Ver Fonte

Merge pull request #48002 from Geometror/update-meshoptimizer

update meshoptimizer to version 0.16
Rémi Verschelde há 4 anos atrás
pai
commit
698c7d26f9

+ 1 - 1
COPYRIGHT.txt

@@ -261,7 +261,7 @@ License: Apache-2.0
 
 Files: ./thirdparty/meshoptimizer/
 Comment: meshoptimizer
-Copyright: 2016-2020, Arseny Kapoulkine
+Copyright: 2016-2021, Arseny Kapoulkine
 License: Expat
 
 Files: ./thirdparty/minimp3/

+ 1 - 1
thirdparty/README.md

@@ -344,7 +344,7 @@ File extracted from upstream release tarball:
 ## meshoptimizer
 
 - Upstream: https://github.com/zeux/meshoptimizer
-- Version: git (e3f53f66e7a35b9b8764bee478589d79e34fa698, 2021)
+- Version: 0.16 (95893c0566646434dd675b708d293fcb2d526d08, 2021)
 - License: MIT
 
 Files extracted from upstream repository:

+ 1 - 1
thirdparty/meshoptimizer/LICENSE.md

@@ -1,6 +1,6 @@
 MIT License
 
-Copyright (c) 2016-2020 Arseny Kapoulkine
+Copyright (c) 2016-2021 Arseny Kapoulkine
 
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal

+ 561 - 55
thirdparty/meshoptimizer/clusterizer.cpp

@@ -2,6 +2,7 @@
 #include "meshoptimizer.h"
 
 #include <assert.h>
+#include <float.h>
 #include <math.h>
 #include <string.h>
 
@@ -12,6 +13,68 @@
 namespace meshopt
 {
 
+// This must be <= 255 since index 0xff is used internally to indice a vertex that doesn't belong to a meshlet
+const size_t kMeshletMaxVertices = 255;
+
+// A reasonable limit is around 2*max_vertices or less
+const size_t kMeshletMaxTriangles = 512;
+
+struct TriangleAdjacency2
+{
+	unsigned int* counts;
+	unsigned int* offsets;
+	unsigned int* data;
+};
+
+static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
+{
+	size_t face_count = index_count / 3;
+
+	// allocate arrays
+	adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
+	adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
+	adjacency.data = allocator.allocate<unsigned int>(index_count);
+
+	// fill triangle counts
+	memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
+
+	for (size_t i = 0; i < index_count; ++i)
+	{
+		assert(indices[i] < vertex_count);
+
+		adjacency.counts[indices[i]]++;
+	}
+
+	// fill offset table
+	unsigned int offset = 0;
+
+	for (size_t i = 0; i < vertex_count; ++i)
+	{
+		adjacency.offsets[i] = offset;
+		offset += adjacency.counts[i];
+	}
+
+	assert(offset == index_count);
+
+	// fill triangle data
+	for (size_t i = 0; i < face_count; ++i)
+	{
+		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
+
+		adjacency.data[adjacency.offsets[a]++] = unsigned(i);
+		adjacency.data[adjacency.offsets[b]++] = unsigned(i);
+		adjacency.data[adjacency.offsets[c]++] = unsigned(i);
+	}
+
+	// fix offsets that have been disturbed by the previous pass
+	for (size_t i = 0; i < vertex_count; ++i)
+	{
+		assert(adjacency.offsets[i] >= adjacency.counts[i]);
+
+		adjacency.offsets[i] -= adjacency.counts[i];
+	}
+}
+
 static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
 {
 	assert(count > 0);
@@ -82,13 +145,310 @@ static void computeBoundingSphere(float result[4], const float points[][3], size
 	result[3] = radius;
 }
 
