|
@@ -73,10 +73,6 @@ void btHeightfieldTerrainShape::initialize(
|
|
m_useZigzagSubdivision = false;
|
|
m_useZigzagSubdivision = false;
|
|
m_upAxis = upAxis;
|
|
m_upAxis = upAxis;
|
|
m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
|
|
m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
|
|
- m_vboundsGrid = NULL;
|
|
|
|
- m_vboundsChunkSize = 0;
|
|
|
|
- m_vboundsGridWidth = 0;
|
|
|
|
- m_vboundsGridLength = 0;
|
|
|
|
|
|
|
|
// determine min/max axis-aligned bounding box (aabb) values
|
|
// determine min/max axis-aligned bounding box (aabb) values
|
|
switch (m_upAxis)
|
|
switch (m_upAxis)
|
|
@@ -112,7 +108,6 @@ void btHeightfieldTerrainShape::initialize(
|
|
|
|
|
|
btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
|
|
btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
|
|
{
|
|
{
|
|
- clearAccelerator();
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
|
|
void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
|
|
@@ -328,8 +323,6 @@ void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
- // TODO If m_vboundsGrid is available, use it to determine if we really need to process this area
|
|
|
|
-
|
|
|
|
for (int j = startJ; j < endJ; j++)
|
|
for (int j = startJ; j < endJ; j++)
|
|
{
|
|
{
|
|
for (int x = startX; x < endX; x++)
|
|
for (int x = startX; x < endX; x++)
|
|
@@ -380,416 +373,3 @@ const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
|
|
{
|
|
{
|
|
return m_localScaling;
|
|
return m_localScaling;
|
|
}
|
|
}
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-struct GridRaycastState
|
|
|
|
-{
|
|
|
|
- int x; // Next quad coords
|
|
|
|
- int z;
|
|
|
|
- int prev_x; // Previous quad coords
|
|
|
|
- int prev_z;
|
|
|
|
- btScalar param; // Exit param for previous quad
|
|
|
|
- btScalar prevParam; // Enter param for previous quad
|
|
|
|
- btScalar maxDistanceFlat;
|
|
|
|
- btScalar maxDistance3d;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-// TODO Does it really need to take 3D vectors?
|
|
|
|
-/// Iterates through a virtual 2D grid of unit-sized square cells,
|
|
|
|
-/// and executes an action on each cell intersecting the given segment, ordered from begin to end.
|
|
|
|
-/// Initially inspired by http://www.cse.yorku.ca/~amana/research/grid.pdf
|
|
|
|
-template <typename Action_T>
|
|
|
|
-void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector3 &endPos)
|
|
|
|
-{
|
|
|
|
- GridRaycastState rs;
|
|
|
|
- rs.maxDistance3d = beginPos.distance(endPos);
|
|
|
|
- if (rs.maxDistance3d < 0.0001)
|
|
|
|
- // Consider the ray is too small to hit anything
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- btScalar rayDirectionFlatX = endPos[0] - beginPos[0];
|
|
|
|
- btScalar rayDirectionFlatZ = endPos[2] - beginPos[2];
|
|
|
|
- rs.maxDistanceFlat = btSqrt(rayDirectionFlatX * rayDirectionFlatX + rayDirectionFlatZ * rayDirectionFlatZ);
|
|
|
|
-
|
|
|
|
- if(rs.maxDistanceFlat < 0.0001)
|
|
|
|
- {
|
|
|
|
- // Consider the ray vertical
|
|
|
|
- rayDirectionFlatX = 0;
|
|
|
|
- rayDirectionFlatZ = 0;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- rayDirectionFlatX /= rs.maxDistanceFlat;
|
|
|
|
- rayDirectionFlatZ /= rs.maxDistanceFlat;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- const int xiStep = rayDirectionFlatX > 0 ? 1 : rayDirectionFlatX < 0 ? -1 : 0;
|
|
|
|
- const int ziStep = rayDirectionFlatZ > 0 ? 1 : rayDirectionFlatZ < 0 ? -1 : 0;
|
|
|
|
-
|
|
|
|
- const float infinite = 9999999;
|
|
|
|
- const btScalar paramDeltaX = xiStep != 0 ? 1.f / btFabs(rayDirectionFlatX) : infinite;
|
|
|
|
- const btScalar paramDeltaZ = ziStep != 0 ? 1.f / btFabs(rayDirectionFlatZ) : infinite;
|
|
|
|
-
|
|
|
|
- // pos = param * dir
|
|
|
|
- btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane?
