Browse Source

-Add lightmapper
-Fixes to unwrapper (remove degenerates), makes Thekla not crash
-Added optional cancel button in EditorProgress
-Added function to force processing of events (needed for cancel button)

Juan Linietsky 7 years ago
parent
commit
f3ad14224e
44 changed files with 4584 additions and 1136 deletions
  1. 1 0
      SConstruct
  2. 1 0
      core/os/os.h
  3. 28 0
      drivers/gles3/rasterizer_scene_gles3.cpp
  4. 15 13
      drivers/gles3/rasterizer_scene_gles3.h
  5. 117 0
      drivers/gles3/rasterizer_storage_gles3.cpp
  6. 32 0
      drivers/gles3/rasterizer_storage_gles3.h
  7. 64 12
      drivers/gles3/shaders/scene.glsl
  8. 6 4
      editor/editor_node.cpp
  9. 5 5
      editor/editor_node.h
  10. 2 2
      editor/import/resource_importer_scene.cpp
  11. 95 0
      editor/plugins/baked_lightmap_editor_plugin.cpp
  12. 39 0
      editor/plugins/baked_lightmap_editor_plugin.h
  13. 32 4
      editor/progress_dialog.cpp
  14. 9 2
      editor/progress_dialog.h
  15. 121 0
      editor/spatial_editor_gizmos.cpp
  16. 17 0
      editor/spatial_editor_gizmos.h
  17. 4 3
      modules/thekla_unwrap/register_types.cpp
  18. 2 0
      platform/osx/os_osx.h
  19. 7 0
      platform/osx/os_osx.mm
  20. 7 0
      platform/windows/detect.py
  21. 4 0
      platform/windows/os_windows.cpp
  22. 2 0
      platform/windows/os_windows.h
  23. 6 0
      platform/x11/detect.py
  24. 7 0
      platform/x11/os_x11.cpp
  25. 1 0
      platform/x11/os_x11.h
  26. 717 0
      scene/3d/baked_lightmap.cpp
  27. 189 0
      scene/3d/baked_lightmap.h
  28. 31 995
      scene/3d/gi_probe.cpp
  29. 7 73
      scene/3d/gi_probe.h
  30. 17 0
      scene/3d/light.cpp
  31. 11 0
      scene/3d/light.h
  32. 2373 0
      scene/3d/voxel_light_baker.cpp
  33. 148 0
      scene/3d/voxel_light_baker.h
  34. 1 1
      scene/main/node.cpp
  35. 3 0
      scene/register_scene_types.cpp
  36. 15 4
      scene/resources/material.cpp
  37. 2 1
      scene/resources/material.h
  38. 15 13
      scene/resources/mesh.cpp
  39. 31 0
      servers/visual/rasterizer.h
  40. 19 0
      servers/visual/visual_server_raster.h
  41. 328 4
      servers/visual/visual_server_scene.cpp
  42. 18 0
      servers/visual/visual_server_scene.h
  43. 18 0
      servers/visual/visual_server_wrap_mt.h
  44. 17 0
      servers/visual_server.h

+ 1 - 0
SConstruct

@@ -168,6 +168,7 @@ opts.Add(BoolVariable('vsproj', "Generate Visual Studio Project.", False))
 opts.Add(EnumVariable('warnings', "Set the level of warnings emitted during compilation", 'no', ('extra', 'all', 'moderate', 'no')))
 opts.Add(BoolVariable('progress', "Show a progress indicator during build", True))
 opts.Add(BoolVariable('dev', "If yes, alias for verbose=yes warnings=all", False))
+opts.Add(BoolVariable('openmp', "If yes, enable OpenMP", True))
 
 # Thirdparty libraries
 opts.Add(BoolVariable('builtin_enet', "Use the builtin enet library", True))

+ 1 - 0
core/os/os.h

@@ -442,6 +442,7 @@ public:
 	virtual int get_power_seconds_left();
 	virtual int get_power_percent_left();
 
+	virtual void force_process_input(){};
 	bool has_feature(const String &p_feature);
 
 	/**

+ 28 - 0
drivers/gles3/rasterizer_scene_gles3.cpp

@@ -1849,6 +1849,20 @@ void RasterizerSceneGLES3::_setup_light(RenderList::Element *e, const Transform
 
 			state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, false);
 		}
+	} else if (!e->instance->lightmap_capture_data.empty()) {
+
+		glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES3::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
+		state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_CAPTURE_SKY, false);
+
+	} else if (e->instance->lightmap.is_valid()) {
+		RasterizerStorageGLES3::Texture *lightmap = storage->texture_owner.getornull(e->instance->lightmap);
+		RasterizerStorageGLES3::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
+
+		if (lightmap && capture) {
+			glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 9);
+			glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
+			state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_ENERGY, capture->energy);
+		}
 	}
 }
 
@@ -1971,6 +1985,8 @@ void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_
 					state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false);
 					state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false);
 					state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false);
+					state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false);
+					state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false);
 					state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false);
 					state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false);
 
@@ -1978,6 +1994,8 @@ void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_
 				} else {
 
 					state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, e->instance->gi_probe_instances.size() > 0);
+					state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0);
+					state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, !e->instance->lightmap_capture_data.empty() && !e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0);
 
 					state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, false);
 
@@ -2148,6 +2166,8 @@ void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_
 	state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false);
 	state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false);
 	state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false);
+	state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false);
+	state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false);
 	state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false);
 	state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, false);
 	state.scene_shader.set_conditional(SceneShaderGLES3::USE_OPAQUE_PREPASS, false);
@@ -2274,6 +2294,14 @@ void RasterizerSceneGLES3::_add_geometry_with_material(RasterizerStorageGLES3::G
 			e->sort_key |= SORT_KEY_GI_PROBES_FLAG;
 		}
 
+		if (e->instance->lightmap.is_valid()) {
+			e->sort_key |= SORT_KEY_LIGHTMAP_FLAG;
+		}
+
+		if (!e->instance->lightmap_capture_data.empty()) {
+			e->sort_key |= SORT_KEY_LIGHTMAP_CAPTURE_FLAG;
+		}
+
 		e->sort_key |= uint64_t(p_material->render_priority + 128) << RenderList::SORT_KEY_PRIORITY_SHIFT;
 	} else {
 		e->sort_key |= uint64_t(e->instance->depth_layer) << RenderList::SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT;

+ 15 - 13
drivers/gles3/rasterizer_scene_gles3.h

@@ -662,19 +662,21 @@ public:
 			SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT = 52,
 			SORT_KEY_OPAQUE_DEPTH_LAYER_MASK = 0xF,
 //64 bits unsupported in MSVC
-#define SORT_KEY_UNSHADED_FLAG (uint64_t(1) << 51)
-#define SORT_KEY_NO_DIRECTIONAL_FLAG (uint64_t(1) << 50)
-#define SORT_KEY_GI_PROBES_FLAG (uint64_t(1) << 49)
-#define SORT_KEY_VERTEX_LIT_FLAG (uint64_t(1) << 48)
-			SORT_KEY_SHADING_SHIFT = 48,
-			SORT_KEY_SHADING_MASK = 15,
-			//48-32 material index
-			SORT_KEY_MATERIAL_INDEX_SHIFT = 32,
-			//32-12 geometry index
-			SORT_KEY_GEOMETRY_INDEX_SHIFT = 12,
-			//bits 12-8 geometry type
-			SORT_KEY_GEOMETRY_TYPE_SHIFT = 8,
-			//bits 0-7 for flags
+#define SORT_KEY_UNSHADED_FLAG (uint64_t(1) << 49)
+#define SORT_KEY_NO_DIRECTIONAL_FLAG (uint64_t(1) << 48)
+#define SORT_KEY_LIGHTMAP_CAPTURE_FLAG (uint64_t(1) << 47)
+#define SORT_KEY_LIGHTMAP_FLAG (uint64_t(1) << 46)
+#define SORT_KEY_GI_PROBES_FLAG (uint64_t(1) << 45)
+#define SORT_KEY_VERTEX_LIT_FLAG (uint64_t(1) << 44)
+			SORT_KEY_SHADING_SHIFT = 44,
+			SORT_KEY_SHADING_MASK = 63,
+			//44-28 material index
+			SORT_KEY_MATERIAL_INDEX_SHIFT = 28,
+			//28-8 geometry index
+			SORT_KEY_GEOMETRY_INDEX_SHIFT = 8,
+			//bits 5-7 geometry type
+			SORT_KEY_GEOMETRY_TYPE_SHIFT = 5,
+			//bits 0-5 for flags
 			SORT_KEY_OPAQUE_PRE_PASS = 8,
 			SORT_KEY_CULL_DISABLED_FLAG = 4,
 			SORT_KEY_SKELETON_FLAG = 2,

+ 117 - 0
drivers/gles3/rasterizer_storage_gles3.cpp

@@ -5216,6 +5216,104 @@ void RasterizerStorageGLES3::gi_probe_dynamic_data_update(RID p_gi_probe_data, i
 	//glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,p_data);
 	//glTexImage3D(GL_TEXTURE_3D,p_mipmap,GL_RGBA8,gipd->width>>p_mipmap,gipd->height>>p_mipmap,gipd->depth>>p_mipmap,0,GL_RGBA,GL_UNSIGNED_BYTE,data.ptr());
 }
+/////////////////////////////
+
+RID RasterizerStorageGLES3::lightmap_capture_create() {
+
+	LightmapCapture *capture = memnew(LightmapCapture);
+	return lightmap_capture_data_owner.make_rid(capture);
+}
+
+void RasterizerStorageGLES3::lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {
+
+	LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND(!capture);
+	capture->bounds = p_bounds;
+	capture->instance_change_notify();
+}
+AABB RasterizerStorageGLES3::lightmap_capture_get_bounds(RID p_capture) const {
+
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, AABB());
+	return capture->bounds;
+}
+void RasterizerStorageGLES3::lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) {
+
+	LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND(!capture);
+
+	ERR_FAIL_COND(p_octree.size() == 0 || (p_octree.size() % sizeof(LightmapCaptureOctree)) != 0);
+
+	capture->octree.resize(p_octree.size() / sizeof(LightmapCaptureOctree));
+	if (p_octree.size()) {
+		PoolVector<LightmapCaptureOctree>::Write w = capture->octree.write();
+		PoolVector<uint8_t>::Read r = p_octree.read();
+		copymem(w.ptr(), r.ptr(), p_octree.size());
+	}
+	capture->instance_change_notify();
+}
+PoolVector<uint8_t> RasterizerStorageGLES3::lightmap_capture_get_octree(RID p_capture) const {
+
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, PoolVector<uint8_t>());
+
+	if (capture->octree.size() == 0)
+		return PoolVector<uint8_t>();
+
+	PoolVector<uint8_t> ret;
+	ret.resize(capture->octree.size() * sizeof(LightmapCaptureOctree));
+	{
+		PoolVector<LightmapCaptureOctree>::Read r = capture->octree.read();
+		PoolVector<uint8_t>::Write w = ret.write();
+		copymem(w.ptr(), r.ptr(), ret.size());
+	}
+
+	return ret;
+}
+
+void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {
+	LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND(!capture);
+	capture->cell_xform = p_xform;
+}
+
+Transform RasterizerStorageGLES3::lightmap_capture_get_octree_cell_transform(RID p_capture) const {
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, Transform());
+	return capture->cell_xform;
+}
+
+void RasterizerStorageGLES3::lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {
+	LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND(!capture);
+	capture->cell_subdiv = p_subdiv;
+}
+
+int RasterizerStorageGLES3::lightmap_capture_get_octree_cell_subdiv(RID p_capture) const {
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, 0);
+	return capture->cell_subdiv;
+}
+
+void RasterizerStorageGLES3::lightmap_capture_set_energy(RID p_capture, float p_energy) {
+
+	LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND(!capture);
+	capture->energy = p_energy;
+}
+
+float RasterizerStorageGLES3::lightmap_capture_get_energy(RID p_capture) const {
+
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, 0);
+	return capture->energy;
+}
+
+const PoolVector<RasterizerStorage::LightmapCaptureOctree> *RasterizerStorageGLES3::lightmap_capture_get_octree_ptr(RID p_capture) const {
+	const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture);
+	ERR_FAIL_COND_V(!capture, NULL);
+	return &capture->octree;
+}
 
 ///////
 
@@ -5817,6 +5915,10 @@ void RasterizerStorageGLES3::instance_add_dependency(RID p_base, RasterizerScene
 			inst = gi_probe_owner.getornull(p_base);
 			ERR_FAIL_COND(!inst);
 		} break;
+		case VS::INSTANCE_LIGHTMAP_CAPTURE: {
+			inst = lightmap_capture_data_owner.getornull(p_base);
+			ERR_FAIL_COND(!inst);
+		} break;
 		default: {
 			if (!inst) {
 				ERR_FAIL();
@@ -5860,6 +5962,10 @@ void RasterizerStorageGLES3::instance_remove_dependency(RID p_base, RasterizerSc
 			inst = gi_probe_owner.getornull(p_base);
 			ERR_FAIL_COND(!inst);
 		} break;
+		case VS::INSTANCE_LIGHTMAP_CAPTURE: {
+			inst = lightmap_capture_data_owner.getornull(p_base);
+			ERR_FAIL_COND(!inst);
+		} break;
 		default: {
 
 			if (!inst) {
@@ -6609,6 +6715,10 @@ VS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const {
 		return VS::INSTANCE_GI_PROBE;
 	}
 