+struct Cone
+{
+	float px, py, pz;
+	float nx, ny, nz;
+};
+
+static float getMeshletScore(float distance2, float spread, float cone_weight, float expected_radius)
+{
+	float cone = 1.f - spread * cone_weight;
+	float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
+
+	return (1 + sqrtf(distance2) / expected_radius * (1 - cone_weight)) * cone_clamped;
+}
+
+static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
+{
+	Cone result = acc;
+
+	float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
+
+	result.px *= center_scale;
+	result.py *= center_scale;
+	result.pz *= center_scale;
+
+	float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
+	float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
+
+	result.nx *= axis_scale;
+	result.ny *= axis_scale;
+	result.nz *= axis_scale;
+
+	return result;
+}
+
+static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+	(void)vertex_count;
+
+	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
+	size_t face_count = index_count / 3;
+
+	float mesh_area = 0;
+
+	for (size_t i = 0; i < face_count; ++i)
+	{
+		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
+		assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+		const float* p0 = vertex_positions + vertex_stride_float * a;
+		const float* p1 = vertex_positions + vertex_stride_float * b;
+		const float* p2 = vertex_positions + vertex_stride_float * c;
+
+		float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
+		float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
+
+		float normalx = p10[1] * p20[2] - p10[2] * p20[1];
+		float normaly = p10[2] * p20[0] - p10[0] * p20[2];
+		float normalz = p10[0] * p20[1] - p10[1] * p20[0];
+
+		float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
+		float invarea = (area == 0.f) ? 0.f : 1.f / area;
+
+		triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
+		triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
+		triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
+
+		triangles[i].nx = normalx * invarea;
+		triangles[i].ny = normaly * invarea;
+		triangles[i].nz = normalz * invarea;
+
+		mesh_area += area;
+	}
+
+	return mesh_area;
+}
+
+static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles)
+{
+	size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3;
+
+	// fill 4b padding with 0
+	while (offset & 3)
+		meshlet_triangles[offset++] = 0;
+}
+
+static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, unsigned char* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles)
+{
+	unsigned char& av = used[a];
+	unsigned char& bv = used[b];
+	unsigned char& cv = used[c];
+
+	bool result = false;
+
+	unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
+
+	if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
+	{
+		meshlets[meshlet_offset] = meshlet;
+
+		for (size_t j = 0; j < meshlet.vertex_count; ++j)
+			used[meshlet_vertices[meshlet.vertex_offset + j]] = 0xff;
+
+		finishMeshlet(meshlet, meshlet_triangles);
+
+		meshlet.vertex_offset += meshlet.vertex_count;
+		meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding
+		meshlet.vertex_count = 0;
+		meshlet.triangle_count = 0;
+
+		result = true;
+	}
+
+	if (av == 0xff)
+	{
+		av = (unsigned char)meshlet.vertex_count;
+		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
+	}
+
+	if (bv == 0xff)
+	{
+		bv = (unsigned char)meshlet.vertex_count;
+		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
+	}
+
+	if (cv == 0xff)
+	{
+		cv = (unsigned char)meshlet.vertex_count;
+		meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
+	}
+
+	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = av;
+	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = bv;
+	meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = cv;
+	meshlet.triangle_count++;
+
+	return result;
+}
+
+struct KDNode
+{
+	union
+	{
+		float split;
+		unsigned int index;
+	};
+
+	// leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point)
+	// branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
+	unsigned int axis : 2;
+	unsigned int children : 30;
+};
+
+static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot)
+{
+	size_t m = 0;
+
+	// invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
+	for (size_t i = 0; i < count; ++i)
+	{
+		float v = points[indices[i] * stride + axis];
+
+		// swap(m, i) unconditionally
+		unsigned int t = indices[m];
+		indices[m] = indices[i];
+		indices[i] = t;
+
+		// when v >= pivot, we swap i with m without advancing it, preserving invariants
+		m += v < pivot;
+	}
+
+	return m;
+}
+
+static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
+{
+	assert(offset + count <= node_count);
+	(void)node_count;
+
+	KDNode& result = nodes[offset];
+
+	result.index = indices[0];
+	result.axis = 3;
+	result.children = unsigned(count - 1);
+
+	// all remaining points are stored in nodes immediately following the leaf
+	for (size_t i = 1; i < count; ++i)
+	{
+		KDNode& tail = nodes[offset + i];
+
+		tail.index = indices[i];
+		tail.axis = 3;
+		tail.children = ~0u >> 2; // bogus value to prevent misuse
+	}
+
+	return offset + count;
+}
+
+static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size)
+{
+	assert(count > 0);
+	assert(offset < node_count);
+
+	if (count <= leaf_size)
+		return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
+
+	float mean[3] = {};
+	float vars[3] = {};
+	float runc = 1, runs = 1;
+
+	// gather statistics on the points in the subtree using Welford's algorithm
+	for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
+	{
+		const float* point = points + indices[i] * stride;
+
+		for (int k = 0; k < 3; ++k)
+		{
+			float delta = point[k] - mean[k];
+			mean[k] += delta * runs;
+			vars[k] += delta * (point[k] - mean[k]);
+		}
+	}
+
+	// split axis is one where the variance is largest
+	unsigned int axis = vars[0] >= vars[1] && vars[0] >= vars[2] ? 0 : vars[1] >= vars[2] ? 1
+	                                                                                      : 2;
+
+	float split = mean[axis];
+	size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
+
+	// when the partition is degenerate simply consolidate the points into a single node
+	if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2)
+		return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
+
+	KDNode& result = nodes[offset];
+
+	result.split = split;
+	result.axis = axis;
+
+	// left subtree is right after our node
+	size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size);
+
+	// distance to the right subtree is represented explicitly
+	result.children = unsigned(next_offset - offset - 1);
+
+	return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size);
+}
+
+static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
+{
+	const KDNode& node = nodes[root];
+
+	if (node.axis == 3)
+	{
+		// leaf
+		for (unsigned int i = 0; i <= node.children; ++i)
+		{
+			unsigned int index = nodes[root + i].index;
+
+			if (emitted_flags[index])
+				continue;
+
+			const float* point = points + index * stride;
+
+			float distance2 =
+			    (point[0] - position[0]) * (point[0] - position[0]) +
+			    (point[1] - position[1]) * (point[1] - position[1]) +
+			    (point[2] - position[2]) * (point[2] - position[2]);
+			float distance = sqrtf(distance2);
+
+			if (distance < limit)
+			{
+				result = index;
+				limit = distance;
+			}
+		}
+	}
+	else
+	{
+		// branch; we order recursion to process the node that search position is in first
+		float delta = position[node.axis] - node.split;
+		unsigned int first = (delta <= 0) ? 0 : node.children;
+		unsigned int second = first ^ node.children;
+
+		kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
+
+		// only process the other node if it can have a match based on closest distance so far
+		if (fabsf(delta) <= limit)
+			kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
+	}
+}
+
 } // namespace meshopt
 
