|
@@ -4001,316 +4001,208 @@ void Animation::clear() {
|
|
|
emit_signal(SceneStringNames::get_singleton()->tracks_changed);
|
|
|
}
|
|
|
|
|
|
-bool Animation::_position_track_optimize_key(const TKey<Vector3> &t0, const TKey<Vector3> &t1, const TKey<Vector3> &t2, real_t p_allowed_linear_err, real_t p_allowed_angular_error, const Vector3 &p_norm) {
|
|
|
- const Vector3 &v0 = t0.value;
|
|
|
- const Vector3 &v1 = t1.value;
|
|
|
- const Vector3 &v2 = t2.value;
|
|
|
-
|
|
|
- if (v0.is_equal_approx(v2)) {
|
|
|
- //0 and 2 are close, let's see if 1 is close
|
|
|
- if (!v0.is_equal_approx(v1)) {
|
|
|
- //not close, not optimizable
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
- Vector3 pd = (v2 - v0);
|
|
|
- real_t d0 = pd.dot(v0);
|
|
|
- real_t d1 = pd.dot(v1);
|
|
|
- real_t d2 = pd.dot(v2);
|
|
|
- if (d1 < d0 || d1 > d2) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- Vector3 s[2] = { v0, v2 };
|
|
|
- real_t d = Geometry3D::get_closest_point_to_segment(v1, s).distance_to(v1);
|
|
|
-
|
|
|
- if (d > pd.length() * p_allowed_linear_err) {
|
|
|
- return false; //beyond allowed error for collinearity
|
|
|
- }
|
|
|
-
|
|
|
- if (p_norm != Vector3() && Math::acos(pd.normalized().dot(p_norm)) > p_allowed_angular_error) {
|
|
|
- return false;
|
|
|
- }
|
|
|
+bool Animation::_vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<Vector3> t1, const TKey<Vector3> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) {
|
|
|
+ // Remove overlapping keys.
|
|
|
+ if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
|
|
|
+ return true;
|
|
|
}
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-bool Animation::_rotation_track_optimize_key(const TKey<Quaternion> &t0, const TKey<Quaternion> &t1, const TKey<Quaternion> &t2, real_t p_allowed_angular_error, float p_max_optimizable_angle) {
|
|
|
- const Quaternion &q0 = t0.value;
|
|
|
- const Quaternion &q1 = t1.value;
|
|
|
- const Quaternion &q2 = t2.value;
|
|
|
-
|
|
|
- //localize both to rotation from q0
|
|
|
-
|
|
|
- if (q0.is_equal_approx(q2)) {
|
|
|
- if (!q0.is_equal_approx(q1)) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
- Quaternion r02 = (q0.inverse() * q2).normalized();
|
|
|
- Quaternion r01 = (q0.inverse() * q1).normalized();
|
|
|
-
|
|
|
- Vector3 v02, v01;
|
|
|
- real_t a02, a01;
|
|
|
-
|
|
|
- r02.get_axis_angle(v02, a02);
|
|
|
- r01.get_axis_angle(v01, a01);
|
|
|
-
|
|
|
- if (Math::abs(a02) > p_max_optimizable_angle) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (v01.dot(v02) < 0) {
|
|
|
- //make sure both rotations go the same way to compare
|
|
|
- v02 = -v02;
|
|
|
- a02 = -a02;
|
|
|
- }
|
|
|
-
|
|
|
- real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized())) / Math_PI;
|
|
|
- if (err_01 > p_allowed_angular_error) {
|
|
|
- //not rotating in the same axis
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (a01 * a02 < 0) {
|
|
|
- //not rotating in the same direction
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- real_t tr = a01 / a02;
|
|
|
- if (tr < 0 || tr > 1) {
|
|
|
- return false; //rotating too much or too less
|
|
|
+ if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ // Calc velocities.
|
|
|
+ Vector3 vc0 = (t1.value - t0.value) / (t1.time - t0.time);
|
|
|
+ Vector3 vc1 = (t2.value - t1.value) / (t2.time - t1.time);
|
|
|
+ real_t v0 = vc0.length();
|
|
|
+ real_t v1 = vc1.length();
|
|
|
+ // Avoid zero div but check equality.