+	if (lightmap_capture_data_owner.owns(p_rid)) {
+		return VS::INSTANCE_LIGHTMAP_CAPTURE;
+	}
+
 	return VS::INSTANCE_NONE;
 }
 
@@ -6795,6 +6905,13 @@ bool RasterizerStorageGLES3::free(RID p_rid) {
 		glDeleteTextures(1, &gi_probe_data->tex_id);
 		gi_probe_owner.free(p_rid);
 		memdelete(gi_probe_data);
+	} else if (lightmap_capture_data_owner.owns(p_rid)) {
+
+		// delete the texture
+		LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get(p_rid);
+
+		gi_probe_owner.free(p_rid);
+		memdelete(lightmap_capture);
 
 	} else if (canvas_occluder_owner.owns(p_rid)) {
 

+ 32 - 0
drivers/gles3/rasterizer_storage_gles3.h

@@ -1069,6 +1069,38 @@ public:
 	virtual RID gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression);
 	virtual void gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data);
 
+	/* LIGHTMAP CAPTURE */
+
+	virtual RID lightmap_capture_create();
+	virtual void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds);
+	virtual AABB lightmap_capture_get_bounds(RID p_capture) const;
+	virtual void lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree);
+	virtual PoolVector<uint8_t> lightmap_capture_get_octree(RID p_capture) const;
+	virtual void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform);
+	virtual Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const;
+	virtual void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv);
+	virtual int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const;
+
+	virtual void lightmap_capture_set_energy(RID p_capture, float p_energy);
+	virtual float lightmap_capture_get_energy(RID p_capture) const;
+
+	virtual const PoolVector<LightmapCaptureOctree> *lightmap_capture_get_octree_ptr(RID p_capture) const;
+
+	struct LightmapCapture : public Instantiable {
+
+		PoolVector<LightmapCaptureOctree> octree;
+		AABB bounds;
+		Transform cell_xform;
+		int cell_subdiv;
+		float energy;
+		LightmapCapture() {
+			energy = 1.0;
+			cell_subdiv = 1;
+		}
+	};
+
+	mutable RID_Owner<LightmapCapture> lightmap_capture_data_owner;
+
 	/* PARTICLES */
 
 	struct Particles : public GeometryOwner {

+ 64 - 12
drivers/gles3/shaders/scene.glsl

@@ -35,7 +35,7 @@ layout(location=3) in vec4 color_attrib;
 layout(location=4) in vec2 uv_attrib;
 #endif
 
-#if defined(ENABLE_UV2_INTERP)
+#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
 layout(location=5) in vec2 uv2_attrib;
 #endif
 
@@ -223,7 +223,7 @@ out vec4 color_interp;
 out vec2 uv_interp;
 #endif
 
-#if defined(ENABLE_UV2_INTERP)
+#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP)
 out vec2 uv2_interp;
 #endif
 
@@ -234,9 +234,6 @@ out vec3 binormal_interp;
 #endif
 
 
-
-
-
 #if defined(USE_MATERIAL)
 
 layout(std140) uniform UniformData { //ubo:1
@@ -356,7 +353,7 @@ void main() {
 	uv_interp = uv_attrib;
 #endif
 
-#if defined(ENABLE_UV2_INTERP)
+#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
 	uv2_interp = uv2_attrib;
 #endif
 
@@ -549,7 +546,7 @@ in vec4 color_interp;
 in vec2 uv_interp;
 #endif
 
-#if defined(ENABLE_UV2_INTERP)
+#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
 in vec2 uv2_interp;
 #endif
 
@@ -1357,7 +1354,7 @@ void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 ta
 
 		reflection_accum+=reflection;
 	}
-
+#ifndef USE_LIGHTMAP
 	if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
 
 
@@ -1403,8 +1400,20 @@ void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 ta
 		ambient_accum+=ambient_out;
 
 	}
+#endif
 }
 
+#ifdef USE_LIGHTMAP
+uniform mediump sampler2D lightmap; //texunit:-9
+uniform mediump float lightmap_energy;
+#endif
+
+#ifdef USE_LIGHTMAP_CAPTURE
+uniform mediump vec4[12] lightmap_captures;
+uniform bool lightmap_capture_sky;
+
+#endif
+
 #ifdef USE_GI_PROBES
 
 uniform mediump sampler3D gi_probe1; //texunit:-9
@@ -1632,7 +1641,7 @@ void main() {
 	vec2 uv = uv_interp;
 #endif
 
-#if defined(ENABLE_UV2_INTERP)
+#if defined(ENABLE_UV2_INTERP) || defined (USE_LIGHTMAP)
 	vec2 uv2 = uv2_interp;
 #endif
 
@@ -1745,7 +1754,7 @@ FRAGMENT_SHADER_CODE
 			//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
 
 		}
-
+#ifndef USE_LIGHTMAP
 		{
 
 			vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
@@ -1754,6 +1763,7 @@ FRAGMENT_SHADER_CODE
 			ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
 			//ambient_light=vec3(0.0,0.0,0.0);
 		}
+#endif
 	}
 
 #else
@@ -1938,6 +1948,48 @@ FRAGMENT_SHADER_CODE
 
 #endif
 
+#ifdef USE_LIGHTMAP
+	ambient_light = texture(lightmap,uv2).rgb * lightmap_energy;
+#endif
+
+#ifdef USE_LIGHTMAP_CAPTURE
+	{
+		vec3 cone_dirs[12] = vec3[] (
+			vec3(0, 0, 1),
+			vec3(0.866025, 0, 0.5),
+			vec3(0.267617, 0.823639, 0.5),
+			vec3(-0.700629, 0.509037, 0.5),
+			vec3(-0.700629, -0.509037, 0.5),
+			vec3(0.267617, -0.823639, 0.5),
+			vec3(0, 0, -1),
+			vec3(0.866025, 0, -0.5),
+			vec3(0.267617, 0.823639, -0.5),
+			vec3(-0.700629, 0.509037, -0.5),
+			vec3(-0.700629, -0.509037, -0.5),
+			vec3(0.267617, -0.823639, -0.5)
+		);
+
+
+		vec3 local_normal = normalize(camera_matrix * vec4(normal,0.0)).xyz;
+		vec4 captured = vec4(0.0);
+		float sum = 0.0;
+		for(int i=0;i<12;i++) {
+			float amount = max(0.0,dot(local_normal,cone_dirs[i])); //not correct, but creates a nice wrap around effect
+			captured += lightmap_captures[i]*amount;
+			sum+=amount;
+		}
+
+		captured/=sum;
+
+		if (lightmap_capture_sky) {
+			ambient_light = mix( ambient_light, captured.rgb, captured.a);
+		} else {
+			ambient_light = captured.rgb;
+		}
+
+	}
+#endif
+
 #ifdef USE_FORWARD_LIGHTING
 
 
@@ -1952,11 +2004,11 @@ FRAGMENT_SHADER_CODE
 	} else {
 		specular_light+=env_reflection_light;
 	}
-
+#ifndef USE_LIGHTMAP
 	if (ambient_accum.a>0.0) {
 		ambient_light+=ambient_accum.rgb/ambient_accum.a;
 	}
-
+#endif
 
 
 #ifdef USE_VERTEX_LIGHTING

+ 6 - 4
editor/editor_node.cpp

@@ -67,6 +67,7 @@
 #include "editor/plugins/animation_player_editor_plugin.h"
 #include "editor/plugins/animation_tree_editor_plugin.h"
 #include "editor/plugins/asset_library_editor_plugin.h"
+#include "editor/plugins/baked_lightmap_editor_plugin.h"
 #include "editor/plugins/camera_editor_plugin.h"
 #include "editor/plugins/canvas_item_editor_plugin.h"
 #include "editor/plugins/collision_polygon_2d_editor_plugin.h"
@@ -3384,14 +3385,14 @@ void EditorNode::stop_child_process() {
 	_menu_option_confirm(RUN_STOP, false);
 }
 
-void EditorNode::progress_add_task(const String &p_task, const String &p_label, int p_steps) {
+void EditorNode::progress_add_task(const String &p_task, const String &p_label, int p_steps, bool p_can_cancel) {
 
-	singleton->progress_dialog->add_task(p_task, p_label, p_steps);
+	singleton->progress_dialog->add_task(p_task, p_label, p_steps, p_can_cancel);
 }
 
-void EditorNode::progress_task_step(const String &p_task, const String &p_state, int p_step, bool p_force_refresh) {
+bool EditorNode::progress_task_step(const String &p_task, const String &p_state, int p_step, bool p_force_refresh) {
 
-	singleton->progress_dialog->task_step(p_task, p_state, p_step, p_force_refresh);
+	return singleton->progress_dialog->task_step(p_task, p_state, p_step, p_force_refresh);
 }
 
 void EditorNode::progress_end_task(const String &p_task) {
@@ -5659,6 +5660,7 @@ EditorNode::EditorNode() {
 	add_editor_plugin(memnew(TextureRegionEditorPlugin(this)));
 	add_editor_plugin(memnew(Particles2DEditorPlugin(this)));
 	add_editor_plugin(memnew(GIProbeEditorPlugin(this)));
+	add_editor_plugin(memnew(BakedLightmapEditorPlugin(this)));
 	add_editor_plugin(memnew(Path2DEditorPlugin(this)));
 	add_editor_plugin(memnew(PathEditorPlugin(this)));
 	add_editor_plugin(memnew(Line2DEditorPlugin(this)));

+ 5 - 5
editor/editor_node.h

@@ -745,8 +745,8 @@ public:
 
 	static void add_io_error(const String &p_error);
 
-	static void progress_add_task(const String &p_task, const String &p_label, int p_steps);
-	static void progress_task_step(const String &p_task, const String &p_state, int p_step = -1, bool p_force_refresh = true);
+	static void progress_add_task(const String &p_task, const String &p_label, int p_steps, bool p_can_cancel = false);
+	static bool progress_task_step(const String &p_task, const String &p_state, int p_step = -1, bool p_force_refresh = true);
 	static void progress_end_task(const String &p_task);
 
 	static void progress_add_task_bg(const String &p_task, const String &p_label, int p_steps);
@@ -807,9 +807,9 @@ public:
 struct EditorProgress {
 
 	String task;
-	void step(const String &p_state, int p_step = -1, bool p_force_refresh = true) { EditorNode::progress_task_step(task, p_state, p_step, p_force_refresh); }
-	EditorProgress(const String &p_task, const String &p_label, int p_amount) {
-		EditorNode::progress_add_task(p_task, p_label, p_amount);
+	bool step(const String &p_state, int p_step = -1, bool p_force_refresh = true) { return EditorNode::progress_task_step(task, p_state, p_step, p_force_refresh); }
+	EditorProgress(const String &p_task, const String &p_label, int p_amount, bool p_can_cancel = false) {
+		EditorNode::progress_add_task(p_task, p_label, p_amount, p_can_cancel);
 		task = p_task;
 	}
 	~EditorProgress() { EditorNode::progress_end_task(task); }

+ 2 - 2
editor/import/resource_importer_scene.cpp

@@ -1165,8 +1165,8 @@ void ResourceImporterScene::get_import_options(List<ImportOption> *r_options, in
 	r_options->push_back(ImportOption(PropertyInfo(Variant::BOOL, "meshes/compress"), true));
 	r_options->push_back(ImportOption(PropertyInfo(Variant::BOOL, "meshes/ensure_tangents"), true));
 	r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "meshes/storage", PROPERTY_HINT_ENUM, "Built-In,Files"), meshes_out ? 1 : 0));
-	r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "meshes/light_baking", PROPERTY_HINT_ENUM, "Disabled,Enable,Gen Lightmaps"), 0));
-	r_options->push_back(ImportOption(PropertyInfo(Variant::REAL, "meshes/lightmap_texel_size", PROPERTY_HINT_RANGE, "0.001,100,0.001"), 0.05));
+	r_options->push_back(ImportOption(PropertyInfo(Variant::INT, "meshes/light_baking", PROPERTY_HINT_ENUM, "Disabled,Enable,Gen Lightmaps", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), 0));
+	r_options->push_back(ImportOption(PropertyInfo(Variant::REAL, "meshes/lightmap_texel_size", PROPERTY_HINT_RANGE, "0.001,100,0.001"), 0.1));
 	r_options->push_back(ImportOption(PropertyInfo(Variant::BOOL, "external_files/store_in_subdir"), false));
 	r_options->push_back(ImportOption(PropertyInfo(Variant::BOOL, "animation/import", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), true));
 	r_options->push_back(ImportOption(PropertyInfo(Variant::REAL, "animation/fps", PROPERTY_HINT_RANGE, "1,120,1"), 15));