|
|
|
|
- btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane?
|
|
|
|
-
|
|
|
|
- // paramCrossX and paramCrossZ are initialized as being the first cross
|
|
|
|
- // X initialization
|
|
|
|
- if (xiStep != 0)
|
|
|
|
- {
|
|
|
|
- if (xiStep == 1)
|
|
|
|
- paramCrossX = (ceil(beginPos[0]) - beginPos[0]) * paramDeltaX;
|
|
|
|
- else
|
|
|
|
- paramCrossX = (beginPos[0] - floor(beginPos[0])) * paramDeltaX;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- paramCrossX = infinite; // Will never cross on X
|
|
|
|
-
|
|
|
|
- // Z initialization
|
|
|
|
- if (ziStep != 0)
|
|
|
|
- {
|
|
|
|
- if (ziStep == 1)
|
|
|
|
- paramCrossZ = (ceil(beginPos[2]) - beginPos[2]) * paramDeltaZ;
|
|
|
|
- else
|
|
|
|
- paramCrossZ = (beginPos[2] - floor(beginPos[2])) * paramDeltaZ;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- paramCrossZ = infinite; // Will never cross on Z
|
|
|
|
-
|
|
|
|
- rs.x = static_cast<int>(floor(beginPos[0]));
|
|
|
|
- rs.z = static_cast<int>(floor(beginPos[2]));
|
|
|
|
-
|
|
|
|
- // Workaround cases where the ray starts at an integer position
|
|
|
|
- if (paramCrossX == 0.0)
|
|
|
|
- {
|
|
|
|
- paramCrossX += paramDeltaX;
|
|
|
|
- // If going backwards, we should ignore the position we would get by the above flooring,
|
|
|
|
- // because the ray is not heading in that direction
|
|
|
|
- if (xiStep == -1)
|
|
|
|
- rs.x -= 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (paramCrossZ == 0.0)
|
|
|
|
- {
|
|
|
|
- paramCrossZ += paramDeltaZ;
|
|
|
|
- if (ziStep == -1)
|
|
|
|
- rs.z -= 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- rs.prev_x = rs.x;
|
|
|
|
- rs.prev_z = rs.z;
|
|
|
|
- rs.param = 0;
|
|
|
|
-
|
|
|
|
- while (true)
|
|
|
|
- {
|
|
|
|
- rs.prev_x = rs.x;
|
|
|
|
- rs.prev_z = rs.z;
|
|
|
|
- rs.prevParam = rs.param;
|
|
|
|
-
|
|
|
|
- if (paramCrossX < paramCrossZ)
|
|
|
|
- {
|
|
|
|
- // X lane
|
|
|
|
- rs.x += xiStep;
|
|
|
|
- // Assign before advancing the param,
|
|
|
|
- // to be in sync with the initialization step
|
|
|
|
- rs.param = paramCrossX;
|
|
|
|
- paramCrossX += paramDeltaX;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- // Z lane
|
|
|
|
- rs.z += ziStep;
|
|
|
|
- rs.param = paramCrossZ;
|
|
|
|
- paramCrossZ += paramDeltaZ;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (rs.param > rs.maxDistanceFlat)
|
|
|
|
- {
|
|
|
|
- rs.param = rs.maxDistanceFlat;
|
|
|
|
- quadAction(rs);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- quadAction(rs);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-struct ProcessTrianglesAction
|
|
|
|
-{
|
|
|
|
- const btHeightfieldTerrainShape *shape;
|
|
|
|
- bool flipQuadEdges;
|
|
|
|
- bool useDiamondSubdivision;
|
|
|
|
- int width;
|
|
|
|
- int length;
|
|
|
|
- btTriangleCallback* callback;
|
|
|
|
-
|
|
|
|
- void exec(int x, int z) const
|
|
|
|
- {
|
|
|
|
- if(x < 0 || z < 0 || x >= width || z >= length)
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- btVector3 vertices[3];
|
|
|
|
-
|
|
|
|
- // Check quad
|
|
|
|
- if (flipQuadEdges || (useDiamondSubdivision && (((z + x) & 1) > 0)))
|
|
|
|
- {
|
|
|
|
- // First triangle
|
|
|
|
- shape->getVertex(x, z, vertices[0]);
|
|
|
|
- shape->getVertex(x + 1, z, vertices[1]);