|
|
|
+ if (abs(v0 - v1) < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ // Check axis.
|
|
|
+ if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) {
|
|
|
+ real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0;
|
|
|
+ if (ratio >= 1.0 - p_allowed_velocity_err) {
|
|
|
+ return true;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- return true;
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
-bool Animation::_scale_track_optimize_key(const TKey<Vector3> &t0, const TKey<Vector3> &t1, const TKey<Vector3> &t2, real_t p_allowed_linear_error) {
|
|
|
- const Vector3 &v0 = t0.value;
|
|
|
- const Vector3 &v1 = t1.value;
|
|
|
- const Vector3 &v2 = t2.value;
|
|
|
-
|
|
|
- if (v0.is_equal_approx(v2)) {
|
|
|
- //0 and 2 are close, let's see if 1 is close
|
|
|
- if (!v0.is_equal_approx(v1)) {
|
|
|
- //not close, not optimizable
|
|
|
+bool Animation::_quaternion_track_optimize_key(const TKey<Quaternion> t0, const TKey<Quaternion> t1, const TKey<Quaternion> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) {
|
|
|
+ // Remove overlapping keys.
|
|
|
+ if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ // Check axis.
|
|
|
+ Quaternion q0 = t0.value * t1.value * t0.value.inverse();
|
|
|
+ Quaternion q1 = t1.value * t2.value * t1.value.inverse();
|
|
|
+ if (q0.get_axis().dot(q1.get_axis()) >= 1.0 - p_allowed_angular_error * 2.0) {
|
|
|
+ // Calc velocities.
|
|
|
+ real_t v0 = Math::acos(t0.value.dot(t1.value)) / (t1.time - t0.time);
|
|
|
+ real_t v1 = Math::acos(t1.value.dot(t2.value)) / (t2.time - t1.time);
|
|
|
+ // Avoid zero div but check equality.
|
|
|
+ if (abs(v0 - v1) < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
|
|
|
return false;
|
|
|
}
|
|
|
-
|
|
|
- } else {
|
|
|
- Vector3 pd = (v2 - v0);
|
|
|
- real_t d0 = pd.dot(v0);
|
|
|
- real_t d1 = pd.dot(v1);
|
|
|
- real_t d2 = pd.dot(v2);
|
|
|
- if (d1 < d0 || d1 > d2) {
|
|
|
- return false; //beyond segment range
|
|
|
- }
|
|
|
-
|
|
|
- Vector3 s[2] = { v0, v2 };
|
|
|
- real_t d = Geometry3D::get_closest_point_to_segment(v1, s).distance_to(v1);
|
|
|
-
|
|
|
- if (d > pd.length() * p_allowed_linear_error) {
|
|
|
- return false; //beyond allowed error for colinearity
|
|
|
+ real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0;
|
|
|
+ if (ratio >= 1.0 - p_allowed_velocity_err) {
|
|
|
+ return true;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- return true;
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
-bool Animation::_blend_shape_track_optimize_key(const TKey<float> &t0, const TKey<float> &t1, const TKey<float> &t2, real_t p_allowed_unit_error) {
|
|
|
- float v0 = t0.value;
|
|
|
- float v1 = t1.value;
|
|
|
- float v2 = t2.value;
|
|
|
-
|
|
|
- if (Math::is_equal_approx(v1, v2, (float)p_allowed_unit_error)) {
|
|
|
- //0 and 2 are close, let's see if 1 is close
|
|
|
- if (!Math::is_equal_approx(v0, v1, (float)p_allowed_unit_error)) {
|
|
|
- //not close, not optimizable
|
|
|
- return false;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /*
|
|
|
- TODO eventually discuss a way to optimize these better.
|
|
|
- float pd = (v2 - v0);
|
|
|
- real_t d0 = pd.dot(v0);
|
|
|
- real_t d1 = pd.dot(v1);
|
|
|
- real_t d2 = pd.dot(v2);
|
|
|
- if (d1 < d0 || d1 > d2) {
|
|
|
- return false; //beyond segment range
|
|
|
- }
|
|
|
-
|
|
|
- float s[2] = { v0, v2 };
|
|
|
- real_t d = Geometry3D::get_closest_point_to_segment(v1, s).distance_to(v1);
|
|
|
-
|
|
|
- if (d > pd.length() * p_allowed_linear_error) {
|
|
|
- return false; //beyond allowed error for colinearity
|
|
|
+bool Animation::_float_track_optimize_key(const TKey<float> t0, const TKey<float> t1, const TKey<float> t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) {
|
|
|
+ // Remove overlapping keys.