+ 95 - 0
editor/plugins/baked_lightmap_editor_plugin.cpp

@@ -0,0 +1,95 @@
+#include "baked_lightmap_editor_plugin.h"
+
+void BakedLightmapEditorPlugin::_bake() {
+
+	if (lightmap) {
+		BakedLightmap::BakeError err;
+		if (get_tree()->get_edited_scene_root() && get_tree()->get_edited_scene_root() == lightmap) {
+			err = lightmap->bake(lightmap);
+		} else {
+			err = lightmap->bake(lightmap->get_parent());
+		}
+
+		switch (err) {
+			case BakedLightmap::BAKE_ERROR_NO_SAVE_PATH:
+				EditorNode::get_singleton()->show_warning(TTR("Can't determine a save path for lightmap images.\nSave your scene (for images to be saved in the same dir), or pick a save path from the BakedLightmap properties."));
+				break;
+			case BakedLightmap::BAKE_ERROR_NO_MESHES:
+				EditorNode::get_singleton()->show_warning(TTR("No meshes to bake. Make sure they contain an UV2 channel and that the 'Bake Light' flag is on."));
+				break;
+			case BakedLightmap::BAKE_ERROR_CANT_CREATE_IMAGE:
+				EditorNode::get_singleton()->show_warning(TTR("Failed creating lightmap images, make sure path is writable."));
+				break;
+			defaut : {}
+		}
+	}
+}
+
+void BakedLightmapEditorPlugin::edit(Object *p_object) {
+
+	BakedLightmap *s = Object::cast_to<BakedLightmap>(p_object);
+	if (!s)
+		return;
+
+	lightmap = s;
+}
+
+bool BakedLightmapEditorPlugin::handles(Object *p_object) const {
+
+	return p_object->is_class("BakedLightmap");
+}
+
+void BakedLightmapEditorPlugin::make_visible(bool p_visible) {
+
+	if (p_visible) {
+		bake->show();
+	} else {
+
+		bake->hide();
+	}
+}
+
+EditorProgress *BakedLightmapEditorPlugin::tmp_progress = NULL;
+
+void BakedLightmapEditorPlugin::bake_func_begin(int p_steps) {
+
+	ERR_FAIL_COND(tmp_progress != NULL);
+
+	tmp_progress = memnew(EditorProgress("bake_lightmaps", TTR("Bake Lightmaps"), p_steps, true));
+}
+
+bool BakedLightmapEditorPlugin::bake_func_step(int p_step, const String &p_description) {
+
+	ERR_FAIL_COND_V(tmp_progress == NULL, false);
+	return tmp_progress->step(p_description, p_step);
+}
+
+void BakedLightmapEditorPlugin::bake_func_end() {
+	ERR_FAIL_COND(tmp_progress == NULL);
+	memdelete(tmp_progress);
+	tmp_progress = NULL;
+}
+
+void BakedLightmapEditorPlugin::_bind_methods() {
+
+	ClassDB::bind_method("_bake", &BakedLightmapEditorPlugin::_bake);
+}
+
+BakedLightmapEditorPlugin::BakedLightmapEditorPlugin(EditorNode *p_node) {
+
+	editor = p_node;
+	bake = memnew(Button);
+	bake->set_icon(editor->get_gui_base()->get_icon("BakedLight", "EditorIcons"));
+	bake->set_text(TTR("Bake Lightmaps"));
+	bake->hide();
+	bake->connect("pressed", this, "_bake");
+	add_control_to_container(CONTAINER_SPATIAL_EDITOR_MENU, bake);
+	lightmap = NULL;
+
+	BakedLightmap::bake_begin_function = bake_func_begin;
+	BakedLightmap::bake_step_function = bake_func_step;
+	BakedLightmap::bake_end_function = bake_func_end;
+}
+
+BakedLightmapEditorPlugin::~BakedLightmapEditorPlugin() {
+}

+ 39 - 0
editor/plugins/baked_lightmap_editor_plugin.h

@@ -0,0 +1,39 @@
+#ifndef BAKED_LIGHTMAP_EDITOR_PLUGIN_H
+#define BAKED_LIGHTMAP_EDITOR_PLUGIN_H
+
+#include "editor/editor_node.h"
+#include "editor/editor_plugin.h"
+#include "scene/3d/baked_lightmap.h"
+#include "scene/resources/material.h"
+
+class BakedLightmapEditorPlugin : public EditorPlugin {
+
+	GDCLASS(BakedLightmapEditorPlugin, EditorPlugin);
+
+	BakedLightmap *lightmap;
+
+	Button *bake;
+	EditorNode *editor;
+
+	static EditorProgress *tmp_progress;
+	static void bake_func_begin(int p_steps);
+	static bool bake_func_step(int p_step, const String &p_description);
+	static void bake_func_end();
+
+	void _bake();
+
+protected:
+	static void _bind_methods();
+
+public:
+	virtual String get_name() const { return "BakedLightmap"; }
+	bool has_main_screen() const { return false; }
+	virtual void edit(Object *p_object);
+	virtual bool handles(Object *p_object) const;
+	virtual void make_visible(bool p_visible);
+
+	BakedLightmapEditorPlugin(EditorNode *p_node);
+	~BakedLightmapEditorPlugin();
+};
+
+#endif // BAKED_LIGHTMAP_EDITOR_PLUGIN_H

+ 32 - 4
editor/progress_dialog.cpp

@@ -163,7 +163,7 @@ void ProgressDialog::_popup() {
 	popup_centered(ms);
 }
 
-void ProgressDialog::add_task(const String &p_task, const String &p_label, int p_steps) {
+void ProgressDialog::add_task(const String &p_task, const String &p_label, int p_steps, bool p_can_cancel) {
 
 	ERR_FAIL_COND(tasks.has(p_task));
 	Task t;
@@ -180,17 +180,24 @@ void ProgressDialog::add_task(const String &p_task, const String &p_label, int p
 	main->add_child(t.vb);
 
 	tasks[p_task] = t;
+	if (p_can_cancel) {
+		cancel_hb->show();
+	} else {
+		cancel_hb->hide();
+	}
+	cancel_hb->raise();
+	cancelled = false;
 	_popup();
 }
 
-void ProgressDialog::task_step(const String &p_task, const String &p_state, int p_step, bool p_force_redraw) {
+bool ProgressDialog::task_step(const String &p_task, const String &p_state, int p_step, bool p_force_redraw) {
 
-	ERR_FAIL_COND(!tasks.has(p_task));
+	ERR_FAIL_COND_V(!tasks.has(p_task), cancelled);
 
 	if (!p_force_redraw) {
 		uint64_t tus = OS::get_singleton()->get_ticks_usec();
 		if (tus - last_progress_tick < 50000) //50ms
-			return;
+			return cancelled;
 	}
 
 	Task &t = tasks[p_task];
@@ -201,7 +208,11 @@ void ProgressDialog::task_step(const String &p_task, const String &p_state, int
 
 	t.state->set_text(p_state);
 	last_progress_tick = OS::get_singleton()->get_ticks_usec();
+	if (cancel_hb->is_visible()) {
+		OS::get_singleton()->force_process_input();
+	}
 	Main::iteration(); // this will not work on a lot of platforms, so it's only meant for the editor
+	return cancelled;
 }
 
 void ProgressDialog::end_task(const String &p_task) {
@@ -218,6 +229,14 @@ void ProgressDialog::end_task(const String &p_task) {
 		_popup();
 }
 
+void ProgressDialog::_cancel_pressed() {
+	cancelled = true;
+}
+
+void ProgressDialog::_bind_methods() {
+	ClassDB::bind_method("_cancel_pressed", &ProgressDialog::_cancel_pressed);
+}
+
 ProgressDialog::ProgressDialog() {
 
 	main = memnew(VBoxContainer);
@@ -226,4 +245,13 @@ ProgressDialog::ProgressDialog() {
 	set_exclusive(true);
 	last_progress_tick = 0;
 	singleton = this;
+	cancel_hb = memnew(HBoxContainer);
+	main->add_child(cancel_hb);
+	cancel_hb->hide();
+	cancel = memnew(Button);
+	cancel_hb->add_spacer();
+	cancel_hb->add_child(cancel);
+	cancel->set_text(TTR("Cancel"));
+	cancel_hb->add_spacer();
+	cancel->connect("pressed", this, "_cancel_pressed");
 }

+ 9 - 2
editor/progress_dialog.h

@@ -31,6 +31,7 @@
 #define PROGRESS_DIALOG_H
 
 #include "scene/gui/box_container.h"
+#include "scene/gui/button.h"
 #include "scene/gui/label.h"
 #include "scene/gui/popup.h"
 #include "scene/gui/progress_bar.h"
@@ -76,6 +77,8 @@ class ProgressDialog : public Popup {
 		ProgressBar *progress;
 		Label *state;
 	};
+	HBoxContainer *cancel_hb;
+	Button *cancel;
 
 	Map<String, Task> tasks;
 	VBoxContainer *main;
@@ -84,13 +87,17 @@ class ProgressDialog : public Popup {
 	static ProgressDialog *singleton;
 	void _popup();
 
+	void _cancel_pressed();
+	bool cancelled;
+
 protected:
 	void _notification(int p_what);
+	static void _bind_methods();
 
 public:
 	static ProgressDialog *get_singleton() { return singleton; }
-	void add_task(const String &p_task, const String &p_label, int p_steps);
-	void task_step(const String &p_task, const String &p_state, int p_step = -1, bool p_force_redraw = true);
+	void add_task(const String &p_task, const String &p_label, int p_steps, bool p_can_cancel = false);
+	bool task_step(const String &p_task, const String &p_state, int p_step = -1, bool p_force_redraw = true);
 	void end_task(const String &p_task);
 
 	ProgressDialog();

+ 121 - 0
editor/spatial_editor_gizmos.cpp

@@ -2753,7 +2753,122 @@ GIProbeGizmo::GIProbeGizmo(GIProbe *p_probe) {
 }
 
 ////////
+////////
+
+///
+
+String BakedIndirectLightGizmo::get_handle_name(int p_idx) const {
+
+	switch (p_idx) {
+		case 0: return "Extents X";
+		case 1: return "Extents Y";
+		case 2: return "Extents Z";
+	}
+
+	return "";
+}
+Variant BakedIndirectLightGizmo::get_handle_value(int p_idx) const {
+
+	return baker->get_extents();
+}
+void BakedIndirectLightGizmo::set_handle(int p_idx, Camera *p_camera, const Point2 &p_point) {
+
+	Transform gt = baker->get_global_transform();
+	//gt.orthonormalize();
+	Transform gi = gt.affine_inverse();
+
+	Vector3 extents = baker->get_extents();
+
+	Vector3 ray_from = p_camera->project_ray_origin(p_point);
+	Vector3 ray_dir = p_camera->project_ray_normal(p_point);
+
+	Vector3 sg[2] = { gi.xform(ray_from), gi.xform(ray_from + ray_dir * 16384) };
+
+	Vector3 axis;
+	axis[p_idx] = 1.0;
+
+	Vector3 ra, rb;
+	Geometry::get_closest_points_between_segments(Vector3(), axis * 16384, sg[0], sg[1], ra, rb);
+	float d = ra[p_idx];
+	if (d < 0.001)
+		d = 0.001;
+
+	extents[p_idx] = d;
+	baker->set_extents(extents);
+}
+
+void BakedIndirectLightGizmo::commit_handle(int p_idx, const Variant &p_restore, bool p_cancel) {
+
+	Vector3 restore = p_restore;
+
+	if (p_cancel) {
+		baker->set_extents(restore);
+		return;
+	}
+
+	UndoRedo *ur = SpatialEditor::get_singleton()->get_undo_redo();
+	ur->create_action(TTR("Change Probe Extents"));
+	ur->add_do_method(baker, "set_extents", baker->get_extents());
+	ur->add_undo_method(baker, "set_extents", restore);
+	ur->commit_action();
+}
 
+void BakedIndirectLightGizmo::redraw() {
+
+	Color gizmo_color = EDITOR_GET("editors/3d_gizmos/gizmo_colors/baked_indirect_light");
+	Ref<Material> material = create_material("baked_indirect_light_material", gizmo_color);
+	Ref<Material> icon = create_icon_material("baked_indirect_light_icon", SpatialEditor::get_singleton()->get_icon("GizmoGIProbe", "EditorIcons"));
+	Color gizmo_color_internal = gizmo_color;
+	gizmo_color_internal.a = 0.1;
+	Ref<Material> material_internal = create_material("baked_indirect_light_internal_material", gizmo_color_internal);
+
+	clear();
+
+	Vector<Vector3> lines;
+	Vector3 extents = baker->get_extents();
+
+	static const int subdivs[BakedLightmap::SUBDIV_MAX] = { 64, 128, 256, 512 };
+
+	AABB aabb = AABB(-extents, extents * 2);
+	int subdiv = subdivs[baker->get_bake_subdiv()];
+	float cell_size = aabb.get_longest_axis_size() / subdiv;
+
+	for (int i = 0; i < 12; i++) {
+		Vector3 a, b;
+		aabb.get_edge(i, a, b);
+		lines.push_back(a);
+		lines.push_back(b);
+	}
+
+	add_lines(lines, material);
+	add_collision_segments(lines);
+
+	Vector<Vector3> handles;
+
+	for (int i = 0; i < 3; i++) {
+
+		Vector3 ax;
+		ax[i] = aabb.position[i] + aabb.size[i];
+		handles.push_back(ax);
+	}
+
+	if (is_selected()) {
+
+		gizmo_color.a = 0.1;
+		Ref<Material> solid_material = create_material("baked_indirect_light_solid_material", gizmo_color);
+		add_solid_box(solid_material, aabb.get_size());
+	}
+
+	add_unscaled_billboard(icon, 0.05);
+	add_handles(handles);
+}
+BakedIndirectLightGizmo::BakedIndirectLightGizmo(BakedLightmap *p_baker) {
+
+	baker = p_baker;
+	set_spatial_node(p_baker);
+}
+
+////////
 void NavigationMeshSpatialGizmo::redraw() {
 