|
|
|
|
- shape->getVertex(x + 1, z + 1, vertices[2]);
|
|
|
|
- callback->processTriangle(vertices, x, z);
|
|
|
|
-
|
|
|
|
- // Second triangle
|
|
|
|
- shape->getVertex(x, z, vertices[0]);
|
|
|
|
- shape->getVertex(x + 1, z + 1, vertices[1]);
|
|
|
|
- shape->getVertex(x, z + 1, vertices[2]);
|
|
|
|
- callback->processTriangle(vertices, x, z);
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- // First triangle
|
|
|
|
- shape->getVertex(x, z, vertices[0]);
|
|
|
|
- shape->getVertex(x, z + 1, vertices[1]);
|
|
|
|
- shape->getVertex(x + 1, z, vertices[2]);
|
|
|
|
- callback->processTriangle(vertices, x, z);
|
|
|
|
-
|
|
|
|
- // Second triangle
|
|
|
|
- shape->getVertex(x + 1, z, vertices[0]);
|
|
|
|
- shape->getVertex(x, z + 1, vertices[1]);
|
|
|
|
- shape->getVertex(x + 1, z + 1, vertices[2]);
|
|
|
|
- callback->processTriangle(vertices, x, z);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- void operator ()(const GridRaycastState &bs) const
|
|
|
|
- {
|
|
|
|
- exec(bs.prev_x, bs.prev_z);
|
|
|
|
- }
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-struct ProcessVBoundsAction
|
|
|
|
-{
|
|
|
|
- const btHeightfieldTerrainShape::Range *vbounds;
|
|
|
|
- int width;
|
|
|
|
- int length;
|
|
|
|
- int chunkSize;
|
|
|
|
-
|
|
|
|
- btVector3 rayBegin;
|
|
|
|
- btVector3 rayEnd;
|
|
|
|
- btVector3 rayDir;
|
|
|
|
-
|
|
|
|
- ProcessTrianglesAction processTriangles;
|
|
|
|
-
|
|
|
|
- void operator ()(const GridRaycastState &rs) const
|
|
|
|
- {
|
|
|
|
- int x = rs.prev_x;
|
|
|
|
- int z = rs.prev_z;
|
|
|
|
-
|
|
|
|
- if(x < 0 || z < 0 || x >= width || z >= length)
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- const btHeightfieldTerrainShape::Range chunk = vbounds[x + z * width];
|
|
|
|
-
|
|
|
|
- btVector3 enterPos;
|
|
|
|
- btVector3 exitPos;
|
|
|
|
-
|
|
|
|
- if (rs.maxDistanceFlat > 0.0001)
|
|
|
|
- {
|
|
|
|
- btScalar flatTo3d = chunkSize * rs.maxDistance3d / rs.maxDistanceFlat;
|
|
|
|
- btScalar enterParam3d = rs.prevParam * flatTo3d;
|
|
|
|
- btScalar exitParam3d = rs.param * flatTo3d;
|
|
|
|
- enterPos = rayBegin + rayDir * enterParam3d;
|
|
|
|
- exitPos = rayBegin + rayDir * exitParam3d;
|
|
|
|
-
|
|
|
|
- // We did enter the flat projection of the AABB,
|
|
|
|
- // but we have to check if we intersect it on the vertical axis
|
|
|
|
- if (enterPos[1] > chunk.max && exitPos[1] > chunk.max)
|
|
|
|
- return;
|
|
|
|
- if (enterPos[1] < chunk.min && exitPos[1] < chunk.min)
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- // Consider the ray vertical
|
|
|
|
- // (though we shouldn't reach this often because there is an early check up-front)
|
|
|
|
- enterPos = rayBegin;
|
|
|
|
- exitPos = rayEnd;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- gridRaycast(processTriangles, enterPos, exitPos);
|
|
|
|
- // Note: it could be possible to have more than one grid at different levels,
|
|
|
|
- // to do this there would be a branch using a pointer to another ProcessVBoundsAction
|
|
|
|
- }
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-// TODO How do I interrupt the ray when there is a hit? `callback` does not return any result
|
|
|
|
-/// Performs a raycast using a hierarchical Bresenham algorithm.