|
|
|
+ if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if (abs(t0.value - t1.value) < p_allowed_precision_error && abs(t1.value - t2.value) < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ // Calc velocities.
|
|
|
+ real_t v0 = (t1.value - t0.value) / (t1.time - t0.time);
|
|
|
+ real_t v1 = (t2.value - t1.value) / (t2.time - t1.time);
|
|
|
+ // Avoid zero div but check equality.
|
|
|
+ if (abs(v0 - v1) < p_allowed_precision_error) {
|
|
|
+ return true;
|
|
|
+ } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (!signbit(v0 * v1)) {
|
|
|
+ real_t ratio = v0 < v1 ? v0 / v1 : v1 / v0;
|
|
|
+ if (ratio >= 1.0 - p_allowed_velocity_err) {
|
|
|
+ return true;
|
|
|
}
|
|
|
-*/
|
|
|
}
|
|
|
-
|
|
|
- return true;
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
-void Animation::_position_track_optimize(int p_idx, real_t p_allowed_linear_err, real_t p_allowed_angular_err) {
|
|
|
+void Animation::_position_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
|
|
|
ERR_FAIL_INDEX(p_idx, tracks.size());
|
|
|
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_POSITION_3D);
|
|
|
PositionTrack *tt = static_cast<PositionTrack *>(tracks[p_idx]);
|
|
|
- bool prev_erased = false;
|
|
|
- TKey<Vector3> first_erased;
|
|
|
-
|
|
|
- Vector3 norm;
|
|
|
-
|
|
|
- for (int i = 1; i < tt->positions.size() - 1; i++) {
|
|
|
- TKey<Vector3> &t0 = tt->positions.write[i - 1];
|
|
|
- TKey<Vector3> &t1 = tt->positions.write[i];
|
|
|
- TKey<Vector3> &t2 = tt->positions.write[i + 1];
|
|
|
|
|
|
- bool erase = _position_track_optimize_key(t0, t1, t2, p_allowed_linear_err, p_allowed_angular_err, norm);
|
|
|
- if (erase && !prev_erased) {
|
|
|
- norm = (t2.value - t1.value).normalized();
|
|
|
- }
|
|
|
-
|
|
|
- if (prev_erased && !_position_track_optimize_key(t0, first_erased, t2, p_allowed_linear_err, p_allowed_angular_err, norm)) {
|
|
|
- //avoid error to go beyond first erased key
|
|
|
- erase = false;
|
|
|
- }
|
|
|
+ int i = 0;
|
|
|
+ while (i < tt->positions.size() - 2) {
|
|
|
+ TKey<Vector3> t0 = tt->positions[i];
|
|
|
+ TKey<Vector3> t1 = tt->positions[i + 1];
|
|
|
+ TKey<Vector3> t2 = tt->positions[i + 2];
|
|
|
|
|
|
+ bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
|
|
|
if (erase) {
|
|
|
- if (!prev_erased) {
|
|
|
- first_erased = t1;
|
|
|
- prev_erased = true;
|
|
|
- }
|
|
|
-
|
|
|
- tt->positions.remove_at(i);
|
|
|
- i--;
|
|
|
-
|
|
|
+ tt->positions.remove_at(i + 1);
|
|
|
} else {
|
|
|
- prev_erased = false;
|
|
|
- norm = Vector3();
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tt->positions.size() == 2) {
|
|
|
+ if ((tt->positions[0].value - tt->positions[1].value).length() < p_allowed_precision_error) {
|
|
|
+ tt->positions.remove_at(1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_angular_err, real_t p_max_optimizable_angle) {
|
|
|
+void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
|
|
|
ERR_FAIL_INDEX(p_idx, tracks.size());
|
|
|
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_ROTATION_3D);
|
|
|
RotationTrack *tt = static_cast<RotationTrack *>(tracks[p_idx]);