 size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
 {
+	using namespace meshopt;
+
 	assert(index_count % 3 == 0);
-	assert(max_vertices >= 3);
-	assert(max_triangles >= 1);
+	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
+
+	(void)kMeshletMaxVertices;
+	(void)kMeshletMaxTriangles;
 
 	// meshlet construction is limited by max vertices and max triangles per meshlet
 	// the worst case is that the input is an unindexed stream since this equally stresses both limits
@@ -100,77 +460,226 @@ size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_
 	return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
 }
 
-size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
 {
+	using namespace meshopt;
+
 	assert(index_count % 3 == 0);
-	assert(max_vertices >= 3);
-	assert(max_triangles >= 1);
+	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+	assert(vertex_positions_stride % sizeof(float) == 0);
+
+	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
 
 	meshopt_Allocator allocator;
 
-	meshopt_Meshlet meshlet;
-	memset(&meshlet, 0, sizeof(meshlet));
+	TriangleAdjacency2 adjacency = {};
+	buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
+
+	unsigned int* live_triangles = allocator.allocate<unsigned int>(vertex_count);
+	memcpy(live_triangles, adjacency.counts, vertex_count * sizeof(unsigned int));
+
+	size_t face_count = index_count / 3;
+
+	unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
+	memset(emitted_flags, 0, face_count);
+
+	// for each triangle, precompute centroid & normal to use for scoring
+	Cone* triangles = allocator.allocate<Cone>(face_count);
+	float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+
+	// assuming each meshlet is a square patch, expected radius is sqrt(expected area)
+	float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
+	float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
+
+	// build a kd-tree for nearest neighbor lookup
+	unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
+	for (size_t i = 0; i < face_count; ++i)
+		kdindices[i] = unsigned(i);
 
-	assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
-	assert(max_triangles <= sizeof(meshlet.indices) / 3);
+	KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
+	kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8);
 
 	// index of the vertex in the meshlet, 0xff if the vertex isn't used
 	unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
 	memset(used, -1, vertex_count);
 
-	size_t offset = 0;
+	meshopt_Meshlet meshlet = {};
+	size_t meshlet_offset = 0;
 
-	for (size_t i = 0; i < index_count; i += 3)
-	{
-		unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
-		assert(a < vertex_count && b < vertex_count && c < vertex_count);
+	Cone meshlet_cone_acc = {};
 
-		unsigned char& av = used[a];
-		unsigned char& bv = used[b];
-		unsigned char& cv = used[c];
+	for (;;)
+	{
+		unsigned int best_triangle = ~0u;
+		unsigned int best_extra = 5;
+		float best_score = FLT_MAX;
 