|
|
|
|
-/// Does not allocate any memory by itself.
|
|
|
|
-void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) const
|
|
|
|
-{
|
|
|
|
- // Transform to cell-local
|
|
|
|
- btVector3 beginPos = raySource / m_localScaling;
|
|
|
|
- btVector3 endPos = rayTarget / m_localScaling;
|
|
|
|
- beginPos += m_localOrigin;
|
|
|
|
- endPos += m_localOrigin;
|
|
|
|
-
|
|
|
|
- ProcessTrianglesAction processTriangles;
|
|
|
|
- processTriangles.shape = this;
|
|
|
|
- processTriangles.flipQuadEdges = m_flipQuadEdges;
|
|
|
|
- processTriangles.useDiamondSubdivision = m_useDiamondSubdivision;
|
|
|
|
- processTriangles.callback = callback;
|
|
|
|
- processTriangles.width = m_heightStickWidth - 1;
|
|
|
|
- processTriangles.length = m_heightStickLength - 1;
|
|
|
|
-
|
|
|
|
- // TODO Transform vectors to account for m_upAxis
|
|
|
|
- int iBeginX = static_cast<int>(floor(beginPos[0]));
|
|
|
|
- int iBeginZ = static_cast<int>(floor(beginPos[2]));
|
|
|
|
- int iEndX = static_cast<int>(floor(endPos[0]));
|
|
|
|
- int iEndZ = static_cast<int>(floor(endPos[2]));
|
|
|
|
-
|
|
|
|
- if (iBeginX == iEndX && iBeginZ == iEndZ)
|
|
|
|
- {
|
|
|
|
- // The ray will never cross quads within the plane,
|
|
|
|
- // so directly process triangles within one quad
|
|
|
|
- // (typically, vertical rays should end up here)
|
|
|
|
- processTriangles.exec(iBeginX, iEndZ);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (m_vboundsGrid == NULL)
|
|
|
|
- {
|
|
|
|
- // Process all quads intersecting the flat projection of the ray
|
|
|
|
- gridRaycast(processTriangles, beginPos, endPos);
|
|
|
|
- }
|
|
|
|
- else
|
|
|
|
- {
|
|
|
|
- btVector3 rayDiff = endPos - beginPos;
|
|
|
|
- btScalar flatDistance2 = rayDiff[0] * rayDiff[0] + rayDiff[2] * rayDiff[2];
|
|
|
|
- if (flatDistance2 < m_vboundsChunkSize * m_vboundsChunkSize)
|
|
|
|
- {
|
|
|
|
- // Don't use chunks, the ray is too short in the plane
|
|
|
|
- gridRaycast(processTriangles, beginPos, endPos);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ProcessVBoundsAction processVBounds;
|
|
|
|
- processVBounds.width = m_vboundsGridWidth;
|
|
|
|
- processVBounds.length = m_vboundsGridLength;
|
|
|
|
- processVBounds.vbounds = m_vboundsGrid;
|
|
|
|
- processVBounds.rayBegin = beginPos;
|
|
|
|
- processVBounds.rayEnd = endPos;
|
|
|
|
- processVBounds.rayDir = rayDiff.normalized();
|
|
|
|
- processVBounds.processTriangles = processTriangles;
|
|
|
|
- processVBounds.chunkSize = m_vboundsChunkSize;
|
|
|
|
- // The ray is long, run raycast on a higher-level grid
|
|
|
|
- gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-/// Builds a grid data structure storing the min and max heights of the terrain in chunks.
|
|
|
|
-/// if chunkSize is zero, that accelerator is removed.