|
|
|
- bool prev_erased = false;
|
|
|
- TKey<Quaternion> first_erased;
|
|
|
-
|
|
|
- for (int i = 1; i < tt->rotations.size() - 1; i++) {
|
|
|
- TKey<Quaternion> &t0 = tt->rotations.write[i - 1];
|
|
|
- TKey<Quaternion> &t1 = tt->rotations.write[i];
|
|
|
- TKey<Quaternion> &t2 = tt->rotations.write[i + 1];
|
|
|
-
|
|
|
- bool erase = _rotation_track_optimize_key(t0, t1, t2, p_allowed_angular_err, p_max_optimizable_angle);
|
|
|
|
|
|
- if (prev_erased && !_rotation_track_optimize_key(t0, first_erased, t2, p_allowed_angular_err, p_max_optimizable_angle)) {
|
|
|
- //avoid error to go beyond first erased key
|
|
|
- erase = false;
|
|
|
- }
|
|
|
+ int i = 0;
|
|
|
+ while (i < tt->rotations.size() - 2) {
|
|
|
+ TKey<Quaternion> t0 = tt->rotations[i];
|
|
|
+ TKey<Quaternion> t1 = tt->rotations[i + 1];
|
|
|
+ TKey<Quaternion> t2 = tt->rotations[i + 2];
|
|
|
|
|
|
+ bool erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
|
|
|
if (erase) {
|
|
|
- if (!prev_erased) {
|
|
|
- first_erased = t1;
|
|
|
- prev_erased = true;
|
|
|
- }
|
|
|
-
|
|
|
- tt->rotations.remove_at(i);
|
|
|
- i--;
|
|
|
-
|
|
|
+ tt->rotations.remove_at(i + 1);
|
|
|
} else {
|
|
|
- prev_erased = false;
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tt->rotations.size() == 2) {
|
|
|
+ if ((tt->rotations[0].value - tt->rotations[1].value).length() < p_allowed_precision_error) {
|
|
|
+ tt->rotations.remove_at(1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_linear_err) {
|
|
|
+void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) {
|
|
|
ERR_FAIL_INDEX(p_idx, tracks.size());
|
|
|
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_SCALE_3D);
|
|
|
ScaleTrack *tt = static_cast<ScaleTrack *>(tracks[p_idx]);
|
|
|
- bool prev_erased = false;
|
|
|
- TKey<Vector3> first_erased;
|
|
|
-
|
|
|
- for (int i = 1; i < tt->scales.size() - 1; i++) {
|
|
|
- TKey<Vector3> &t0 = tt->scales.write[i - 1];
|
|
|
- TKey<Vector3> &t1 = tt->scales.write[i];
|
|
|
- TKey<Vector3> &t2 = tt->scales.write[i + 1];
|
|
|
|
|
|
- bool erase = _scale_track_optimize_key(t0, t1, t2, p_allowed_linear_err);
|
|
|
-
|
|
|
- if (prev_erased && !_scale_track_optimize_key(t0, first_erased, t2, p_allowed_linear_err)) {
|
|
|
- //avoid error to go beyond first erased key
|
|
|
- erase = false;
|
|
|
- }
|
|
|
+ int i = 0;
|
|
|
+ while (i < tt->scales.size() - 2) {
|
|
|
+ TKey<Vector3> t0 = tt->scales[i];
|
|
|
+ TKey<Vector3> t1 = tt->scales[i + 1];
|
|
|
+ TKey<Vector3> t2 = tt->scales[i + 2];
|
|
|
|
|
|
+ bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error);
|
|
|
if (erase) {
|
|
|
- if (!prev_erased) {
|
|
|
- first_erased = t1;
|
|
|
- prev_erased = true;
|
|
|
- }
|
|
|
-
|
|
|
- tt->scales.remove_at(i);
|
|
|
- i--;
|
|
|
-
|
|
|
+ tt->scales.remove_at(i + 1);
|
|
|
} else {
|
|
|
- prev_erased = false;
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tt->scales.size() == 2) {
|
|
|
+ if ((tt->scales[0].value - tt->scales[1].value).length() < p_allowed_precision_error) {
|
|
|
