|
@@ -771,17 +771,16 @@ Vector2 Curve2D::interpolate_baked(real_t p_offset, bool p_cubic) const {
|
|
|
return baked_point_cache.get(0);
|
|
|
}
|
|
|
|
|
|
- int bpc = baked_point_cache.size();
|
|
|
const Vector2 *r = baked_point_cache.ptr();
|
|
|
|
|
|
if (p_offset < 0) {
|
|
|
return r[0];
|
|
|
}
|
|
|
if (p_offset >= baked_max_ofs) {
|
|
|
- return r[bpc - 1];
|
|
|
+ return r[pc - 1];
|
|
|
}
|
|
|
|
|
|
- int start = 0, end = bpc, idx = (end + start) / 2;
|
|
|
+ int start = 0, end = pc, idx = (end + start) / 2;
|
|
|
// binary search to find baked points
|
|
|
while (start < idx) {
|
|
|
real_t offset = baked_dist_cache[idx];
|
|
@@ -803,7 +802,7 @@ Vector2 Curve2D::interpolate_baked(real_t p_offset, bool p_cubic) const {
|
|
|
|
|
|
if (p_cubic) {
|
|
|
Vector2 pre = idx > 0 ? r[idx - 1] : r[idx];
|
|
|
- Vector2 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1];
|
|
|
+ Vector2 post = (idx < (pc - 2)) ? r[idx + 2] : r[idx + 1];
|
|
|
return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac);
|
|
|
} else {
|
|
|
return r[idx].lerp(r[idx + 1], frac);
|
|
@@ -1336,17 +1335,16 @@ Vector3 Curve3D::interpolate_baked(real_t p_offset, bool p_cubic) const {
|
|
|
return baked_point_cache.get(0);
|
|
|
}
|
|
|
|
|
|
- int bpc = baked_point_cache.size();
|
|
|
const Vector3 *r = baked_point_cache.ptr();
|
|
|
|
|
|
if (p_offset < 0) {
|
|
|
return r[0];
|
|
|
}
|
|
|
if (p_offset >= baked_max_ofs) {
|
|
|
- return r[bpc - 1];
|
|
|
+ return r[pc - 1];
|
|
|
}
|
|
|
|
|
|
- int start = 0, end = bpc, idx = (end + start) / 2;
|
|
|
+ int start = 0, end = pc, idx = (end + start) / 2;
|
|
|
// binary search to find baked points
|
|
|
while (start < idx) {
|
|
|
real_t offset = baked_dist_cache[idx];
|
|
@@ -1368,7 +1366,7 @@ Vector3 Curve3D::interpolate_baked(real_t p_offset, bool p_cubic) const {
|
|
|
|
|
|
if (p_cubic) {
|
|
|
Vector3 pre = idx > 0 ? r[idx - 1] : r[idx];
|
|
|
- Vector3 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1];
|
|
|
+ Vector3 post = (idx < (pc - 2)) ? r[idx + 2] : r[idx + 1];
|
|
|
return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac);
|
|
|
} else {
|
|
|
return r[idx].lerp(r[idx + 1], frac);
|
|
@@ -1388,29 +1386,35 @@ real_t Curve3D::interpolate_baked_tilt(real_t p_offset) const {
|
|
|
return baked_tilt_cache.get(0);
|
|
|
}
|
|
|
|
|
|
- int bpc = baked_tilt_cache.size();
|
|
|
const real_t *r = baked_tilt_cache.ptr();
|
|
|
|
|
|
if (p_offset < 0) {
|
|
|
return r[0];
|
|
|
}
|
|
|
if (p_offset >= baked_max_ofs) {
|
|
|
- return r[bpc - 1];
|
|
|
+ return r[pc - 1];
|
|
|
}
|
|
|
|
|
|
- int idx = Math::floor((double)p_offset / (double)bake_interval);
|
|
|
- real_t frac = Math::fmod(p_offset, bake_interval);
|
|
|
-
|
|
|
- if (idx >= bpc - 1) {
|
|
|
- return r[bpc - 1];
|
|
|
- } else if (idx == bpc - 2) {
|
|
|
- if (frac > 0) {
|
|
|
- frac /= Math::fmod(baked_max_ofs, bake_interval);
|
|
|
+ int start = 0, end = pc, idx = (end + start) / 2;
|
|
|
+ // binary search to find baked points
|
|
|
+ while (start < idx) {
|
|
|
+ real_t offset = baked_dist_cache[idx];
|
|
|
+ if (p_offset <= offset) {
|
|
|
+ end = idx;
|
|
|
+ } else {
|
|
|
+ start = idx;
|
|
|
}
|
|
|
- } else {
|
|
|
- frac /= bake_interval;
|
|
|
+ idx = (end + start) / 2;
|
|
|
}
|
|
|
|
|
|
+ real_t offset_begin = baked_dist_cache[idx];
|
|
|
+ real_t offset_end = baked_dist_cache[idx + 1];
|
|
|
+
|
|
|
+ real_t idx_interval = offset_end - offset_begin;
|
|
|
+ ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, 0, "failed to find baked segment");
|
|
|
+
|
|
|
+ real_t frac = (p_offset - offset_begin) / idx_interval;
|
|
|
+
|
|
|
return Math::lerp(r[idx], r[idx + 1], (real_t)frac);
|
|
|
}
|
|
|
|
|
@@ -1432,10 +1436,25 @@ Vector3 Curve3D::interpolate_baked_up_vector(real_t p_offset, bool p_apply_tilt)
|
|
|
const Vector3 *rp = baked_point_cache.ptr();
|
|
|
const real_t *rt = baked_tilt_cache.ptr();
|
|
|
|
|
|
- real_t offset = CLAMP(p_offset, 0.0f, baked_max_ofs);
|
|
|
+ int start = 0, end = count, idx = (end + start) / 2;
|
|
|
+ // binary search to find baked points
|
|
|
+ while (start < idx) {
|
|
|
+ real_t offset = baked_dist_cache[idx];
|
|
|
+ if (p_offset <= offset) {
|
|
|
+ end = idx;
|
|
|
+ } else {
|
|
|
+ start = idx;
|
|
|
+ }
|
|
|
+ idx = (end + start) / 2;
|
|
|
+ }
|
|
|
+
|
|
|
+ real_t offset_begin = baked_dist_cache[idx];
|
|
|
+ real_t offset_end = baked_dist_cache[idx + 1];
|
|
|
+
|
|
|
+ real_t idx_interval = offset_end - offset_begin;
|
|
|
+ ERR_FAIL_COND_V_MSG(p_offset < offset_begin || p_offset > offset_end, Vector3(0, 1, 0), "failed to find baked segment");
|
|
|
|
|
|
- int idx = Math::floor((double)offset / (double)bake_interval);
|
|
|
- real_t frac = Math::fmod(offset, bake_interval) / bake_interval;
|
|
|
+ real_t frac = (p_offset - offset_begin) / idx_interval;
|
|
|
|
|
|
if (idx == count - 1) {
|
|
|
return p_apply_tilt ? r[idx].rotated((rp[idx] - rp[idx - 1]).normalized(), rt[idx]) : r[idx];
|