-		unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
+		Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
 
-		if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
+		for (size_t i = 0; i < meshlet.vertex_count; ++i)
 		{
-			destination[offset++] = meshlet;
+			unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
+
+			unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
+			size_t neighbours_size = adjacency.counts[index];
+
+			for (size_t j = 0; j < neighbours_size; ++j)
+			{
+				unsigned int triangle = neighbours[j];
+				assert(!emitted_flags[triangle]);
+
+				unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
+				assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+				unsigned int extra = (used[a] == 0xff) + (used[b] == 0xff) + (used[c] == 0xff);
+
+				// triangles that don't add new vertices to meshlets are max. priority
+				if (extra != 0)
+				{
+					// artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
+					if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
+						extra = 0;
+
+					extra++;
+				}
+
+				// since topology-based priority is always more important than the score, we can skip scoring in some cases
+				if (extra > best_extra)
+					continue;
+
+				const Cone& tri_cone = triangles[triangle];
+
+				float distance2 =
+				    (tri_cone.px - meshlet_cone.px) * (tri_cone.px - meshlet_cone.px) +
+				    (tri_cone.py - meshlet_cone.py) * (tri_cone.py - meshlet_cone.py) +
+				    (tri_cone.pz - meshlet_cone.pz) * (tri_cone.pz - meshlet_cone.pz);
 
-			for (size_t j = 0; j < meshlet.vertex_count; ++j)
-				used[meshlet.vertices[j]] = 0xff;
+				float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
 
-			memset(&meshlet, 0, sizeof(meshlet));
+				float score = getMeshletScore(distance2, spread, cone_weight, meshlet_expected_radius);
+
+				// note that topology-based priority is always more important than the score
+				// this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
+				if (extra < best_extra || score < best_score)
+				{
+					best_triangle = triangle;
+					best_extra = extra;
+					best_score = score;
+				}
+			}
 		}
 
-		if (av == 0xff)
+		if (best_triangle == ~0u)
 		{
-			av = meshlet.vertex_count;
-			meshlet.vertices[meshlet.vertex_count++] = a;
+			float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
+			unsigned int index = ~0u;
+			float limit = FLT_MAX;
+
+			kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, limit);
+
+			best_triangle = index;
 		}
 
-		if (bv == 0xff)
+		if (best_triangle == ~0u)
+			break;
+
+		unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
+		assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+		// add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
+		if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles))
 		{
-			bv = meshlet.vertex_count;
-			meshlet.vertices[meshlet.vertex_count++] = b;
+			meshlet_offset++;
+			memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
 		}
 
-		if (cv == 0xff)
+		live_triangles[a]--;
+		live_triangles[b]--;
+		live_triangles[c]--;
+
+		// remove emitted triangle from adjacency data
+		// this makes sure that we spend less time traversing these lists on subsequent iterations
+		for (size_t k = 0; k < 3; ++k)
 		{
-			cv = meshlet.vertex_count;
-			meshlet.vertices[meshlet.vertex_count++] = c;
+			unsigned int index = indices[best_triangle * 3 + k];
+
+			unsigned int* neighbours = &adjacency.data[0] + adjacency.offsets[index];
+			size_t neighbours_size = adjacency.counts[index];
+
+			for (size_t i = 0; i < neighbours_size; ++i)
+			{
+				unsigned int tri = neighbours[i];
+
+				if (tri == best_triangle)
+				{
+					neighbours[i] = neighbours[neighbours_size - 1];
+					adjacency.counts[index]--;
+					break;
+				}
+			}
 		}
 
