|
@@ -190,8 +190,7 @@ bool AStar::_solve(Point *begin_point, Point *end_point) {
|
|
|
|
|
|
Point *n = begin_point->neighbours[i];
|
|
|
n->prev_point = begin_point;
|
|
|
- n->distance = _compute_cost(n->id, begin_point->id);
|
|
|
- n->distance *= n->weight_scale;
|
|
|
+ n->distance = _compute_cost(begin_point->id, n->id) * n->weight_scale;
|
|
|
n->last_pass = pass;
|
|
|
open_list.add(&n->list);
|
|
|
|
|
@@ -219,7 +218,6 @@ bool AStar::_solve(Point *begin_point, Point *end_point) {
|
|
|
|
|
|
real_t cost = p->distance;
|
|
|
cost += _estimate_cost(p->id, end_point->id);
|
|
|
- cost *= p->weight_scale;
|
|
|
|
|
|
if (cost < least_cost) {
|
|
|
|
|
@@ -236,8 +234,7 @@ bool AStar::_solve(Point *begin_point, Point *end_point) {
|
|
|
|
|
|
Point *e = p->neighbours[i];
|
|
|
|
|
|
- real_t distance = _compute_cost(p->id, e->id) + p->distance;
|
|
|
- distance *= e->weight_scale;
|
|
|
+ real_t distance = _compute_cost(p->id, e->id) * e->weight_scale + p->distance;
|
|
|
|
|
|
if (e->last_pass == pass) {
|
|
|
//oh this was visited already, can we win the cost?
|