 	Ref<Material> edge_material = create_material("navigation_material", EDITOR_GET("editors/3d_gizmos/gizmo_colors/navigation_edge"));
@@ -3409,6 +3524,11 @@ Ref<SpatialEditorGizmo> SpatialEditorGizmos::get_gizmo(Spatial *p_spatial) {
 		Ref<GIProbeGizmo> misg = memnew(GIProbeGizmo(Object::cast_to<GIProbe>(p_spatial)));
 		return misg;
 	}
+	if (Object::cast_to<BakedLightmap>(p_spatial)) {
+
+		Ref<BakedIndirectLightGizmo> misg = memnew(BakedIndirectLightGizmo(Object::cast_to<BakedLightmap>(p_spatial)));
+		return misg;
+	}
 
 	if (Object::cast_to<VehicleWheel>(p_spatial)) {
 
@@ -3495,6 +3615,7 @@ SpatialEditorGizmos::SpatialEditorGizmos() {
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/particles", Color(0.8, 0.7, 0.4));
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/reflection_probe", Color(0.6, 1, 0.5));
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/gi_probe", Color(0.5, 1, 0.6));
+	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/baked_indirect_light", Color(0.5, 0.6, 1));
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/shape", Color(0.5, 0.7, 1));
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/joint", Color(0.5, 0.8, 1));
 	EDITOR_DEF("editors/3d_gizmos/gizmo_colors/navigation_edge", Color(0.5, 1, 1));

+ 17 - 0
editor/spatial_editor_gizmos.h

@@ -32,6 +32,7 @@
 
 #include "editor/plugins/spatial_editor_plugin.h"
 #include "scene/3d/audio_stream_player_3d.h"
+#include "scene/3d/baked_lightmap.h"
 #include "scene/3d/camera.h"
 #include "scene/3d/collision_polygon.h"
 #include "scene/3d/collision_shape.h"
@@ -288,6 +289,22 @@ public:
 	GIProbeGizmo(GIProbe *p_probe = NULL);
 };
 
+class BakedIndirectLightGizmo : public EditorSpatialGizmo {
+
+	GDCLASS(BakedIndirectLightGizmo, EditorSpatialGizmo);
+
+	BakedLightmap *baker;
+
+public:
+	virtual String get_handle_name(int p_idx) const;
+	virtual Variant get_handle_value(int p_idx) const;
+	virtual void set_handle(int p_idx, Camera *p_camera, const Point2 &p_point);
+	virtual void commit_handle(int p_idx, const Variant &p_restore, bool p_cancel = false);
+
+	void redraw();
+	BakedIndirectLightGizmo(BakedLightmap *p_baker = NULL);
+};
+
 class CollisionShapeSpatialGizmo : public EditorSpatialGizmo {
 
 	GDCLASS(CollisionShapeSpatialGizmo, EditorSpatialGizmo);

+ 4 - 3
modules/thekla_unwrap/register_types.cpp

@@ -42,7 +42,7 @@ bool thekla_mesh_lightmap_unwrap_callback(float p_texel_size, const float *p_ver
 		input_mesh.face_array[i].vertex_index[0] = p_indices[i * 3 + 0];
 		input_mesh.face_array[i].vertex_index[1] = p_indices[i * 3 + 1];
 		input_mesh.face_array[i].vertex_index[2] = p_indices[i * 3 + 2];
-		printf("face %i - %i, %i, %i - mat %i\n", i, input_mesh.face_array[i].vertex_index[0], input_mesh.face_array[i].vertex_index[1], input_mesh.face_array[i].vertex_index[2], p_face_materials[i]);
+		//printf("face %i - %i, %i, %i - mat %i\n", i, input_mesh.face_array[i].vertex_index[0], input_mesh.face_array[i].vertex_index[1], input_mesh.face_array[i].vertex_index[2], p_face_materials[i]);
 		input_mesh.face_array[i].material_index = p_face_materials[i];
 	}
 	input_mesh.vertex_array = new Thekla::Atlas_Input_Vertex[p_vertex_count];
@@ -54,8 +54,8 @@ bool thekla_mesh_lightmap_unwrap_callback(float p_texel_size, const float *p_ver
 		}
 		input_mesh.vertex_array[i].uv[0] = 0;
 		input_mesh.vertex_array[i].uv[1] = 0;
-		printf("vertex %i - %f, %f, %f\n", i, input_mesh.vertex_array[i].position[0], input_mesh.vertex_array[i].position[1], input_mesh.vertex_array[i].position[2]);
-		printf("normal %i - %f, %f, %f\n", i, input_mesh.vertex_array[i].normal[0], input_mesh.vertex_array[i].normal[1], input_mesh.vertex_array[i].normal[2]);
+		//printf("vertex %i - %f, %f, %f\n", i, input_mesh.vertex_array[i].position[0], input_mesh.vertex_array[i].position[1], input_mesh.vertex_array[i].position[2]);
+		//printf("normal %i - %f, %f, %f\n", i, input_mesh.vertex_array[i].normal[0], input_mesh.vertex_array[i].normal[1], input_mesh.vertex_array[i].normal[2]);
 	}
 	input_mesh.face_count = p_index_count / 3;
 	input_mesh.vertex_count = p_vertex_count;
@@ -65,6 +65,7 @@ bool thekla_mesh_lightmap_unwrap_callback(float p_texel_size, const float *p_ver
 	Thekla::atlas_set_default_options(&options);
 	options.packer_options.witness.packing_quality = 1;
 	options.packer_options.witness.texel_area = 1.0 / p_texel_size;
+	options.packer_options.witness.conservative = true;
 
 	//generate
 	Thekla::Atlas_Error err;

+ 2 - 0
platform/osx/os_osx.h

@@ -228,6 +228,8 @@ public:
 
 	virtual Error move_to_trash(const String &p_path);
 
+	void force_process_input();
+
 	OS_OSX();
 
 private:

+ 7 - 0
platform/osx/os_osx.mm

@@ -1971,6 +1971,13 @@ void OS_OSX::push_input(const Ref<InputEvent> &p_event) {
 	input->parse_input_event(ev);
 }
 
+void OS_OSX::force_process_input() {
+
+	process_events(); // get rid of pending events
+	joypad_osx->process_joypads();
+
+}
+
 void OS_OSX::run() {
 
 	force_quit = false;

+ 7 - 0
platform/windows/detect.py

@@ -188,6 +188,9 @@ def configure(env):
         else:
             VC_PATH = ""
 
+	if (env["openmp"]):
+	    env.Append(CPPFLAGS=['/openmp'])
+
         env.Append(CCFLAGS=["/I" + p for p in os.getenv("INCLUDE").split(";")])
         env.Append(LIBPATH=[p for p in os.getenv("LIB").split(";")])
 
@@ -264,6 +267,10 @@ def configure(env):
             env.Append(CCFLAGS=['-flto'])
             env.Append(LINKFLAGS=['-flto=' + str(env.GetOption("num_jobs"))])
 
+	if (env["openmp"]):
+	    env.Append(CPPFLAGS=['-fopenmp'])
+	    env.Append(LIBS=['gomp'])
+
         ## Compile flags
 
         env.Append(CCFLAGS=['-DWINDOWS_ENABLED', '-mwindows'])

+ 4 - 0
platform/windows/os_windows.cpp

@@ -2156,6 +2156,10 @@ void OS_Windows::swap_buffers() {
 	gl_context->swap_buffers();
 }
 
+void OS_Windows::force_process_input() {
+	process_events(); // get rid of pending events
+}
+
 void OS_Windows::run() {
 
 	if (!main_loop)

+ 2 - 0
platform/windows/os_windows.h

@@ -287,6 +287,8 @@ public:
 	void disable_crash_handler();
 	bool is_disable_crash_handler() const;
 
+	void force_process_input();
+
 	virtual Error move_to_trash(const String &p_path);
 
 	OS_Windows(HINSTANCE _hInstance);

+ 6 - 0
platform/x11/detect.py

@@ -158,6 +158,7 @@ def configure(env):
     if not env['builtin_libwebp']:
         env.ParseConfig('pkg-config libwebp --cflags --libs')
 
+
     # freetype depends on libpng and zlib, so bundling one of them while keeping others
     # as shared libraries leads to weird issues
     if env['builtin_freetype'] or env['builtin_libpng'] or env['builtin_zlib']:
@@ -263,5 +264,10 @@ def configure(env):
         env.Append(CPPFLAGS=['-m64'])
         env.Append(LINKFLAGS=['-m64', '-L/usr/lib/i686-linux-gnu'])
 
+
+    if (env["openmp"]):
+	env.Append(CPPFLAGS=['-fopenmp'])
+	env.Append(LIBS=['gomp'])
+
     if env['use_static_cpp']:
         env.Append(LINKFLAGS=['-static-libstdc++'])

+ 7 - 0
platform/x11/os_x11.cpp

@@ -2264,6 +2264,13 @@ void OS_X11::set_icon(const Ref<Image> &p_icon) {
 	XFlush(x11_display);
 }
 
+void OS_X11::force_process_input() {
+	process_xevents(); // get rid of pending events
+#ifdef JOYDEV_ENABLED
+	joypad->process_joypads();
+#endif
+}
+
 void OS_X11::run() {
 
 	force_quit = false;

+ 1 - 0
platform/x11/os_x11.h

@@ -279,6 +279,7 @@ public:
 
 	virtual bool _check_internal_feature_support(const String &p_feature);
 
+	virtual void force_process_input();
 	void run();
 
 	void disable_crash_handler();

