|
@@ -111,7 +111,7 @@ Quaternion Quaternion::log() const {
|
|
|
Quaternion Quaternion::exp() const {
|
|
|
Quaternion src = *this;
|
|
|
Vector3 src_v = Vector3(src.x, src.y, src.z);
|
|
|
- float theta = src_v.length();
|
|
|
+ real_t theta = src_v.length();
|
|
|
if (theta < CMP_EPSILON) {
|
|
|
return Quaternion(0, 0, 0, 1);
|
|
|
}
|
|
@@ -132,15 +132,9 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con
|
|
|
// adjust signs (if necessary)
|
|
|
if (cosom < 0.0f) {
|
|
|
cosom = -cosom;
|
|
|
- to1.x = -p_to.x;
|
|
|
- to1.y = -p_to.y;
|
|
|
- to1.z = -p_to.z;
|
|
|
- to1.w = -p_to.w;
|
|
|
+ to1 = -p_to;
|
|
|
} else {
|
|
|
- to1.x = p_to.x;
|
|
|
- to1.y = p_to.y;
|
|
|
- to1.z = p_to.z;
|
|
|
- to1.w = p_to.w;
|
|
|
+ to1 = p_to;
|
|
|
}
|
|
|
|
|
|
// calculate coefficients
|
|
@@ -194,11 +188,45 @@ Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pr
|
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
|
|
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
|
|
#endif
|
|
|
- //the only way to do slerp :|
|
|
|
- real_t t2 = (1.0f - p_weight) * p_weight * 2;
|
|
|
- Quaternion sp = this->slerp(p_b, p_weight);
|
|
|
- Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight);
|
|
|
- return sp.slerpni(sq, t2);
|
|
|
+ Quaternion ret_q = *this;
|
|
|
+ Quaternion pre_q = p_pre_a;
|
|
|
+ Quaternion to_q = p_b;
|
|
|
+ Quaternion post_q = p_post_b;
|
|
|
+
|
|
|
+ // Align flip phases.
|
|
|
+ ret_q = Basis(ret_q).get_rotation_quaternion();
|
|
|
+ pre_q = Basis(pre_q).get_rotation_quaternion();
|
|
|
+ to_q = Basis(to_q).get_rotation_quaternion();
|
|
|
+ post_q = Basis(post_q).get_rotation_quaternion();
|
|
|
+
|
|
|
+ // Flip quaternions to shortest path if necessary.
|
|
|
+ bool flip1 = signbit(ret_q.dot(pre_q));
|
|
|
+ pre_q = flip1 ? -pre_q : pre_q;
|
|
|
+ bool flip2 = signbit(ret_q.dot(to_q));
|
|
|
+ to_q = flip2 ? -to_q : to_q;
|
|
|
+ bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
|
|
|
+ post_q = flip3 ? -post_q : post_q;
|
|
|
+
|
|
|
+ if (flip1 || flip2 || flip3) {
|
|
|
+ // Angle is too large, calc by Approximate.
|
|
|
+ ret_q.x = Math::cubic_interpolate(ret_q.x, to_q.x, pre_q.x, post_q.x, p_weight);
|
|
|
+ ret_q.y = Math::cubic_interpolate(ret_q.y, to_q.y, pre_q.y, post_q.y, p_weight);
|
|
|
+ ret_q.z = Math::cubic_interpolate(ret_q.z, to_q.z, pre_q.z, post_q.z, p_weight);
|
|
|
+ ret_q.w = Math::cubic_interpolate(ret_q.w, to_q.w, pre_q.w, post_q.w, p_weight);
|
|
|
+ ret_q.normalize();
|
|
|
+ } else {
|
|
|
+ // Calc by Expmap.
|
|
|
+ Quaternion ln_ret = ret_q.log();
|
|
|
+ Quaternion ln_to = to_q.log();
|
|
|
+ Quaternion ln_pre = pre_q.log();
|
|
|
+ Quaternion ln_post = post_q.log();
|
|
|
+ Quaternion ln = Quaternion(0, 0, 0, 0);
|
|
|
+ ln.x = Math::cubic_interpolate(ln_ret.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
|
|
|
+ ln.y = Math::cubic_interpolate(ln_ret.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
|
|
|
+ ln.z = Math::cubic_interpolate(ln_ret.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
|
|
|
+ ret_q = ln.exp();
|
|
|
+ }
|
|
|
+ return ret_q;
|
|
|
}
|
|
|
|
|
|
Quaternion::operator String() const {
|
|
@@ -213,7 +241,7 @@ Vector3 Quaternion::get_axis() const {
|
|
|
return Vector3(x * r, y * r, z * r);
|
|
|
}
|
|
|
|
|
|
-float Quaternion::get_angle() const {
|
|
|
+real_t Quaternion::get_angle() const {
|
|
|
return 2 * Math::acos(w);
|
|
|
}
|
|
|
|