @@ struct _NO_DISCARD_CLASS_ Vector2i {
 	void operator+=(const Vector2i &p_v);
 	Vector2i operator-(const Vector2i &p_v) const;
 	void operator-=(const Vector2i &p_v);
-	Vector2i operator*(const Vector2i &p_v1) const;
+	Vector2i operator*(const Vector2i &p_v) const;
 
-	Vector2i operator*(const int &rvalue) const;
-	void operator*=(const int &rvalue);
+	Vector2i operator*(int p_scalar) const;
+	void operator*=(int p_scalar);
 
-	Vector2i operator/(const Vector2i &p_v1) const;
+	Vector2i operator/(const Vector2i &p_v) const;
 
-	Vector2i operator/(const int &rvalue) const;
+	Vector2i operator/(int p_scalar) const;
 
-	void operator/=(const int &rvalue);
+	void operator/=(int p_scalar);
 
 	Vector2i operator-() const;
 	bool operator<(const Vector2i &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }

+ 4 - 4
core/math/vector3.cpp

@@ -51,18 +51,18 @@ real_t Vector3::get_axis(int p_axis) const {
 	return operator[](p_axis);
 }
 
-void Vector3::snap(Vector3 p_val) {
+void Vector3::snap(const Vector3 &p_val) {
 	x = Math::stepify(x, p_val.x);
 	y = Math::stepify(y, p_val.y);
 	z = Math::stepify(z, p_val.z);
 }
-Vector3 Vector3::snapped(Vector3 p_val) const {
+Vector3 Vector3::snapped(const Vector3 &p_val) const {
 	Vector3 v = *this;
 	v.snap(p_val);
 	return v;
 }
 
-Vector3 Vector3::limit_length(const real_t p_len) const {
+Vector3 Vector3::limit_length(real_t p_len) const {
 	const real_t l = length();
 	Vector3 v = *this;
 	if (l > 0 && p_len < l) {
@@ -126,7 +126,7 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c
 	return out;
 }
 
-Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
+Vector3 Vector3::move_toward(const Vector3 &p_to, real_t p_delta) const {
 	Vector3 v = *this;
 	Vector3 vd = p_to - v;
 	real_t len = vd.length();

+ 6 - 6
core/math/vector3.h

@@ -87,12 +87,12 @@ struct _NO_DISCARD_CLASS_ Vector3 {
 	_FORCE_INLINE_ Vector3 normalized() const;
 	_FORCE_INLINE_ bool is_normalized() const;
 	_FORCE_INLINE_ Vector3 inverse() const;
-	Vector3 limit_length(const real_t p_len = 1.0) const;
+	Vector3 limit_length(real_t p_len = 1.0) const;
 
 	_FORCE_INLINE_ void zero();
 
-	void snap(Vector3 p_val);
-	Vector3 snapped(Vector3 p_val) const;
+	void snap(const Vector3 &p_val);
+	Vector3 snapped(const Vector3 &p_val) const;
 
 	void rotate(const Vector3 &p_axis, real_t p_angle);
 	Vector3 rotated(const Vector3 &p_axis, real_t p_angle) const;
@@ -103,7 +103,7 @@ struct _NO_DISCARD_CLASS_ Vector3 {
 	_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
 	Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
 	Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
-	Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
+	Vector3 move_toward(const Vector3 &p_to, real_t p_delta) const;
 
 	_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
 	_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;
@@ -119,7 +119,7 @@ struct _NO_DISCARD_CLASS_ Vector3 {
 	_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
 	_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
 
-	_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
+	_FORCE_INLINE_ Vector3 posmod(real_t p_mod) const;
 	_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
 	_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
 
@@ -222,7 +222,7 @@ real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
 	return (p_to - *this).length_squared();
 }
 
-Vector3 Vector3::posmod(const real_t p_mod) const {
+Vector3 Vector3::posmod(real_t p_mod) const {
 	return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
 }