+ 717 - 0
scene/3d/baked_lightmap.cpp

@@ -0,0 +1,717 @@
+#include "baked_lightmap.h"
+#include "io/resource_saver.h"
+#include "os/dir_access.h"
+#include "os/os.h"
+#include "voxel_light_baker.h"
+
+void BakedLightmapData::set_bounds(const AABB &p_bounds) {
+
+	bounds = p_bounds;
+	VS::get_singleton()->lightmap_capture_set_bounds(baked_light, p_bounds);
+}
+
+AABB BakedLightmapData::get_bounds() const {
+
+	return bounds;
+}
+
+void BakedLightmapData::set_octree(const PoolVector<uint8_t> &p_octree) {
+
+	VS::get_singleton()->lightmap_capture_set_octree(baked_light, p_octree);
+}
+
+PoolVector<uint8_t> BakedLightmapData::get_octree() const {
+
+	return VS::get_singleton()->lightmap_capture_get_octree(baked_light);
+}
+
+void BakedLightmapData::set_cell_space_transform(const Transform &p_xform) {
+
+	cell_space_xform = p_xform;
+	VS::get_singleton()->lightmap_capture_set_octree_cell_transform(baked_light, p_xform);
+}
+
+Transform BakedLightmapData::get_cell_space_transform() const {
+	return cell_space_xform;
+}
+
+void BakedLightmapData::set_cell_subdiv(int p_cell_subdiv) {
+	cell_subdiv = p_cell_subdiv;
+	VS::get_singleton()->lightmap_capture_set_octree_cell_subdiv(baked_light, p_cell_subdiv);
+}
+
+int BakedLightmapData::get_cell_subdiv() const {
+	return cell_subdiv;
+}
+
+void BakedLightmapData::set_energy(float p_energy) {
+
+	energy = p_energy;
+	VS::get_singleton()->lightmap_capture_set_energy(baked_light, energy);
+}
+
+float BakedLightmapData::get_energy() const {
+
+	return energy;
+}
+
+void BakedLightmapData::add_user(const NodePath &p_path, const Ref<Texture> &p_lightmap) {
+
+	ERR_FAIL_COND(p_lightmap.is_null());
+	User user;
+	user.path = p_path;
+	user.lightmap = p_lightmap;
+	users.push_back(user);
+}
+
+int BakedLightmapData::get_user_count() const {
+
+	return users.size();
+}
+NodePath BakedLightmapData::get_user_path(int p_user) const {
+
+	ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
+	return users[p_user].path;
+}
+Ref<Texture> BakedLightmapData::get_user_lightmap(int p_user) const {
+
+	ERR_FAIL_INDEX_V(p_user, users.size(), Ref<Texture>());
+	return users[p_user].lightmap;
+}
+
+void BakedLightmapData::clear_users() {
+	users.clear();
+}
+
+void BakedLightmapData::_set_user_data(const Array &p_data) {
+
+	ERR_FAIL_COND(p_data.size() & 1);
+
+	for (int i = 0; i < p_data.size(); i += 2) {
+		add_user(p_data[i], p_data[i + 1]);
+	}
+}
+
+Array BakedLightmapData::_get_user_data() const {
+
+	Array ret;
+	for (int i = 0; i < users.size(); i++) {
+		ret.push_back(users[i].path);
+		ret.push_back(users[i].lightmap);
+	}
+	return ret;
+}
+
+RID BakedLightmapData::get_rid() const {
+	return baked_light;
+}
+void BakedLightmapData::_bind_methods() {
+
+	ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &BakedLightmapData::_set_user_data);
+	ClassDB::bind_method(D_METHOD("_get_user_data"), &BakedLightmapData::_get_user_data);
+
+	ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &BakedLightmapData::set_bounds);
+	ClassDB::bind_method(D_METHOD("get_bounds"), &BakedLightmapData::get_bounds);
+
+	ClassDB::bind_method(D_METHOD("set_cell_space_transform", "xform"), &BakedLightmapData::set_cell_space_transform);
+	ClassDB::bind_method(D_METHOD("get_cell_space_transform"), &BakedLightmapData::get_cell_space_transform);
+
+	ClassDB::bind_method(D_METHOD("set_cell_subdiv", "cell_subdiv"), &BakedLightmapData::set_cell_subdiv);
+	ClassDB::bind_method(D_METHOD("get_cell_subdiv"), &BakedLightmapData::get_cell_subdiv);
+
+	ClassDB::bind_method(D_METHOD("set_octree", "octree"), &BakedLightmapData::set_octree);
+	ClassDB::bind_method(D_METHOD("get_octree"), &BakedLightmapData::get_octree);
+
+	ClassDB::bind_method(D_METHOD("set_energy", "energy"), &BakedLightmapData::set_energy);
+	ClassDB::bind_method(D_METHOD("get_energy"), &BakedLightmapData::get_energy);
+
+	ClassDB::bind_method(D_METHOD("add_user", "path", "lightmap"), &BakedLightmapData::add_user);
+	ClassDB::bind_method(D_METHOD("get_user_count"), &BakedLightmapData::get_user_count);
+	ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &BakedLightmapData::get_user_path);
+	ClassDB::bind_method(D_METHOD("get_user_lightmap", "user_idx"), &BakedLightmapData::get_user_lightmap);
+	ClassDB::bind_method(D_METHOD("clear_users"), &BakedLightmapData::clear_users);
+
+	ADD_PROPERTY(PropertyInfo(Variant::AABB, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds");
+	ADD_PROPERTY(PropertyInfo(Variant::POOL_BYTE_ARRAY, "octree", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_octree", "get_octree");
+	ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "cell_space_transform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_space_transform", "get_cell_space_transform");
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "cell_subdiv", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_subdiv", "get_cell_subdiv");
+	ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_energy", "get_energy");
+	ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_user_data", "_get_user_data");
+}
+
+BakedLightmapData::BakedLightmapData() {
+
+	baked_light = VS::get_singleton()->lightmap_capture_create();
+	energy = 1;
+	cell_subdiv = 1;
+}
+
+BakedLightmapData::~BakedLightmapData() {
+
+	VS::get_singleton()->free(baked_light);
+}
+
+///////////////////////////
+
+BakedLightmap::BakeBeginFunc BakedLightmap::bake_begin_function = NULL;
+BakedLightmap::BakeStepFunc BakedLightmap::bake_step_function = NULL;
+BakedLightmap::BakeEndFunc BakedLightmap::bake_end_function = NULL;
+
+void BakedLightmap::set_bake_subdiv(Subdiv p_subdiv) {
+	bake_subdiv = p_subdiv;
+}
+
+BakedLightmap::Subdiv BakedLightmap::get_bake_subdiv() const {
+	return bake_subdiv;
+}
+
+void BakedLightmap::set_capture_subdiv(Subdiv p_subdiv) {
+	capture_subdiv = p_subdiv;
+}
+
+BakedLightmap::Subdiv BakedLightmap::get_capture_subdiv() const {
+	return capture_subdiv;
+}
+
+void BakedLightmap::set_extents(const Vector3 &p_extents) {
+	extents = p_extents;
+}
+
+Vector3 BakedLightmap::get_extents() const {
+	return extents;
+}
+
+void BakedLightmap::_find_meshes_and_lights(Node *p_at_node, List<PlotMesh> &plot_meshes, List<PlotLight> &plot_lights) {
+
+	MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node);
+	if (mi && mi->get_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) {
+		Ref<Mesh> mesh = mi->get_mesh();
+		if (mesh.is_valid()) {
+
+			bool all_have_uv2 = true;
+			for (int i = 0; i < mesh->get_surface_count(); i++) {
+				if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
+					all_have_uv2 = false;
+					break;
+				}
+			}
+
+			if (all_have_uv2 && mesh->get_lightmap_size_hint() != Size2()) {
+				//READY TO BAKE! size hint could be computed if not found, actually..
+
+				AABB aabb = mesh->get_aabb();
+
+				Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
+
+				if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) {
+					PlotMesh pm;
+					pm.local_xform = xf;
+					pm.mesh = mesh;
+					pm.path = get_path_to(mi);
+					for (int i = 0; i < mesh->get_surface_count(); i++) {
+						pm.instance_materials.push_back(mi->get_surface_material(i));
+					}
+					pm.override_material = mi->get_material_override();
+					plot_meshes.push_back(pm);
+				}
+			}
+		}
+	}
+
+	Light *light = Object::cast_to<Light>(p_at_node);
+
+	if (light && light->get_bake_mode() != Light::BAKE_DISABLED) {
+		PlotLight pl;
+		Transform xf = get_global_transform().affine_inverse() * light->get_global_transform();
+
+		pl.local_xform = xf;
+		pl.light = light;
+		plot_lights.push_back(pl);
+	}
+	for (int i = 0; i < p_at_node->get_child_count(); i++) {
+
+		Node *child = p_at_node->get_child(i);
+		if (!child->get_owner())
+			continue; //maybe a helper
+
+		_find_meshes_and_lights(child, plot_meshes, plot_lights);
+	}
+}
+
+void BakedLightmap::set_hdr(bool p_enable) {
+	hdr = p_enable;
+}
+
+bool BakedLightmap::is_hdr() const {
+	return hdr;
+}
+
+bool BakedLightmap::_bake_time(void *ud, float p_secs, float p_progress) {
+
+	uint64_t time = OS::get_singleton()->get_ticks_usec();
+	BakeTimeData *btd = (BakeTimeData *)ud;
+
+	if (time - btd->last_step > 1000000) {
+
+		int mins_left = p_secs / 60;
+		int secs_left = Math::fmod(p_secs, 60.0);
+		int percent = p_progress * 100;
+		bool abort = bake_step_function(btd->pass + percent, btd->text + " " + itos(percent) + "% (Time Left: " + itos(mins_left) + ":" + itos(secs_left) + "s)");
+		btd->last_step = time;
+		if (abort)
+			return true;
+	}
+
+	return false;
+}
+
+BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_visual_debug) {
+
+	String save_path;
+
+	if (image_path.begins_with("res://")) {
+		save_path = image_path;
+	} else {
+		if (get_filename() != "") {
+			save_path = get_filename().get_base_dir();
+		} else if (get_owner() && get_owner()->get_filename() != "") {
+			save_path = get_owner()->get_filename().get_base_dir();
+		}
+
+		if (save_path == "") {
+			return BAKE_ERROR_NO_SAVE_PATH;
+		}
+		if (image_path != "") {
+			save_path.plus_file(image_path);
+		}
+	}
+	{
+		//check for valid save path
+		DirAccessRef d = DirAccess::open(save_path);
+		if (!d) {
+			ERR_PRINTS("Invalid Save Path: " + save_path);
+			return BAKE_ERROR_NO_SAVE_PATH;
+		}
+	}
+
+	Ref<BakedLightmapData> new_light_data;
+	new_light_data.instance();
+
+	static const int subdiv_value[SUBDIV_MAX] = { 8, 9, 10, 11, 12, 13 };
+
+	VoxelLightBaker baker;
+
+	baker.begin_bake(subdiv_value[bake_subdiv], AABB(-extents, extents * 2.0));
+
+	List<PlotMesh> mesh_list;
+	List<PlotLight> light_list;
+
+	_find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), mesh_list, light_list);
+
+	if (bake_begin_function) {
+		bake_begin_function(mesh_list.size() + light_list.size() + 1 + mesh_list.size() * 100);
+	}
+
+	int step = 0;
+
+	int pmc = 0;
+
+	for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) {
+
+		if (bake_step_function) {
+			bake_step_function(step++, RTR("Plotting Meshes: ") + " (" + itos(pmc + 1) + "/" + itos(mesh_list.size()) + ")");
+		}
+
+		pmc++;
+		baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material);
+	}
+
+	pmc = 0;
+	baker.begin_bake_light(VoxelLightBaker::BakeQuality(bake_quality), VoxelLightBaker::BakeMode(bake_mode), propagation, energy);
+
+	for (List<PlotLight>::Element *E = light_list.front(); E; E = E->next()) {
+
+		if (bake_step_function) {
+			bake_step_function(step++, RTR("Plotting Lights:") + " (" + itos(pmc + 1) + "/" + itos(light_list.size()) + ")");
+		}
+
+		pmc++;
+		PlotLight pl = E->get();
+		switch (pl.light->get_light_type()) {
+			case VS::LIGHT_DIRECTIONAL: {
+				baker.plot_light_directional(-pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_bake_mode() == Light::BAKE_ALL);
+			} break;
+			case VS::LIGHT_OMNI: {
+				baker.plot_light_omni(pl.local_xform.origin, pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL);
+			} break;
+			case VS::LIGHT_SPOT: {
+				baker.plot_light_spot(pl.local_xform.origin, pl.local_xform.basis.get_axis(2), pl.light->get_color(), pl.light->get_param(Light::PARAM_ENERGY), pl.light->get_param(Light::PARAM_INDIRECT_ENERGY), pl.light->get_param(Light::PARAM_RANGE), pl.light->get_param(Light::PARAM_ATTENUATION), pl.light->get_param(Light::PARAM_SPOT_ANGLE), pl.light->get_param(Light::PARAM_SPOT_ATTENUATION), pl.light->get_bake_mode() == Light::BAKE_ALL);
+
+			} break;
+		}
+	}
+	/*if (bake_step_function) {