-		meshlet.indices[meshlet.triangle_count][0] = av;
-		meshlet.indices[meshlet.triangle_count][1] = bv;
-		meshlet.indices[meshlet.triangle_count][2] = cv;
-		meshlet.triangle_count++;
+		// update aggregated meshlet cone data for scoring subsequent triangles
+		meshlet_cone_acc.px += triangles[best_triangle].px;
+		meshlet_cone_acc.py += triangles[best_triangle].py;
+		meshlet_cone_acc.pz += triangles[best_triangle].pz;
+		meshlet_cone_acc.nx += triangles[best_triangle].nx;
+		meshlet_cone_acc.ny += triangles[best_triangle].ny;
+		meshlet_cone_acc.nz += triangles[best_triangle].nz;
+
+		emitted_flags[best_triangle] = 1;
+	}
+
+	if (meshlet.triangle_count)
+	{
+		finishMeshlet(meshlet, meshlet_triangles);
+
+		meshlets[meshlet_offset++] = meshlet;
+	}
+
+	assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+	return meshlet_offset;
+}
+
+size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+{
+	using namespace meshopt;
+
+	assert(index_count % 3 == 0);
+
+	assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
+	assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
+	assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned
+
+	meshopt_Allocator allocator;
+
+	// index of the vertex in the meshlet, 0xff if the vertex isn't used
+	unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
+	memset(used, -1, vertex_count);
+
+	meshopt_Meshlet meshlet = {};
+	size_t meshlet_offset = 0;
+
+	for (size_t i = 0; i < index_count; i += 3)
+	{
+		unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
+		assert(a < vertex_count && b < vertex_count && c < vertex_count);
+
+		// appends triangle to the meshlet and writes previous meshlet to the output if full
+		meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
 	}
 
 	if (meshlet.triangle_count)
-		destination[offset++] = meshlet;
+	{
+		finishMeshlet(meshlet, meshlet_triangles);
 
-	assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+		meshlets[meshlet_offset++] = meshlet;
+	}
 
-	return offset;
+	assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
+	return meshlet_offset;
 }
 
 meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
@@ -178,18 +687,17 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
 	using namespace meshopt;
 
 	assert(index_count % 3 == 0);
+	assert(index_count / 3 <= kMeshletMaxTriangles);
 	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
 	assert(vertex_positions_stride % sizeof(float) == 0);
 
-	assert(index_count / 3 <= 256);
-
 	(void)vertex_count;
 
 	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
 
 	// compute triangle normals and gather triangle corners
-	float normals[256][3];
-	float corners[256][3][3];
+	float normals[kMeshletMaxTriangles][3];
+	float corners[kMeshletMaxTriangles][3][3];
 	size_t triangles = 0;
 
 	for (size_t i = 0; i < index_count; i += 3)
@@ -327,25 +835,23 @@ meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t
 	return bounds;
 }
 
-meshopt_Bounds meshopt_computeMeshletBounds(const meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
 {
+	using namespace meshopt;
+
+	assert(triangle_count <= kMeshletMaxTriangles);
 	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
 	assert(vertex_positions_stride % sizeof(float) == 0);
 
-	unsigned int indices[sizeof(meshlet->indices) / sizeof(meshlet->indices[0][0])];
+	unsigned int indices[kMeshletMaxTriangles * 3];
 
-	for (size_t i = 0; i < meshlet->triangle_count; ++i)
+	for (size_t i = 0; i < triangle_count * 3; ++i)
 	{
-		unsigned int a = meshlet->vertices[meshlet->indices[i][0]];
-		unsigned int b = meshlet->vertices[meshlet->indices[i][1]];
-		unsigned int c = meshlet->vertices[meshlet->indices[i][2]];
-
-		assert(a < vertex_count && b < vertex_count && c < vertex_count);
+		unsigned int index = meshlet_vertices[meshlet_triangles[i]];
+		assert(index < vertex_count);
 
-		indices[i * 3 + 0] = a;
-		indices[i * 3 + 1] = b;
-		indices[i * 3 + 2] = c;
+		indices[i] = index;
 	}
 
-	return meshopt_computeClusterBounds(indices, meshlet->triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
+	return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
 }

+ 205 - 1
thirdparty/meshoptimizer/indexgenerator.cpp

@@ -4,6 +4,8 @@
 #include <assert.h>
 #include <string.h>
 
+// This work is based on:
+// John McDonald, Mark Kilgard. Crack-Free Point-Normal Triangles using Adjacent Edge Normals. 2010
 namespace meshopt
 {
 
@@ -83,10 +85,49 @@ struct VertexStreamHasher
 	}
 };
 
