|
@@ -165,11 +165,11 @@ void main() {
|
|
|
#elif defined(USE_ASYM_PANO)
|
|
|
|
|
|
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
|
|
|
- // Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
|
|
|
+ // Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
|
|
|
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
|
|
|
|
|
|
vec3 cube_normal;
|
|
|
- cube_normal.z = -1000000.0;
|
|
|
+ cube_normal.z = -1.0;
|
|
|
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
|
|
|
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
|
|
|
cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
|