|
@@ -132,8 +132,35 @@ void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_qua
|
|
|
// Compress image data and (if required) mipmaps.
|
|
|
|
|
|
const bool mipmaps = r_img->has_mipmaps();
|
|
|
- const int width = r_img->get_width();
|
|
|
- const int height = r_img->get_height();
|
|
|
+ int width = r_img->get_width();
|
|
|
+ int height = r_img->get_height();
|
|
|
+
|
|
|
+ /*
|
|
|
+ The first mipmap level of a compressed texture must be a multiple of 4. Quote from D3D11.3 spec:
|
|
|
+
|
|
|
+ BC format surfaces are always multiples of full blocks, each block representing 4x4 pixels.
|
|
|
+ For mipmaps, the top level map is required to be a multiple of 4 size in all dimensions.
|
|
|
+ The sizes for the lower level maps are computed as they are for all mipmapped surfaces,
|
|
|
+ and thus may not be a multiple of 4, for example a top level map of 20 results in a second level
|
|
|
+ map size of 10. For these cases, there is a differing 'physical' size and a 'virtual' size.
|
|
|
+ The virtual size is that computed for each mip level without adjustment, which is 10 for the example.
|
|
|
+ The physical size is the virtual size rounded up to the next multiple of 4, which is 12 for the example,
|
|
|
+ and this represents the actual memory size. The sampling hardware will apply texture address
|
|
|
+ processing based on the virtual size (using, for example, border color if specified for accesses
|
|
|
+ beyond 10), and thus for the example case will not access the 11th and 12th row of the resource.
|
|
|
+ So for mipmap chains when an axis becomes < 4 in size, only texels 'a','b','e','f'
|
|
|
+ are used for a 2x2 map, and texel 'a' is used for 1x1. Note that this is similar to, but distinct from,
|
|
|
+ the surface pitch, which can encompass additional padding beyond the physical surface size.
|
|
|
+ */
|
|
|
+ int next_width = (width + 3) & ~3;
|
|
|
+ int next_height = (height + 3) & ~3;
|
|
|
+ if (next_width != width || next_height != height) {
|
|
|
+ r_img->resize(next_width, next_height, Image::INTERPOLATE_LANCZOS);
|
|
|
+ width = r_img->get_width();
|
|
|
+ height = r_img->get_height();
|
|
|
+ }
|
|
|
+ ERR_FAIL_COND(width % 4 != 0 || height % 4 != 0); // Should be guaranteed by above
|
|
|
+
|
|
|
const uint8_t *src_read = r_img->get_data().ptr();
|
|
|
|
|
|
print_verbose(vformat("ETCPAK: Encoding image size %dx%d to format %s.", width, height, Image::get_format_name(target_format)));
|
|
@@ -144,24 +171,48 @@ void _compress_etcpak(EtcpakType p_compresstype, Image *r_img, float p_lossy_qua
|
|
|
uint8_t *dest_write = dest_data.ptrw();
|
|
|
|
|
|
int mip_count = mipmaps ? Image::get_image_required_mipmaps(width, height, target_format) : 0;
|
|
|
+ Vector<uint32_t> padded_src;
|
|
|
|
|
|
for (int i = 0; i < mip_count + 1; i++) {
|
|
|
// Get write mip metrics for target image.
|
|
|
- int mip_w, mip_h;
|
|
|
- int mip_ofs = Image::get_image_mipmap_offset_and_dimensions(width, height, target_format, i, mip_w, mip_h);
|
|
|
+ int orig_mip_w, orig_mip_h;
|
|
|
+ int mip_ofs = Image::get_image_mipmap_offset_and_dimensions(width, height, target_format, i, orig_mip_w, orig_mip_h);
|
|
|
// Ensure that mip offset is a multiple of 8 (etcpak expects uint64_t pointer).
|
|
|
ERR_FAIL_COND(mip_ofs % 8 != 0);
|
|
|
uint64_t *dest_mip_write = (uint64_t *)&dest_write[mip_ofs];
|
|
|
|
|
|
// Block size. Align stride to multiple of 4 (RGBA8).
|
|
|
- mip_w = (mip_w + 3) & ~3;
|
|
|
- mip_h = (mip_h + 3) & ~3;
|
|
|
+ int mip_w = (orig_mip_w + 3) & ~3;
|
|
|
+ int mip_h = (orig_mip_h + 3) & ~3;
|
|
|
const uint32_t blocks = mip_w * mip_h / 16;
|
|
|
|
|
|
// Get mip data from source image for reading.
|
|
|
int src_mip_ofs = r_img->get_mipmap_offset(i);
|
|
|
const uint32_t *src_mip_read = (const uint32_t *)&src_read[src_mip_ofs];
|
|
|
|
|
|
+ // Pad textures to nearest block by smearing.
|
|
|
+ if (mip_w != orig_mip_w || mip_h != orig_mip_h) {
|
|
|
+ padded_src.resize(mip_w * mip_h);
|
|
|
+ uint32_t *ptrw = padded_src.ptrw();
|
|
|
+ int x = 0, y = 0;
|
|
|
+ for (y = 0; y < orig_mip_h; y++) {
|
|
|
+ for (x = 0; x < orig_mip_w; x++) {
|
|
|
+ ptrw[mip_w * y + x] = src_mip_read[orig_mip_w * y + x];
|
|
|
+ }
|
|
|
+ // First, smear in x.
|
|
|
+ for (; x < mip_w; x++) {
|
|
|
+ ptrw[mip_w * y + x] = ptrw[mip_w * y + x - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Then, smear in y.
|
|
|
+ for (; y < mip_h; y++) {
|
|
|
+ for (x = 0; x < mip_w; x++) {
|
|
|
+ ptrw[mip_w * y + x] = ptrw[mip_w * y + x - mip_w];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Override the src_mip_read pointer to our temporary Vector.
|
|
|
+ src_mip_read = padded_src.ptr();
|
|
|
+ }
|
|
|
if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC1) {
|
|
|
CompressEtc1RgbDither(src_mip_read, dest_mip_write, blocks, mip_w);
|
|
|
} else if (p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2 || p_compresstype == EtcpakType::ETCPAK_TYPE_ETC2_RA_AS_RG) {
|