+struct EdgeHasher
+{
+	const unsigned int* remap;
+
+	size_t hash(unsigned long long edge) const
+	{
+		unsigned int e0 = unsigned(edge >> 32);
+		unsigned int e1 = unsigned(edge);
+
+		unsigned int h1 = remap[e0];
+		unsigned int h2 = remap[e1];
+
+		const unsigned int m = 0x5bd1e995;
+
+		// MurmurHash64B finalizer
+		h1 ^= h2 >> 18;
+		h1 *= m;
+		h2 ^= h1 >> 22;
+		h2 *= m;
+		h1 ^= h2 >> 17;
+		h1 *= m;
+		h2 ^= h1 >> 19;
+		h2 *= m;
+
+		return h2;
+	}
+
+	bool equal(unsigned long long lhs, unsigned long long rhs) const
+	{
+		unsigned int l0 = unsigned(lhs >> 32);
+		unsigned int l1 = unsigned(lhs);
+
+		unsigned int r0 = unsigned(rhs >> 32);
+		unsigned int r1 = unsigned(rhs);
+
+		return remap[l0] == remap[r0] && remap[l1] == remap[r1];
+	}
+};
+
 static size_t hashBuckets(size_t count)
 {
 	size_t buckets = 1;
-	while (buckets < count)
+	while (buckets < count + count / 4)
 		buckets *= 2;
 
 	return buckets;
@@ -119,6 +160,26 @@ static T* hashLookup(T* table, size_t buckets, const Hash& hash, const T& key, c
 	return 0;
 }
 
+static void buildPositionRemap(unsigned int* remap, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
+{
+	VertexHasher vertex_hasher = {reinterpret_cast<const unsigned char*>(vertex_positions), 3 * sizeof(float), vertex_positions_stride};
+
+	size_t vertex_table_size = hashBuckets(vertex_count);
+	unsigned int* vertex_table = allocator.allocate<unsigned int>(vertex_table_size);
+	memset(vertex_table, -1, vertex_table_size * sizeof(unsigned int));
+
+	for (size_t i = 0; i < vertex_count; ++i)
+	{
+		unsigned int index = unsigned(i);
+		unsigned int* entry = hashLookup(vertex_table, vertex_table_size, vertex_hasher, index, ~0u);
+
+		if (*entry == ~0u)
+			*entry = index;
+
+		remap[index] = *entry;
+	}
+}
+
 } // namespace meshopt
 
 size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size)
@@ -345,3 +406,146 @@ void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const uns
 		destination[i] = remap[index];
 	}
 }
+
+void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+	using namespace meshopt;
+
+	assert(index_count % 3 == 0);
+	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+	assert(vertex_positions_stride % sizeof(float) == 0);
+
+	meshopt_Allocator allocator;
+
+	static const int next[4] = {1, 2, 0, 1};
+
+	// build position remap: for each vertex, which other (canonical) vertex does it map to?
+	unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
+	buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
+
+	// build edge set; this stores all triangle edges but we can look these up by any other wedge
+	EdgeHasher edge_hasher = {remap};
+
+	size_t edge_table_size = hashBuckets(index_count);
+	unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
+	unsigned int* edge_vertex_table = allocator.allocate<unsigned int>(edge_table_size);
+
+	memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
+	memset(edge_vertex_table, -1, edge_table_size * sizeof(unsigned int));
+
+	for (size_t i = 0; i < index_count; i += 3)
+	{
+		for (int e = 0; e < 3; ++e)
+		{
+			unsigned int i0 = indices[i + e];
+			unsigned int i1 = indices[i + next[e]];
+			unsigned int i2 = indices[i + next[e + 1]];
+			assert(i0 < vertex_count && i1 < vertex_count && i2 < vertex_count);
+
+			unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
+			unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+			if (*entry == ~0ull)
+			{
+				*entry = edge;
+
+				// store vertex opposite to the edge
+				edge_vertex_table[entry - edge_table] = i2;
+			}
+		}
+	}
+
+	// build resulting index buffer: 6 indices for each input triangle
+	for (size_t i = 0; i < index_count; i += 3)
+	{
+		unsigned int patch[6];
+
+		for (int e = 0; e < 3; ++e)
+		{
+			unsigned int i0 = indices[i + e];
+			unsigned int i1 = indices[i + next[e]];
+			assert(i0 < vertex_count && i1 < vertex_count);
+
+			// note: this refers to the opposite edge!
+			unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
+			unsigned long long* oppe = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+			patch[e * 2 + 0] = i0;
+			patch[e * 2 + 1] = (*oppe == ~0ull) ? i0 : edge_vertex_table[oppe - edge_table];
+		}
+
+		memcpy(destination + i * 2, patch, sizeof(patch));
+	}
+}
+
+void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+	using namespace meshopt;
+
+	assert(index_count % 3 == 0);
+	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
+	assert(vertex_positions_stride % sizeof(float) == 0);
+
+	meshopt_Allocator allocator;
+
+	static const int next[3] = {1, 2, 0};
+
+	// build position remap: for each vertex, which other (canonical) vertex does it map to?
+	unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
+	buildPositionRemap(remap, vertex_positions, vertex_count, vertex_positions_stride, allocator);
+
+	// build edge set; this stores all triangle edges but we can look these up by any other wedge
+	EdgeHasher edge_hasher = {remap};
+
+	size_t edge_table_size = hashBuckets(index_count);
+	unsigned long long* edge_table = allocator.allocate<unsigned long long>(edge_table_size);
+	memset(edge_table, -1, edge_table_size * sizeof(unsigned long long));
+
+	for (size_t i = 0; i < index_count; i += 3)
+	{
+		for (int e = 0; e < 3; ++e)
+		{
+			unsigned int i0 = indices[i + e];
+			unsigned int i1 = indices[i + next[e]];
+			assert(i0 < vertex_count && i1 < vertex_count);
+
+			unsigned long long edge = ((unsigned long long)i0 << 32) | i1;
+			unsigned long long* entry = hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+			if (*entry == ~0ull)
+				*entry = edge;
+		}
+	}
+
+	// build resulting index buffer: 12 indices for each input triangle
+	for (size_t i = 0; i < index_count; i += 3)
+	{
+		unsigned int patch[12];
+
+		for (int e = 0; e < 3; ++e)
+		{
+			unsigned int i0 = indices[i + e];
+			unsigned int i1 = indices[i + next[e]];
+			assert(i0 < vertex_count && i1 < vertex_count);
+
+			// note: this refers to the opposite edge!
+			unsigned long long edge = ((unsigned long long)i1 << 32) | i0;
+			unsigned long long oppe = *hashLookup(edge_table, edge_table_size, edge_hasher, edge, ~0ull);
+
+			// use the same edge if opposite edge doesn't exist (border)
+			oppe = (oppe == ~0ull) ? edge : oppe;
+
+			// triangle index (0, 1, 2)
+			patch[e] = i0;
+
+			// opposite edge (3, 4; 5, 6; 7, 8)
+			patch[3 + e * 2 + 0] = unsigned(oppe);
+			patch[3 + e * 2 + 1] = unsigned(oppe >> 32);
+
+			// dominant vertex (9, 10, 11)
+			patch[9 + e] = remap[i0];
+		}
+
+		memcpy(destination + i * 4, patch, sizeof(patch));
+	}
+}