|
|
|
|
-/// If you modify the heights, you need to rebuild this accelerator.
|
|
|
|
-void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
|
|
|
|
-{
|
|
|
|
- if (chunkSize <= 0)
|
|
|
|
- {
|
|
|
|
- clearAccelerator();
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- m_vboundsChunkSize = chunkSize;
|
|
|
|
- int nChunksX = m_heightStickWidth / chunkSize;
|
|
|
|
- int nChunksZ = m_heightStickLength / chunkSize;
|
|
|
|
-
|
|
|
|
- if (m_heightStickWidth % chunkSize > 0)
|
|
|
|
- ++nChunksX; // In case terrain size isn't dividable by chunk size
|
|
|
|
- if (m_heightStickLength % chunkSize > 0)
|
|
|
|
- ++nChunksZ;
|
|
|
|
-
|
|
|
|
- if(m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ)
|
|
|
|
- {
|
|
|
|
- clearAccelerator();
|
|
|
|
- m_vboundsGridWidth = nChunksX;
|
|
|
|
- m_vboundsGridLength = nChunksZ;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (nChunksX == 0 || nChunksZ == 0)
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- // TODO What is the recommended way to allocate this?
|
|
|
|
- // This data structure is only reallocated if the required size changed
|
|
|
|
- if (m_vboundsGrid == NULL)
|
|
|
|
- m_vboundsGrid = new Range[nChunksX * nChunksZ];
|
|
|
|
-
|
|
|
|
- // Compute min and max height for all chunks
|
|
|
|
- for (int cz = 0; cz < nChunksZ; ++cz)
|
|
|
|
- {
|
|
|
|
- int z0 = cz * chunkSize;
|
|
|
|
-
|
|
|
|
- for (int cx = 0; cx < nChunksX; ++cx)
|
|
|
|
- {
|
|
|
|
- int x0 = cx * chunkSize;
|
|
|
|
-
|
|
|
|
- Range r;
|
|
|
|
-
|
|
|
|
- r.min = getRawHeightFieldValue(x0, z0);
|
|
|
|
- r.max = r.min;
|
|
|
|
-
|
|
|
|
- // Compute min and max height for this chunk.
|
|
|
|
- // We have to include one extra cell to account for neighbors.
|
|
|
|
- // Here is why:
|
|
|
|
- // Say we have a flat terrain, and a plateau that fits a chunk perfectly.
|
|
|
|
- //
|
|
|
|
- // Left Right
|
|
|
|
- // 0---0---0---1---1---1
|
|
|
|
- // | | | | | |
|
|
|
|
- // 0---0---0---1---1---1
|
|
|
|
- // | | | | | |
|
|
|
|
- // 0---0---0---1---1---1
|
|
|
|
- // x
|
|
|
|
- //
|
|
|
|
- // If the AABB for the Left chunk did not share vertices with the Right,
|
|
|
|
- // then we would fail collision tests at x due to a gap.
|
|
|
|
- //
|
|
|
|
- for (int z = z0; z < z0 + chunkSize + 1; ++z)
|
|
|
|
- {
|
|
|
|
- if (z >= m_heightStickLength)
|
|
|
|
- continue;
|
|
|
|
-
|
|
|
|
- for (int x = x0; x < x0 + chunkSize + 1; ++x)
|
|
|
|
- {
|
|
|
|
- if (x >= m_heightStickWidth)
|
|
|
|
- continue;
|
|
|
|
-
|
|
|
|
- btScalar height = getRawHeightFieldValue(x, z);
|
|
|
|
-
|
|
|
|
- if (height < r.min)
|
|
|
|
- r.min = height;
|
|
|
|
- else if (height > r.max)
|
|
|
|
- r.max = height;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- m_vboundsGrid[cx + cz * nChunksX] = r;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btHeightfieldTerrainShape::clearAccelerator()
|
|
|
|
-{
|
|
|
|
- if (m_vboundsGrid)
|
|
|
|
- {
|
|
|
|
- // TODO What is the recommended way to deallocate this?
|
|
|
|
- delete[] m_vboundsGrid;
|
|
|
|
- m_vboundsGrid = 0;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|