+		bake_step_function(pmc++, RTR("Finishing Plot"));
+	}*/
+
+	baker.end_bake();
+
+	Set<String> used_mesh_names;
+
+	pmc = 0;
+	for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) {
+
+		String mesh_name = E->get().mesh->get_name();
+		if (mesh_name == "" || mesh_name.find(":") != -1 || mesh_name.find("/") != -1) {
+			mesh_name = "LightMap";
+		}
+
+		if (used_mesh_names.has(mesh_name)) {
+			int idx = 2;
+			String base = mesh_name;
+			while (true) {
+				mesh_name = base + itos(idx);
+				if (!used_mesh_names.has(mesh_name))
+					break;
+				idx++;
+			}
+		}
+		used_mesh_names.insert(mesh_name);
+
+		pmc++;
+		VoxelLightBaker::LightMapData lm;
+
+		Error err;
+		if (bake_step_function) {
+			BakeTimeData btd;
+			btd.text = RTR("Lighting Meshes: ") + mesh_name + " (" + itos(pmc) + "/" + itos(mesh_list.size()) + ")";
+			btd.pass = step;
+			btd.last_step = 0;
+			err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm, _bake_time, &btd);
+			if (err != OK) {
+				bake_end_function();
+				if (err == ERR_SKIP)
+					return BAKE_ERROR_USER_ABORTED;
+				return BAKE_ERROR_CANT_CREATE_IMAGE;
+			}
+			step += 100;
+		} else {
+
+			err = baker.make_lightmap(E->get().local_xform, E->get().mesh, lm);
+		}
+
+		if (err == OK) {
+
+			Ref<Image> image;
+			image.instance();
+
+			uint32_t tex_flags = Texture::FLAGS_DEFAULT;
+			if (hdr) {
+
+				//just save a regular image
+				PoolVector<uint8_t> data;
+				int s = lm.light.size();
+				data.resize(lm.light.size() * 2);
+				{
+
+					PoolVector<uint8_t>::Write w = data.write();
+					PoolVector<float>::Read r = lm.light.read();
+					uint16_t *hfw = (uint16_t *)w.ptr();
+					for (int i = 0; i < s; i++) {
+						hfw[i] = Math::make_half_float(r[i]);
+					}
+				}
+
+				image->create(lm.width, lm.height, false, Image::FORMAT_RGBH, data);
+
+			} else {
+
+				//just save a regular image
+				PoolVector<uint8_t> data;
+				int s = lm.light.size();
+				data.resize(lm.light.size());
+				{
+
+					PoolVector<uint8_t>::Write w = data.write();
+					PoolVector<float>::Read r = lm.light.read();
+					for (int i = 0; i < s; i += 3) {
+						Color c(r[i + 0], r[i + 1], r[i + 2]);
+						c = c.to_srgb();
+						w[i + 0] = CLAMP(c.r * 255, 0, 255);
+						w[i + 1] = CLAMP(c.g * 255, 0, 255);
+						w[i + 2] = CLAMP(c.b * 255, 0, 255);
+					}
+				}
+
+				image->create(lm.width, lm.height, false, Image::FORMAT_RGB8, data);
+
+				//This texture is saved to SRGB for two reasons:
+				// 1) first is so it looks better when doing the LINEAR->SRGB conversion (more accurate)
+				// 2) So it can be used in the GLES2 backend, which does not support linkear workflow
+				tex_flags |= Texture::FLAG_CONVERT_TO_LINEAR;
+			}
+
+			Ref<ImageTexture> tex;
+			String image_path = save_path.plus_file(mesh_name + ".tex");
+			bool set_path = true;
+			if (ResourceCache::has(image_path)) {
+				tex = Ref<Resource>((Resource *)ResourceCache::get(image_path));
+				set_path = false;
+			}
+
+			if (!tex.is_valid()) {
+				tex.instance();
+			}
+
+			tex->create_from_image(image, tex_flags);
+
+			err = ResourceSaver::save(image_path, tex, ResourceSaver::FLAG_CHANGE_PATH);
+			if (err != OK) {
+				if (bake_end_function) {
+					bake_end_function();
+				}
+				ERR_FAIL_COND_V(err != OK, BAKE_ERROR_CANT_CREATE_IMAGE);
+			}
+
+			if (set_path) {
+				tex->set_path(image_path);
+			}
+			new_light_data->add_user(E->get().path, tex);
+		}
+	}
+
+	int csubdiv = subdiv_value[capture_subdiv];
+	AABB bounds = AABB(-extents, extents * 2);
+	new_light_data->set_cell_subdiv(csubdiv);
+	new_light_data->set_bounds(bounds);
+	new_light_data->set_octree(baker.create_capture_octree(csubdiv));
+	{
+
+		Transform to_bounds;
+		to_bounds.basis.scale(Vector3(bounds.get_longest_axis_size(), bounds.get_longest_axis_size(), bounds.get_longest_axis_size()));
+		to_bounds.origin = bounds.position;
+
+		Transform to_grid;
+		to_grid.basis.scale(Vector3(1 << (csubdiv - 1), 1 << (csubdiv - 1), 1 << (csubdiv - 1)));
+
+		Transform to_cell_space = to_grid * to_bounds.affine_inverse();
+		new_light_data->set_cell_space_transform(to_cell_space);
+	}
+
+	if (bake_end_function) {
+		bake_end_function();
+	}
+
+	//create the data for visual server
+
+	if (p_create_visual_debug) {
+		MultiMeshInstance *mmi = memnew(MultiMeshInstance);
+		mmi->set_multimesh(baker.create_debug_multimesh(VoxelLightBaker::DEBUG_LIGHT));
+		add_child(mmi);
+#ifdef TOOLS_ENABLED
+		if (get_tree()->get_edited_scene_root() == this) {
+			mmi->set_owner(this);
+		} else {
+			mmi->set_owner(get_owner());
+		}
+#else
+		mmi->set_owner(get_owner());
+#endif
+	}
+
+	set_light_data(new_light_data);
+
+	return BAKE_ERROR_OK;
+}
+
+void BakedLightmap::_notification(int p_what) {
+	if (p_what == NOTIFICATION_READY) {
+
+		if (light_data.is_valid()) {
+			_assign_lightmaps();
+		}
+		request_ready(); //will need ready again if re-enters tree
+	}
+
+	if (p_what == NOTIFICATION_EXIT_TREE) {
+
+		if (light_data.is_valid()) {
+			_clear_lightmaps();
+		}
+	}
+}
+
+void BakedLightmap::_assign_lightmaps() {
+
+	ERR_FAIL_COND(!light_data.is_valid());
+
+	for (int i = 0; i < light_data->get_user_count(); i++) {
+		Node *node = get_node(light_data->get_user_path(i));
+		VisualInstance *vi = Object::cast_to<VisualInstance>(node);
+		ERR_CONTINUE(!vi);
+		Ref<Texture> lightmap = light_data->get_user_lightmap(i);
+		ERR_CONTINUE(!lightmap.is_valid());
+		VS::get_singleton()->instance_set_use_lightmap(vi->get_instance(), get_instance(), lightmap->get_rid());
+	}
+}
+
+void BakedLightmap::_clear_lightmaps() {
+	ERR_FAIL_COND(!light_data.is_valid());
+	for (int i = 0; i < light_data->get_user_count(); i++) {
+		Node *node = get_node(light_data->get_user_path(i));
+		VisualInstance *vi = Object::cast_to<VisualInstance>(node);
+		ERR_CONTINUE(!vi);
+		VS::get_singleton()->instance_set_use_lightmap(vi->get_instance(), RID(), RID());
+	}
+}
+
+void BakedLightmap::set_light_data(const Ref<BakedLightmapData> &p_data) {
+
+	if (light_data.is_valid()) {
+		if (is_inside_tree()) {
+			_clear_lightmaps();
+		}
+		set_base(RID());
+	}
+	light_data = p_data;
+
+	if (light_data.is_valid()) {
+		set_base(light_data->get_rid());
+		if (is_inside_tree()) {
+			_assign_lightmaps();
+		}
+	}
+}
+
+Ref<BakedLightmapData> BakedLightmap::get_light_data() const {
+
+	return light_data;
+}
+
+void BakedLightmap::_debug_bake() {
+	bake(get_parent(), true);
+}
+
+void BakedLightmap::set_propagation(float p_propagation) {
+	propagation = p_propagation;
+}
+
+float BakedLightmap::get_propagation() const {
+
+	return propagation;
+}
+
+void BakedLightmap::set_energy(float p_energy) {
+	energy = p_energy;
+}
+
+float BakedLightmap::get_energy() const {
+
+	return energy;
+}
+
+void BakedLightmap::set_bake_quality(BakeQuality p_quality) {
+	bake_quality = p_quality;
+}
+
+BakedLightmap::BakeQuality BakedLightmap::get_bake_quality() const {
+	return bake_quality;
+}
+
+void BakedLightmap::set_bake_mode(BakeMode p_mode) {
+	bake_mode = p_mode;
+}
+
+BakedLightmap::BakeMode BakedLightmap::get_bake_mode() const {
+	return bake_mode;
+}
+
+void BakedLightmap::set_image_path(const String &p_path) {
+	image_path = p_path;
+}
+
+String BakedLightmap::get_image_path() const {
+	return image_path;
+}
+
+AABB BakedLightmap::get_aabb() const {
+	return AABB(-extents, extents * 2);
+}
+PoolVector<Face3> BakedLightmap::get_faces(uint32_t p_usage_flags) const {
+	return PoolVector<Face3>();
+}
+
+void BakedLightmap::_bind_methods() {
+
+	ClassDB::bind_method(D_METHOD("set_light_data", "data"), &BakedLightmap::set_light_data);
+	ClassDB::bind_method(D_METHOD("get_light_data"), &BakedLightmap::get_light_data);
+
+	ClassDB::bind_method(D_METHOD("set_bake_subdiv", "bake_subdiv"), &BakedLightmap::set_bake_subdiv);
+	ClassDB::bind_method(D_METHOD("get_bake_subdiv"), &BakedLightmap::get_bake_subdiv);
+
+	ClassDB::bind_method(D_METHOD("set_capture_subdiv", "capture_subdiv"), &BakedLightmap::set_capture_subdiv);
+	ClassDB::bind_method(D_METHOD("get_capture_subdiv"), &BakedLightmap::get_capture_subdiv);
+
+	ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &BakedLightmap::set_bake_quality);
+	ClassDB::bind_method(D_METHOD("get_bake_quality"), &BakedLightmap::get_bake_quality);
+
+	ClassDB::bind_method(D_METHOD("set_bake_mode", "bake_mode"), &BakedLightmap::set_bake_mode);
+	ClassDB::bind_method(D_METHOD("get_bake_mode"), &BakedLightmap::get_bake_mode);
+
+	ClassDB::bind_method(D_METHOD("set_extents", "extents"), &BakedLightmap::set_extents);
+	ClassDB::bind_method(D_METHOD("get_extents"), &BakedLightmap::get_extents);
+
+	ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &BakedLightmap::set_propagation);
+	ClassDB::bind_method(D_METHOD("get_propagation"), &BakedLightmap::get_propagation);
+
+	ClassDB::bind_method(D_METHOD("set_energy", "energy"), &BakedLightmap::set_energy);
+	ClassDB::bind_method(D_METHOD("get_energy"), &BakedLightmap::get_energy);
+
+	ClassDB::bind_method(D_METHOD("set_hdr", "hdr"), &BakedLightmap::set_hdr);
+	ClassDB::bind_method(D_METHOD("is_hdr"), &BakedLightmap::is_hdr);
+
+	ClassDB::bind_method(D_METHOD("set_image_path", "image_path"), &BakedLightmap::set_image_path);
+	ClassDB::bind_method(D_METHOD("get_image_path"), &BakedLightmap::get_image_path);
+
+	ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &BakedLightmap::bake, DEFVAL(Variant()), DEFVAL(false));
+	ClassDB::bind_method(D_METHOD("debug_bake"), &BakedLightmap::_debug_bake);
+	ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
+
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_subdiv", PROPERTY_HINT_ENUM, "128,256,512,1024,2048,4096"), "set_bake_subdiv", "get_bake_subdiv");
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "capture_subdiv", PROPERTY_HINT_ENUM, "128,256,512"), "set_capture_subdiv", "get_capture_subdiv");
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_quality", PROPERTY_HINT_ENUM, "Low,Medium,High"), "set_bake_quality", "get_bake_quality");
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_mode", PROPERTY_HINT_ENUM, "ConeTrace,RayTrace"), "set_bake_mode", "get_bake_mode");
+	ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
+	ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,32,0.01"), "set_energy", "get_energy");
+	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "hdr"), "set_hdr", "is_hdr");
+	ADD_PROPERTY(PropertyInfo(Variant::STRING, "image_path", PROPERTY_HINT_DIR), "set_image_path", "get_image_path");
+	ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents");
+	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "BakedIndirectLightData"), "set_light_data", "get_light_data");
+
+	BIND_ENUM_CONSTANT(SUBDIV_128);
+	BIND_ENUM_CONSTANT(SUBDIV_256);
+	BIND_ENUM_CONSTANT(SUBDIV_512);
+	BIND_ENUM_CONSTANT(SUBDIV_1024);
+	BIND_ENUM_CONSTANT(SUBDIV_2048);
+	BIND_ENUM_CONSTANT(SUBDIV_4096);
+	BIND_ENUM_CONSTANT(SUBDIV_MAX);
+
+	BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
+	BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
+	BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
+	BIND_ENUM_CONSTANT(BAKE_MODE_CONE_TRACE);
+	BIND_ENUM_CONSTANT(BAKE_MODE_RAY_TRACE);
+}
+
+BakedLightmap::BakedLightmap() {
+
+	extents = Vector3(10, 10, 10);
+	bake_subdiv = SUBDIV_256;
+	capture_subdiv = SUBDIV_128;
+	bake_quality = BAKE_QUALITY_MEDIUM;
+	bake_mode = BAKE_MODE_CONE_TRACE;
+	energy = 1;
+	propagation = 1;
+	hdr = false;
+	image_path = ".";
+}