+ 87 - 17
thirdparty/meshoptimizer/meshoptimizer.h

@@ -1,7 +1,7 @@
 /**
- * meshoptimizer - version 0.15
+ * meshoptimizer - version 0.16
  *
- * Copyright (C) 2016-2020, by Arseny Kapoulkine ([email protected])
+ * Copyright (C) 2016-2021, by Arseny Kapoulkine ([email protected])
  * Report bugs and download new versions at https://github.com/zeux/meshoptimizer
  *
  * This library is distributed under the MIT License. See notice at the end of this file.
@@ -12,7 +12,7 @@
 #include <stddef.h>
 
 /* Version macro; major * 1000 + minor * 10 + patch */
-#define MESHOPTIMIZER_VERSION 150 /* 0.15 */
+#define MESHOPTIMIZER_VERSION 160 /* 0.16 */
 
 /* If no API is defined, assume default */
 #ifndef MESHOPTIMIZER_API
@@ -97,6 +97,35 @@ MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destinati
  */
 MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count);
 
+/**
+ * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology
+ * Each triangle is converted into a 6-vertex patch with the following layout:
+ * - 0, 2, 4: original triangle vertices
+ * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40
+ * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY.
+ * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering.
+ *
+ * destination must contain enough space for the resulting index buffer (index_count*2 elements)
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+
+/**
+ * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement
+ * Each triangle is converted into a 12-vertex patch with the following layout:
+ * - 0, 1, 2: original triangle vertices
+ * - 3, 4: opposing edge for edge 0, 1
+ * - 5, 6: opposing edge for edge 1, 2
+ * - 7, 8: opposing edge for edge 2, 0
+ * - 9, 10, 11: dominant vertices for corners 0, 1, 2
+ * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping.
+ * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details.
+ *
+ * destination must contain enough space for the resulting index buffer (index_count*4 elements)
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ */
+MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+
 /**
  * Vertex transform cache optimizer
  * Reorders indices to reduce the number of GPU vertex shader invocations
@@ -373,22 +402,31 @@ MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetc
 
 struct meshopt_Meshlet
 {
-	unsigned int vertices[64];
-	unsigned char indices[126][3];
-	unsigned char triangle_count;
-	unsigned char vertex_count;
+	/* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */
+	unsigned int vertex_offset;
+	unsigned int triangle_offset;
+
+	/* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */
+	unsigned int vertex_count;
+	unsigned int triangle_count;
 };
 
