|
@@ -71,7 +71,9 @@ public:
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- float min_depth = -closest_point_view.z;
|
|
|
+ // Force distance calculation to use double precision to avoid floating-point overflow for distant objects.
|
|
|
+ closest_point = closest_point - p_cam_position;
|
|
|
+ float min_depth = Math::sqrt((double)closest_point.x * (double)closest_point.x + (double)closest_point.y * (double)closest_point.y + (double)closest_point.z * (double)closest_point.z);
|
|
|
|
|
|
Vector2 rect_min = Vector2(FLT_MAX, FLT_MAX);
|
|
|
Vector2 rect_max = Vector2(FLT_MIN, FLT_MIN);
|
|
@@ -82,9 +84,13 @@ public:
|
|
|
Vector3 corner = Vector3(p_bounds[0] * c.x + p_bounds[3] * nc.x, p_bounds[1] * c.y + p_bounds[4] * nc.y, p_bounds[2] * c.z + p_bounds[5] * nc.z);
|
|
|
Vector3 view = p_cam_inv_transform.xform(corner);
|
|
|
|
|
|
+ // When using an orthogonal camera, the closest point of an AABB to the camera is guaranteed to be a corner.
|
|
|
+ if (p_cam_projection.is_orthogonal()) {
|
|
|
+ min_depth = MIN(min_depth, -view.z);
|
|
|
+ }
|
|
|
+
|
|
|
Plane vp = Plane(view, 1.0);
|
|
|
Plane projected = p_cam_projection.xform4(vp);
|
|
|
- min_depth = MIN(min_depth, -view.z);
|
|
|
|
|
|
float w = projected.d;
|
|
|
if (w < 1.0) {
|