|
@@ -2463,145 +2463,127 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
|
|
int idx = _find(p_keys, p_time, p_backward);
|
|
|
|
|
|
ERR_FAIL_COND_V(idx == -2, T());
|
|
|
+ int maxi = len - 1;
|
|
|
+ bool is_start_edge = idx == -1;
|
|
|
+ bool is_end_edge = p_backward ? idx == 0 : idx >= maxi;
|
|
|
|
|
|
- int next = 0;
|
|
|
real_t c = 0.0;
|
|
|
- // prepare for all cases of interpolation
|
|
|
-
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
- // loop
|
|
|
- if (!p_backward) {
|
|
|
- // no backward
|
|
|
- if (idx >= 0) {
|
|
|
- if (idx < len - 1) {
|
|
|
- next = idx + 1;
|
|
|
- real_t delta = p_keys[next].time - p_keys[idx].time;
|
|
|
- real_t from = p_time - p_keys[idx].time;
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- } else {
|
|
|
- next = 0;
|
|
|
- real_t delta = (length - p_keys[idx].time) + p_keys[next].time;
|
|
|
- real_t from = p_time - p_keys[idx].time;
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- // on loop, behind first key
|
|
|
- idx = len - 1;
|
|
|
- next = 0;
|
|
|
+ // Prepare for all cases of interpolation.
|
|
|
+ real_t delta = 0.0;
|
|
|
+ real_t from = 0.0;
|
|
|
+
|
|
|
+ int pre = -1;
|
|
|
+ int next = -1;
|
|
|
+ int post = -1;
|
|
|
+ real_t pre_t = 0.0;
|
|
|
+ real_t to_t = 0.0;
|
|
|
+ real_t post_t = 0.0;
|
|
|
+
|
|
|
+ bool use_cubic = p_interp == INTERPOLATION_CUBIC || p_interp == INTERPOLATION_CUBIC_ANGLE;
|
|
|
+
|
|
|
+ if (!p_loop_wrap || loop_mode == LOOP_NONE) {
|
|
|
+ if (is_start_edge) {
|
|
|
+ idx = p_backward ? maxi : 0;
|
|
|
+ }
|
|
|
+ next = CLAMP(idx + (p_backward ? -1 : 1), 0, maxi);
|
|
|
+ if (use_cubic) {
|
|
|
+ pre = CLAMP(idx + (p_backward ? 1 : -1), 0, maxi);
|
|
|
+ post = CLAMP(idx + (p_backward ? -2 : 2), 0, maxi);
|
|
|
+ }
|
|
|
+ } else if (loop_mode == LOOP_LINEAR) {
|
|
|
+ if (is_start_edge) {
|
|
|
+ idx = p_backward ? 0 : maxi;
|
|
|
+ }
|
|
|
+ next = Math::posmod(idx + (p_backward ? -1 : 1), len);
|
|
|
+ if (use_cubic) {
|
|
|
+ pre = Math::posmod(idx + (p_backward ? 1 : -1), len);
|
|
|
+ post = Math::posmod(idx + (p_backward ? -2 : 2), len);
|
|
|
+ }
|
|
|
+ if (is_start_edge) {
|
|
|
+ if (!p_backward) {
|
|
|
real_t endtime = (length - p_keys[idx].time);
|
|
|
if (endtime < 0) { // may be keys past the end
|
|
|
endtime = 0;
|
|
|
}
|
|
|
- real_t delta = endtime + p_keys[next].time;
|
|
|
- real_t from = endtime + p_time;
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- // backward
|
|
|
- if (idx <= len - 1) {
|
|
|
- if (idx > 0) {
|
|
|
- next = idx - 1;
|
|
|
- real_t delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
|
|
- real_t from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- } else {
|
|
|
- next = len - 1;
|
|
|
- real_t delta = p_keys[idx].time + (length - p_keys[next].time);
|
|
|
- real_t from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- }
|
|
|
+ delta = endtime + p_keys[next].time;
|
|
|
+ from = endtime + p_time;
|
|
|
} else {
|
|
|
- // on loop, in front of last key
|
|
|
- idx = 0;
|
|
|
- next = len - 1;
|
|
|
real_t endtime = p_keys[idx].time;
|
|
|
if (endtime > length) { // may be keys past the end
|
|
|
endtime = length;
|
|
|
}
|
|
|
- real_t delta = p_keys[next].time - endtime;
|
|
|
- real_t from = p_time - endtime;
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