+ tt->scales.remove_at(1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Animation::_blend_shape_track_optimize(int p_idx, real_t p_allowed_linear_err) {
|
|
|
+void Animation::_blend_shape_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) {
|
|
|
ERR_FAIL_INDEX(p_idx, tracks.size());
|
|
|
ERR_FAIL_COND(tracks[p_idx]->type != TYPE_BLEND_SHAPE);
|
|
|
BlendShapeTrack *tt = static_cast<BlendShapeTrack *>(tracks[p_idx]);
|
|
|
- bool prev_erased = false;
|
|
|
- TKey<float> first_erased;
|
|
|
- first_erased.value = 0.0;
|
|
|
-
|
|
|
- for (int i = 1; i < tt->blend_shapes.size() - 1; i++) {
|
|
|
- TKey<float> &t0 = tt->blend_shapes.write[i - 1];
|
|
|
- TKey<float> &t1 = tt->blend_shapes.write[i];
|
|
|
- TKey<float> &t2 = tt->blend_shapes.write[i + 1];
|
|
|
-
|
|
|
- bool erase = _blend_shape_track_optimize_key(t0, t1, t2, p_allowed_linear_err);
|
|
|
|
|
|
- if (prev_erased && !_blend_shape_track_optimize_key(t0, first_erased, t2, p_allowed_linear_err)) {
|
|
|
- //avoid error to go beyond first erased key
|
|
|
- erase = false;
|
|
|
- }
|
|
|
+ int i = 0;
|
|
|
+ while (i < tt->blend_shapes.size() - 2) {
|
|
|
+ TKey<float> t0 = tt->blend_shapes[i];
|
|
|
+ TKey<float> t1 = tt->blend_shapes[i + 1];
|
|
|
+ TKey<float> t2 = tt->blend_shapes[i + 2];
|
|
|
|
|
|
+ bool erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error);
|
|
|
if (erase) {
|
|
|
- if (!prev_erased) {
|
|
|
- first_erased = t1;
|
|
|
- prev_erased = true;
|
|
|
- }
|
|
|
-
|
|
|
- tt->blend_shapes.remove_at(i);
|
|
|
- i--;
|
|
|
-
|
|
|
+ tt->blend_shapes.remove_at(i + 1);
|
|
|
} else {
|
|
|
- prev_erased = false;
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (tt->blend_shapes.size() == 2) {
|
|
|
+ if (abs(tt->blend_shapes[0].value - tt->blend_shapes[1].value) < p_allowed_precision_error) {
|
|
|
+ tt->blend_shapes.remove_at(1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void Animation::optimize(real_t p_allowed_linear_err, real_t p_allowed_angular_err, real_t p_max_optimizable_angle) {
|
|
|
+void Animation::optimize(real_t p_allowed_velocity_err, real_t p_allowed_angular_err, int p_precision) {
|
|
|
+ real_t precision = Math::pow(0.1, p_precision);
|
|
|
for (int i = 0; i < tracks.size(); i++) {
|
|
|
if (track_is_compressed(i)) {
|
|
|
continue; //not possible to optimize compressed track
|
|
|
}
|
|
|
if (tracks[i]->type == TYPE_POSITION_3D) {
|
|
|
- _position_track_optimize(i, p_allowed_linear_err, p_allowed_angular_err);
|
|
|
+ _position_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
|
|
|
} else if (tracks[i]->type == TYPE_ROTATION_3D) {
|
|
|
- _rotation_track_optimize(i, p_allowed_angular_err, p_max_optimizable_angle);
|
|
|
+ _rotation_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
|
|
|
} else if (tracks[i]->type == TYPE_SCALE_3D) {
|
|
|
- _scale_track_optimize(i, p_allowed_linear_err);
|
|
|
+ _scale_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision);
|
|
|
} else if (tracks[i]->type == TYPE_BLEND_SHAPE) {
|
|
|
- _blend_shape_track_optimize(i, p_allowed_linear_err);
|
|
|
+ _blend_shape_track_optimize(i, p_allowed_velocity_err, precision);
|
|
|
}
|
|
|
}
|
|
|
}
|