+ 189 - 0
scene/3d/baked_lightmap.h

@@ -0,0 +1,189 @@
+#ifndef BAKED_INDIRECT_LIGHT_H
+#define BAKED_INDIRECT_LIGHT_H
+
+#include "multimesh_instance.h"
+#include "scene/3d/light.h"
+#include "scene/3d/visual_instance.h"
+
+class BakedLightmapData : public Resource {
+	GDCLASS(BakedLightmapData, Resource);
+
+	RID baked_light;
+	AABB bounds;
+	float energy;
+	int cell_subdiv;
+	Transform cell_space_xform;
+
+	struct User {
+
+		NodePath path;
+		Ref<Texture> lightmap;
+	};
+
+	Vector<User> users;
+
+	void _set_user_data(const Array &p_data);
+	Array _get_user_data() const;
+
+protected:
+	static void _bind_methods();
+
+public:
+	void set_bounds(const AABB &p_bounds);
+	AABB get_bounds() const;
+
+	void set_octree(const PoolVector<uint8_t> &p_octree);
+	PoolVector<uint8_t> get_octree() const;
+
+	void set_cell_space_transform(const Transform &p_xform);
+	Transform get_cell_space_transform() const;
+
+	void set_cell_subdiv(int p_cell_subdiv);
+	int get_cell_subdiv() const;
+
+	void set_energy(float p_energy);
+	float get_energy() const;
+
+	void add_user(const NodePath &p_path, const Ref<Texture> &p_lightmap);
+	int get_user_count() const;
+	NodePath get_user_path(int p_user) const;
+	Ref<Texture> get_user_lightmap(int p_user) const;
+	void clear_users();
+
+	virtual RID get_rid() const;
+	BakedLightmapData();
+	~BakedLightmapData();
+};
+
+class BakedLightmap : public VisualInstance {
+	GDCLASS(BakedLightmap, VisualInstance);
+
+public:
+	enum Subdiv {
+		SUBDIV_128,
+		SUBDIV_256,
+		SUBDIV_512,
+		SUBDIV_1024,
+		SUBDIV_2048,
+		SUBDIV_4096,
+		SUBDIV_MAX
+
+	};
+
+	enum BakeQuality {
+		BAKE_QUALITY_LOW,
+		BAKE_QUALITY_MEDIUM,
+		BAKE_QUALITY_HIGH
+	};
+
+	enum BakeMode {
+		BAKE_MODE_CONE_TRACE,
+		BAKE_MODE_RAY_TRACE,
+	};
+
+	enum BakeError {
+		BAKE_ERROR_OK,
+		BAKE_ERROR_NO_SAVE_PATH,
+		BAKE_ERROR_NO_MESHES,
+		BAKE_ERROR_CANT_CREATE_IMAGE,
+		BAKE_ERROR_USER_ABORTED
+
+	};
+
+	typedef void (*BakeBeginFunc)(int);
+	typedef bool (*BakeStepFunc)(int, const String &);
+	typedef void (*BakeEndFunc)();
+
+private:
+	Subdiv bake_subdiv;
+	Subdiv capture_subdiv;
+	Vector3 extents;
+	float propagation;
+	float energy;
+	BakeQuality bake_quality;
+	BakeMode bake_mode;
+	bool hdr;
+	String image_path;
+
+	Ref<BakedLightmapData> light_data;
+
+	struct PlotMesh {
+		Ref<Material> override_material;
+		Vector<Ref<Material> > instance_materials;
+		Ref<Mesh> mesh;
+		Transform local_xform;
+		NodePath path;
+	};
+
+	struct PlotLight {
+		Light *light;
+		Transform local_xform;
+	};
+
+	void _find_meshes_and_lights(Node *p_at_node, List<PlotMesh> &plot_meshes, List<PlotLight> &plot_lights);
+
+	void _debug_bake();
+
+	void _assign_lightmaps();
+	void _clear_lightmaps();
+
+	static bool _bake_time(void *ud, float p_secs, float p_progress);
+
+	struct BakeTimeData {
+		String text;
+		int pass;
+		uint64_t last_step;
+	};
+
+protected:
+	static void _bind_methods();
+	void _notification(int p_what);
+
+public:
+	static BakeBeginFunc bake_begin_function;
+	static BakeStepFunc bake_step_function;
+	static BakeEndFunc bake_end_function;
+
+	void set_light_data(const Ref<BakedLightmapData> &p_data);
+	Ref<BakedLightmapData> get_light_data() const;
+
+	void set_bake_subdiv(Subdiv p_subdiv);
+	Subdiv get_bake_subdiv() const;
+
+	void set_capture_subdiv(Subdiv p_subdiv);
+	Subdiv get_capture_subdiv() const;
+
+	void set_extents(const Vector3 &p_extents);
+	Vector3 get_extents() const;
+
+	void set_propagation(float p_propagation);
+	float get_propagation() const;
+
+	void set_energy(float p_energy);
+	float get_energy() const;
+
+	void set_bake_quality(BakeQuality p_quality);
+	BakeQuality get_bake_quality() const;
+
+	void set_bake_mode(BakeMode p_mode);
+	BakeMode get_bake_mode() const;
+
+	void set_hdr(bool p_enable);
+	bool is_hdr() const;
+
+	void set_image_path(const String &p_path);
+	String get_image_path() const;
+
+	AABB get_aabb() const;
+	PoolVector<Face3> get_faces(uint32_t p_usage_flags) const;
+
+	BakeError bake(Node *p_from_node, bool p_create_visual_debug = false);
+	BakedLightmap();
+};
+
+VARIANT_ENUM_CAST(BakedLightmap::Subdiv);
+VARIANT_ENUM_CAST(BakedLightmap::BakeQuality);
+VARIANT_ENUM_CAST(BakedLightmap::BakeMode);
+VARIANT_ENUM_CAST(BakedLightmap::BakeError);
+
+#endif // BAKED_INDIRECT_LIGHT_H

File diff suppressed because it is too large
+ 31 - 995
scene/3d/gi_probe.cpp


+ 7 - 73
scene/3d/gi_probe.h

@@ -100,67 +100,6 @@ public:
 	typedef void (*BakeEndFunc)();
 
 private:
-	//stuff used for bake
-	struct Baker {
-
-		enum {
-			CHILD_EMPTY = 0xFFFFFFFF
-		};
-		struct Cell {
-
-			uint32_t childs[8];
-			float albedo[3]; //albedo in RGB24
-			float emission[3]; //accumulated light in 16:16 fixed point (needs to be integer for moving lights fast)
-			float normal[3];
-			uint32_t used_sides;
-			float alpha; //used for upsampling
-			int level;
-
-			Cell() {
-				for (int i = 0; i < 8; i++) {
-					childs[i] = CHILD_EMPTY;
-				}
-
-				for (int i = 0; i < 3; i++) {
-					emission[i] = 0;
-					albedo[i] = 0;
-					normal[i] = 0;
-				}
-				alpha = 0;
-				used_sides = 0;
-				level = 0;
-			}
-		};
-
-		Vector<Cell> bake_cells;
-		int cell_subdiv;
-
-		struct MaterialCache {
-			//128x128 textures
-			Vector<Color> albedo;
-			Vector<Color> emission;
-		};
-
-		Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color);
-		Map<Ref<Material>, MaterialCache> material_cache;
-		MaterialCache _get_material_cache(Ref<Material> p_material);
-		int leaf_voxel_count;
-
-		AABB po2_bounds;
-		int axis_cell_size[3];
-
-		struct PlotMesh {
-			Ref<Material> override_material;
-			Vector<Ref<Material> > instance_materials;
-			Ref<Mesh> mesh;
-			Transform local_xform;
-		};
-
-		Transform to_cell_space;
-
-		List<PlotMesh> mesh_list;
-	};
-
 	Ref<GIProbeData> probe_data;
 
 	RID gi_probe;
@@ -175,19 +114,14 @@ private:
 	bool interior;
 	bool compress;
 
-	int color_scan_cell_width;
-	int bake_texture_size;
-
-	Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add);
-	Baker::MaterialCache _get_material_cache(Ref<Material> p_material, Baker *p_baker);
-	void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const Baker::MaterialCache &p_material, const AABB &p_aabb, Baker *p_baker);
-	void _plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, Baker *p_baker, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material);
-	void _find_meshes(Node *p_at_node, Baker *p_baker);
-	void _fixup_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, Baker *p_baker);
-
-	void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, Baker *p_baker);
-	void _create_debug_mesh(Baker *p_baker);
+	struct PlotMesh {
+		Ref<Material> override_material;
+		Vector<Ref<Material> > instance_materials;
+		Ref<Mesh> mesh;
+		Transform local_xform;
+	};
 
+	void _find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes);
 	void _debug_bake();
 
 protected:

+ 17 - 0
scene/3d/light.cpp

@@ -142,6 +142,14 @@ PoolVector<Face3> Light::get_faces(uint32_t p_usage_flags) const {
 	return PoolVector<Face3>();
 }
 
+void Light::set_bake_mode(BakeMode p_mode) {
+	bake_mode = p_mode;
+}
+
+Light::BakeMode Light::get_bake_mode() const {
+	return bake_mode;
+}
+
 void Light::_update_visibility() {
 
 	if (!is_inside_tree())
@@ -219,12 +227,16 @@ void Light::_bind_methods() {
 	ClassDB::bind_method(D_METHOD("set_shadow_color", "shadow_color"), &Light::set_shadow_color);
 	ClassDB::bind_method(D_METHOD("get_shadow_color"), &Light::get_shadow_color);
 
+	ClassDB::bind_method(D_METHOD("set_bake_mode", "bake_mode"), &Light::set_bake_mode);
+	ClassDB::bind_method(D_METHOD("get_bake_mode"), &Light::get_bake_mode);
+
 	ADD_GROUP("Light", "light_");
 	ADD_PROPERTY(PropertyInfo(Variant::COLOR, "light_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_color", "get_color");
 	ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_param", "get_param", PARAM_ENERGY);
 	ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_indirect_energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_param", "get_param", PARAM_INDIRECT_ENERGY);
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "light_negative"), "set_negative", "is_negative");
 	ADD_PROPERTYI(PropertyInfo(Variant::REAL, "light_specular", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_SPECULAR);
+	ADD_PROPERTY(PropertyInfo(Variant::INT, "light_bake_mode", PROPERTY_HINT_ENUM, "Disable,Indirect,All"), "set_bake_mode", "get_bake_mode");
 	ADD_PROPERTY(PropertyInfo(Variant::INT, "light_cull_mask", PROPERTY_HINT_LAYERS_3D_RENDER), "set_cull_mask", "get_cull_mask");
 	ADD_GROUP("Shadow", "shadow_");
 	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "shadow_enabled"), "set_shadow", "has_shadow");
@@ -252,6 +264,10 @@ void Light::_bind_methods() {
 	BIND_ENUM_CONSTANT(PARAM_SHADOW_BIAS);
 	BIND_ENUM_CONSTANT(PARAM_SHADOW_BIAS_SPLIT_SCALE);
 	BIND_ENUM_CONSTANT(PARAM_MAX);
+
+	BIND_ENUM_CONSTANT(BAKE_DISABLED);
+	BIND_ENUM_CONSTANT(BAKE_INDIRECT);
+	BIND_ENUM_CONSTANT(BAKE_ALL);
 }
 
 Light::Light(VisualServer::LightType p_type) {
@@ -267,6 +283,7 @@ Light::Light(VisualServer::LightType p_type) {
 	VS::get_singleton()->instance_set_base(get_instance(), light);
 
 	reverse_cull = false;
+	bake_mode = BAKE_INDIRECT;
 
 	editor_only = false;
 	set_color(Color(1, 1, 1, 1));

+ 11 - 0
scene/3d/light.h

@@ -63,6 +63,12 @@ public:
 		PARAM_MAX = VS::LIGHT_PARAM_MAX
 	};
 
+	enum BakeMode {
+		BAKE_DISABLED,
+		BAKE_INDIRECT,
+		BAKE_ALL
+	};
+
 private:
 	Color color;
 	float param[PARAM_MAX];
@@ -74,6 +80,7 @@ private:
 	VS::LightType type;
 	bool editor_only;
 	void _update_visibility();
+	BakeMode bake_mode;
 
 	// bind helpers
 
@@ -114,6 +121,9 @@ public:
 	void set_shadow_reverse_cull_face(bool p_enable);
 	bool get_shadow_reverse_cull_face() const;
 
+	void set_bake_mode(BakeMode p_mode);
+	BakeMode get_bake_mode() const;
+
 	virtual AABB get_aabb() const;
 	virtual PoolVector<Face3> get_faces(uint32_t p_usage_flags) const;
 
@@ -122,6 +132,7 @@ public:
 };
 
 VARIANT_ENUM_CAST(Light::Param);
+VARIANT_ENUM_CAST(Light::BakeMode);
 