 /**
  * Experimental: Meshlet builder
  * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer
  * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers.
- * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
+ * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters.
+ * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first.
  *
- * destination must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
- * max_vertices and max_triangles can't exceed limits statically declared in meshopt_Meshlet (max_vertices <= 64, max_triangles <= 126)
+ * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound
+ * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices
+ * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3
+ * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
+ * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512)
+ * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency
  */
-MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
+MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
 MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles);
 
 struct meshopt_Bounds
@@ -426,10 +464,10 @@ struct meshopt_Bounds
  * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable.
  *
  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer
- * index_count should be less than or equal to 256*3 (the function assumes clusters of limited size)
+ * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size)
  */
 MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
-MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const struct meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
 
 /**
  * Experimental: Spatial sorter
@@ -513,6 +551,10 @@ inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices,
 template <typename T>
 inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count);
 template <typename T>
+inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+template <typename T>
+inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
+template <typename T>
 inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count);
 template <typename T>
 inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count);
@@ -547,7 +589,9 @@ inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size
 template <typename T>
 inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size);
 template <typename T>
-inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
+inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight);
+template <typename T>
+inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles);
 template <typename T>
 inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride);
 template <typename T>
@@ -761,6 +805,24 @@ inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indi
 	meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count);
 }
 
+template <typename T>
+inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+	meshopt_IndexAdapter<T> in(0, indices, index_count);
+	meshopt_IndexAdapter<T> out(destination, 0, index_count * 2);
+
+	meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+}
+
+template <typename T>
+inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
+{
+	meshopt_IndexAdapter<T> in(0, indices, index_count);
+	meshopt_IndexAdapter<T> out(destination, 0, index_count * 4);
+
+	meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride);
+}
+
 template <typename T>
 inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count)
 {
@@ -908,11 +970,19 @@ inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices
 }
 
 template <typename T>
-inline size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
+inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
+{
+	meshopt_IndexAdapter<T> in(0, indices, index_count);
+
+	return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight);
+}
+
+template <typename T>
+inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
 {
 	meshopt_IndexAdapter<T> in(0, indices, index_count);
 
-	return meshopt_buildMeshlets(destination, in.data, index_count, vertex_count, max_vertices, max_triangles);
+	return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles);
 }
 
 template <typename T>
@@ -934,7 +1004,7 @@ inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_
 #endif
 
 /**
- * Copyright (c) 2016-2020 Arseny Kapoulkine
+ * Copyright (c) 2016-2021 Arseny Kapoulkine
  *
  * Permission is hereby granted, free of charge, to any person
  * obtaining a copy of this software and associated documentation

+ 1 - 1
thirdparty/meshoptimizer/simplifier.cpp

@@ -131,7 +131,7 @@ struct PositionHasher
 static size_t hashBuckets2(size_t count)
 {
 	size_t buckets = 1;
-	while (buckets < count)
+	while (buckets < count + count / 4)
 		buckets *= 2;
 
 	return buckets;

+ 4 - 10
thirdparty/meshoptimizer/vertexcodec.cpp

@@ -710,18 +710,12 @@ static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
 SIMD_TARGET
 static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
 {
-	v128_t mask_0 = wasm_v32x4_shuffle(mask, mask, 0, 2, 1, 3);
-
-	uint64_t mask_1a = wasm_i64x2_extract_lane(mask_0, 0) & 0x0804020108040201ull;
-	uint64_t mask_1b = wasm_i64x2_extract_lane(mask_0, 1) & 0x8040201080402010ull;
+	// magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
+	const uint64_t magic = 0x000103070f1f3f80ull;
 
 	// TODO: This can use v8x16_bitmask in the future
-	uint64_t mask_2 = mask_1a | mask_1b;
-	uint64_t mask_4 = mask_2 | (mask_2 >> 16);
-	uint64_t mask_8 = mask_4 | (mask_4 >> 8);
-
-	mask0 = uint8_t(mask_8);
-	mask1 = uint8_t(mask_8 >> 32);
+	mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
+	mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
 }
 
 SIMD_TARGET