+ delta = endtime + length - p_keys[next].time;
|
|
|
+ from = endtime + length - p_time;
|
|
|
+ }
|
|
|
+ } else if (is_end_edge) {
|
|
|
+ if (!p_backward) {
|
|
|
+ delta = (length - p_keys[idx].time) + p_keys[next].time;
|
|
|
+ from = p_time - p_keys[idx].time;
|
|
|
+ } else {
|
|
|
+ delta = p_keys[idx].time + (length - p_keys[next].time);
|
|
|
+ from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
}
|
|
|
}
|
|
|
- } else { // no loop
|
|
|
- if (!p_backward) {
|
|
|
- if (idx >= 0) {
|
|
|
- if (idx < len - 1) {
|
|
|
- next = idx + 1;
|
|
|
- real_t delta = p_keys[next].time - p_keys[idx].time;
|
|
|
- real_t from = p_time - p_keys[idx].time;
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
- } else {
|
|
|
- next = idx;
|
|
|
+ } else {
|
|
|
+ if (is_start_edge) {
|
|
|
+ idx = p_backward ? len : -1;
|
|
|
+ }
|
|
|
+ next = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -1 : 1)) + 0.5f, (float)len) - 0.5f);
|
|
|
+ if (use_cubic) {
|
|
|
+ pre = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? 1 : -1)) + 0.5f, (float)len) - 0.5f);
|
|
|
+ post = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -2 : 2)) + 0.5f, (float)len) - 0.5f);
|
|
|
+ }
|
|
|
+ idx = (int)Math::round(Math::pingpong((float)idx + 0.5f, (float)len) - 0.5f);
|
|
|
+ if (is_start_edge) {
|
|
|
+ if (!p_backward) {
|
|
|
+ real_t endtime = p_keys[idx].time;
|
|
|
+ if (endtime < 0) { // may be keys past the end
|
|
|
+ endtime = 0;
|
|
|
}
|
|
|
+ delta = endtime + p_keys[next].time;
|
|
|
+ from = endtime + p_time;
|
|
|
} else {
|
|
|
- idx = next = 0;
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (idx <= len - 1) {
|
|
|
- if (idx > 0) {
|
|
|
- next = idx - 1;
|
|
|
- real_t delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
|
|
- real_t from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
-
|
|
|
- if (Math::is_zero_approx(delta)) {
|
|
|
- c = 0;
|
|
|
- } else {
|
|
|
- c = from / delta;
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
- next = idx;
|
|
|
+ real_t endtime = length - p_keys[idx].time;
|
|
|
+ if (endtime > length) { // may be keys past the end
|
|
|
+ endtime = length;
|
|
|
}
|
|
|
+ delta = endtime + length - p_keys[next].time;
|
|
|
+ from = endtime + length - p_time;
|
|
|
+ }
|
|
|
+ } else if (is_end_edge) {
|
|
|
+ if (!p_backward) {
|
|
|
+ delta = length * 2.0 - p_keys[idx].time - p_keys[next].time;
|
|
|
+ from = p_time - p_keys[idx].time;
|
|
|
} else {
|
|
|
- idx = next = len - 1;
|
|
|
+ delta = p_keys[idx].time + p_keys[next].time;
|
|
|
+ from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ if (!is_start_edge && !is_end_edge) {
|
|
|
+ if (!p_backward) {
|
|
|
+ delta = p_keys[next].time - p_keys[idx].time;
|
|
|
+ from = p_time - p_keys[idx].time;
|
|
|
+ } else {
|
|
|
+ delta = (length - p_keys[next].time) - (length - p_keys[idx].time);
|
|
|
+ from = (length - p_time) - (length - p_keys[idx].time);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Math::is_zero_approx(delta)) {
|
|
|
+ c = 0;
|
|
|
+ } else {
|
|
|
+ c = from / delta;
|
|
|
+ }
|
|
|
+
|
|
|
if (p_ok) {
|
|
|
*p_ok = true;
|
|
|
}
|
|
|
|
|
|
real_t tr = p_keys[idx].transition;
|
|
|
-
|
|
|
- if (tr == 0 || idx == next) {
|
|
|
- // don't interpolate if not needed
|
|
|
+ if (tr == 0) {
|
|
|
+ // Don't interpolate if not needed.
|
|
|
return p_keys[idx].value;
|
|
|
}
|
|
|
|
|
@@ -2621,48 +2603,11 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
|
|
} break;
|
|
|
case INTERPOLATION_CUBIC:
|
|
|
case INTERPOLATION_CUBIC_ANGLE: {
|
|
|
- int pre = 0;
|
|
|
- int post = 0;
|
|
|
- if (!p_backward) {
|
|
|
- pre = idx - 1;
|
|
|
- if (pre < 0) {
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
- pre = len - 1;
|
|
|
- } else {
|
|
|
- pre = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- post = next + 1;
|
|
|
- if (post >= len) {
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
- post = 0;
|
|
|
- } else {
|
|
|
- post = next;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- pre = idx + 1;
|
|
|
- if (pre >= len) {
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
- pre = 0;
|
|
|
- } else {
|
|
|
- pre = idx;
|
|
|
- }
|
|
|
- }
|
|
|
- post = next - 1;
|
|
|
- if (post < 0) {
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
- post = len - 1;
|
|
|
- } else {
|
|
|
- post = 0;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- real_t pre_t = 0.0;
|
|
|
- real_t to_t = 0.0;
|
|
|
- real_t post_t = 0.0;
|
|
|
- if (loop_mode == LOOP_LINEAR && p_loop_wrap) {
|
|
|
+ if (!p_loop_wrap || loop_mode == LOOP_NONE) {
|
|
|
+ pre_t = p_keys[pre].time - p_keys[idx].time;
|
|
|
+ to_t = p_keys[next].time - p_keys[idx].time;
|
|
|
+ post_t = p_keys[post].time - p_keys[idx].time;
|
|
|
+ } else if (loop_mode == LOOP_LINEAR) {
|
|
|
pre_t = pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time;
|
|
|
to_t = next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time;
|
|
|
post_t = next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time;
|
|
@@ -2670,6 +2615,19 @@ T Animation::_interpolate(const Vector<TKey<T>> &p_keys, double p_time, Interpol
|
|
|
pre_t = p_keys[pre].time - p_keys[idx].time;
|
|
|
to_t = p_keys[next].time - p_keys[idx].time;
|
|
|
post_t = p_keys[post].time - p_keys[idx].time;
|
|
|
+
|
|
|
+ if ((pre > idx && idx == next && post < next) || (pre < idx && idx == next && post > next)) {
|
|
|
+ pre_t = p_keys[idx].time - p_keys[pre].time;
|
|
|
+ } else if (pre == idx) {
|
|
|
+ pre_t = idx < next ? -p_keys[idx].time * 2.0 : (length - p_keys[idx].time) * 2.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (idx == next) {
|
|
|
+ to_t = pre < idx ? (length - p_keys[idx].time) * 2.0 : -p_keys[idx].time * 2.0;
|
|
|
+ post_t = p_keys[next].time - p_keys[post].time + to_t;
|
|
|
+ } else if (next == post) {
|
|
|
+ post_t = idx < next ? (length - p_keys[next].time) * 2.0 + to_t : -p_keys[next].time * 2.0 + to_t;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
if (p_interp == INTERPOLATION_CUBIC_ANGLE) {
|