 class DirectionalLight : public Light {
 

+ 2373 - 0
scene/3d/voxel_light_baker.cpp

@@ -0,0 +1,2373 @@
+#include "voxel_light_baker.h"
+#include "os/os.h"
+#define FINDMINMAX(x0, x1, x2, min, max) \
+	min = max = x0;                      \
+	if (x1 < min) min = x1;              \
+	if (x1 > max) max = x1;              \
+	if (x2 < min) min = x2;              \
+	if (x2 > max) max = x2;
+
+static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) {
+	int q;
+	Vector3 vmin, vmax;
+	for (q = 0; q <= 2; q++) {
+		if (normal[q] > 0.0f) {
+			vmin[q] = -maxbox[q];
+			vmax[q] = maxbox[q];
+		} else {
+			vmin[q] = maxbox[q];
+			vmax[q] = -maxbox[q];
+		}
+	}
+	if (normal.dot(vmin) + d > 0.0f) return false;
+	if (normal.dot(vmax) + d >= 0.0f) return true;
+
+	return false;
+}
+
+/*======================== X-tests ========================*/
+#define AXISTEST_X01(a, b, fa, fb)                 \
+	p0 = a * v0.y - b * v0.z;                      \
+	p2 = a * v2.y - b * v2.z;                      \
+	if (p0 < p2) {                                 \
+		min = p0;                                  \
+		max = p2;                                  \
+	} else {                                       \
+		min = p2;                                  \
+		max = p0;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+	if (min > rad || max < -rad) return false;
+
+#define AXISTEST_X2(a, b, fa, fb)                  \
+	p0 = a * v0.y - b * v0.z;                      \
+	p1 = a * v1.y - b * v1.z;                      \
+	if (p0 < p1) {                                 \
+		min = p0;                                  \
+		max = p1;                                  \
+	} else {                                       \
+		min = p1;                                  \
+		max = p0;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
+	if (min > rad || max < -rad) return false;
+
+/*======================== Y-tests ========================*/
+#define AXISTEST_Y02(a, b, fa, fb)                 \
+	p0 = -a * v0.x + b * v0.z;                     \
+	p2 = -a * v2.x + b * v2.z;                     \
+	if (p0 < p2) {                                 \
+		min = p0;                                  \
+		max = p2;                                  \
+	} else {                                       \
+		min = p2;                                  \
+		max = p0;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+	if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Y1(a, b, fa, fb)                  \
+	p0 = -a * v0.x + b * v0.z;                     \
+	p1 = -a * v1.x + b * v1.z;                     \
+	if (p0 < p1) {                                 \
+		min = p0;                                  \
+		max = p1;                                  \
+	} else {                                       \
+		min = p1;                                  \
+		max = p0;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
+	if (min > rad || max < -rad) return false;
+
+	/*======================== Z-tests ========================*/
+
+#define AXISTEST_Z12(a, b, fa, fb)                 \
+	p1 = a * v1.x - b * v1.y;                      \
+	p2 = a * v2.x - b * v2.y;                      \
+	if (p2 < p1) {                                 \
+		min = p2;                                  \
+		max = p1;                                  \
+	} else {                                       \
+		min = p1;                                  \
+		max = p2;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+	if (min > rad || max < -rad) return false;
+
+#define AXISTEST_Z0(a, b, fa, fb)                  \
+	p0 = a * v0.x - b * v0.y;                      \
+	p1 = a * v1.x - b * v1.y;                      \
+	if (p0 < p1) {                                 \
+		min = p0;                                  \
+		max = p1;                                  \
+	} else {                                       \
+		min = p1;                                  \
+		max = p0;                                  \
+	}                                              \
+	rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
+	if (min > rad || max < -rad) return false;
+
+static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) {
+
+	/*    use separating axis theorem to test overlap between triangle and box */
+	/*    need to test for overlap in these directions: */
+	/*    1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
+	/*       we do not even need to test these) */
+	/*    2) normal of the triangle */
+	/*    3) crossproduct(edge from tri, {x,y,z}-directin) */
+	/*       this gives 3x3=9 more tests */
+	Vector3 v0, v1, v2;
+	float min, max, d, p0, p1, p2, rad, fex, fey, fez;
+	Vector3 normal, e0, e1, e2;
+
+	/* This is the fastest branch on Sun */
+	/* move everything so that the boxcenter is in (0,0,0) */
+
+	v0 = triverts[0] - boxcenter;
+	v1 = triverts[1] - boxcenter;
+	v2 = triverts[2] - boxcenter;
+
+	/* compute triangle edges */
+	e0 = v1 - v0; /* tri edge 0 */
+	e1 = v2 - v1; /* tri edge 1 */
+	e2 = v0 - v2; /* tri edge 2 */
+
+	/* Bullet 3:  */
+	/*  test the 9 tests first (this was faster) */
+	fex = Math::abs(e0.x);
+	fey = Math::abs(e0.y);
+	fez = Math::abs(e0.z);
+	AXISTEST_X01(e0.z, e0.y, fez, fey);
+	AXISTEST_Y02(e0.z, e0.x, fez, fex);
+	AXISTEST_Z12(e0.y, e0.x, fey, fex);
+
+	fex = Math::abs(e1.x);
+	fey = Math::abs(e1.y);
+	fez = Math::abs(e1.z);
+	AXISTEST_X01(e1.z, e1.y, fez, fey);
+	AXISTEST_Y02(e1.z, e1.x, fez, fex);
+	AXISTEST_Z0(e1.y, e1.x, fey, fex);
+
+	fex = Math::abs(e2.x);
+	fey = Math::abs(e2.y);
+	fez = Math::abs(e2.z);
+	AXISTEST_X2(e2.z, e2.y, fez, fey);
+	AXISTEST_Y1(e2.z, e2.x, fez, fex);
+	AXISTEST_Z12(e2.y, e2.x, fey, fex);
+
+	/* Bullet 1: */
+	/*  first test overlap in the {x,y,z}-directions */
+	/*  find min, max of the triangle each direction, and test for overlap in */
+	/*  that direction -- this is equivalent to testing a minimal AABB around */
+	/*  the triangle against the AABB */
+
+	/* test in X-direction */
+	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
+	if (min > boxhalfsize.x || max < -boxhalfsize.x) return false;
+
+	/* test in Y-direction */
+	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
+	if (min > boxhalfsize.y || max < -boxhalfsize.y) return false;
+
+	/* test in Z-direction */
+	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
+	if (min > boxhalfsize.z || max < -boxhalfsize.z) return false;
+
+	/* Bullet 2: */
+	/*  test if the box intersects the plane of the triangle */
+	/*  compute plane equation of triangle: normal*x+d=0 */
+	normal = e0.cross(e1);
+	d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
+	if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
+
+	return true; /* box and triangle overlaps */
+}
+
+static _FORCE_INLINE_ Vector2 get_uv(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv) {
+
+	if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2)
+		return p_uv[0];
+	if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2)
+		return p_uv[1];
+	if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2)
+		return p_uv[2];
+
+	Vector3 v0 = p_vtx[1] - p_vtx[0];
+	Vector3 v1 = p_vtx[2] - p_vtx[0];
+	Vector3 v2 = p_pos - p_vtx[0];
+
+	float d00 = v0.dot(v0);
+	float d01 = v0.dot(v1);
+	float d11 = v1.dot(v1);
+	float d20 = v2.dot(v0);
+	float d21 = v2.dot(v1);
+	float denom = (d00 * d11 - d01 * d01);
+	if (denom == 0)
+		return p_uv[0];
+	float v = (d11 * d20 - d01 * d21) / denom;
+	float w = (d00 * d21 - d01 * d20) / denom;
+	float u = 1.0f - v - w;
+
+	return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
+}
+
+void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
+
+	if (p_level == cell_subdiv - 1) {
+		//plot the face by guessing it's albedo and emission value
+
+		//find best axis to map to, for scanning values
+		int closest_axis = 0;
+		float closest_dot = 0;
+
+		Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
+		Vector3 normal = plane.normal;
+
+		for (int i = 0; i < 3; i++) {
+
+			Vector3 axis;
+			axis[i] = 1.0;
+			float dot = ABS(normal.dot(axis));
+			if (i == 0 || dot > closest_dot) {
+				closest_axis = i;
+				closest_dot = dot;
+			}
+		}
+
+		Vector3 axis;
+		axis[closest_axis] = 1.0;
+		Vector3 t1;
+		t1[(closest_axis + 1) % 3] = 1.0;
+		Vector3 t2;
+		t2[(closest_axis + 2) % 3] = 1.0;
+
+		t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width);
+		t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width);
+
+		Color albedo_accum;
+		Color emission_accum;
+		Vector3 normal_accum;
+
+		float alpha = 0.0;
+
+		//map to a grid average in the best axis for this face
+		for (int i = 0; i < color_scan_cell_width; i++) {
+
+			Vector3 ofs_i = float(i) * t1;
+
+			for (int j = 0; j < color_scan_cell_width; j++) {
+
+				Vector3 ofs_j = float(j) * t2;
+
+				Vector3 from = p_aabb.position + ofs_i + ofs_j;
+				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
+				Vector3 half = (to - from) * 0.5;
+
+				//is in this cell?
+				if (!fast_tri_box_overlap(from + half, half, p_vtx)) {
+					continue; //face does not span this cell
+				}
+
+				//go from -size to +size*2 to avoid skipping collisions
+				Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
+				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
+
+				if (normal.dot(ray_from - ray_to) < 0) {
+					SWAP(ray_from, ray_to);
+				}
+
+				Vector3 intersection;
+
+				if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
+					if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
+						intersection = plane.project(ray_from);
+					} else {
+
+						intersection = plane.project(ray_to);
+					}
+				}
+
+				intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
+
+				Vector2 uv = get_uv(intersection, p_vtx, p_uv);
+
+				int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+				int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+
+				int ofs = uv_y * bake_texture_size + uv_x;
+				albedo_accum.r += p_material.albedo[ofs].r;
+				albedo_accum.g += p_material.albedo[ofs].g;
+				albedo_accum.b += p_material.albedo[ofs].b;
+				albedo_accum.a += p_material.albedo[ofs].a;
+
+				emission_accum.r += p_material.emission[ofs].r;
+				emission_accum.g += p_material.emission[ofs].g;
+				emission_accum.b += p_material.emission[ofs].b;
+
+				normal_accum += normal;
+
+				alpha += 1.0;
+			}
+		}
+
+		if (alpha == 0) {
+			//could not in any way get texture information.. so use closest point to center
+
+			Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
+			Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5);
+
+			Vector2 uv = get_uv(inters, p_vtx, p_uv);
+
+			int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+			int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1);
+
+			int ofs = uv_y * bake_texture_size + uv_x;
+
+			alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
+
+			albedo_accum.r = p_material.albedo[ofs].r * alpha;
+			albedo_accum.g = p_material.albedo[ofs].g * alpha;
+			albedo_accum.b = p_material.albedo[ofs].b * alpha;
+			albedo_accum.a = p_material.albedo[ofs].a * alpha;
+
+			emission_accum.r = p_material.emission[ofs].r * alpha;
+			emission_accum.g = p_material.emission[ofs].g * alpha;
+			emission_accum.b = p_material.emission[ofs].b * alpha;
+
+			normal_accum *= alpha;
+
+		} else {
+
+			float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
+			alpha *= accdiv;
+
+			albedo_accum.r *= accdiv;
+			albedo_accum.g *= accdiv;
+			albedo_accum.b *= accdiv;
+			albedo_accum.a *= accdiv;
+
+			emission_accum.r *= accdiv;
+			emission_accum.g *= accdiv;
+			emission_accum.b *= accdiv;
+
+			normal_accum *= accdiv;
+		}
+
+		//put this temporarily here, corrected in a later step
+		bake_cells[p_idx].albedo[0] += albedo_accum.r;
+		bake_cells[p_idx].albedo[1] += albedo_accum.g;
+		bake_cells[p_idx].albedo[2] += albedo_accum.b;
+		bake_cells[p_idx].emission[0] += emission_accum.r;
+		bake_cells[p_idx].emission[1] += emission_accum.g;
+		bake_cells[p_idx].emission[2] += emission_accum.b;
+		bake_cells[p_idx].normal[0] += normal_accum.x;
+		bake_cells[p_idx].normal[1] += normal_accum.y;
+		bake_cells[p_idx].normal[2] += normal_accum.z;
+		bake_cells[p_idx].alpha += alpha;
+
+	} else {
+		//go down
+
+		int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
+		for (int i = 0; i < 8; i++) {
+
+			AABB aabb = p_aabb;
+			aabb.size *= 0.5;
+
+			int nx = p_x;
+			int ny = p_y;
+			int nz = p_z;
+
+			if (i & 1) {
+				aabb.position.x += aabb.size.x;
+				nx += half;
+			}
+			if (i & 2) {
+				aabb.position.y += aabb.size.y;
+				ny += half;
+			}
+			if (i & 4) {
+				aabb.position.z += aabb.size.z;
+				nz += half;
+			}
+			//make sure to not plot beyond limits
+			if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2])
+				continue;
+
+			{
+				AABB test_aabb = aabb;
+				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
+				Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
+
+				if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
+					//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
+					//does not fit in child, go on
+					continue;
+				}
+			}
+
+			if (bake_cells[p_idx].childs[i] == CHILD_EMPTY) {
+				//sub cell must be created
+
+				uint32_t child_idx = bake_cells.size();
+				bake_cells[p_idx].childs[i] = child_idx;
+				bake_cells.resize(bake_cells.size() + 1);
+				bake_cells[child_idx].level = p_level + 1;
+			}
+
+			_plot_face(bake_cells[p_idx].childs[i], p_level + 1, nx, ny, nz, p_vtx, p_uv, p_material, aabb);
+		}
+	}
+}
+
+Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
+
+	Vector<Color> ret;
+
+	if (p_image.is_null() || p_image->empty()) {
+
+		ret.resize(bake_texture_size * bake_texture_size);
+		for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
+			ret[i] = p_color_add;
+		}
+
+		return ret;
+	}
+	p_image = p_image->duplicate();
+
+	if (p_image->is_compressed()) {
+		print_line("DECOMPRESSING!!!!");
+
+		p_image->decompress();
+	}
+	p_image->convert(Image::FORMAT_RGBA8);
+	p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
+
+	PoolVector<uint8_t>::Read r = p_image->get_data().read();
+	ret.resize(bake_texture_size * bake_texture_size);
+
+	for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
+		Color c;
+		c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
+		c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
+		c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
+
+		c.a = r[i * 4 + 3] / 255.0;
+
+		ret[i] = c;
+	}
+
+	return ret;
+}
+
+VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) {
+
+	//this way of obtaining materials is inaccurate and also does not support some compressed formats very well
+	Ref<SpatialMaterial> mat = p_material;
+
+	Ref<Material> material = mat; //hack for now
+
+	if (material_cache.has(material)) {
+		return material_cache[material];
+	}
+
+	MaterialCache mc;
+
+	if (mat.is_valid()) {
+
+		Ref<Texture> albedo_tex = mat->get_texture(SpatialMaterial::TEXTURE_ALBEDO);
+
+		Ref<Image> img_albedo;
+		if (albedo_tex.is_valid()) {
+
+			img_albedo = albedo_tex->get_data();
+			mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
+		} else {
+			mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
+		}
+
+		Ref<Texture> emission_tex = mat->get_texture(SpatialMaterial::TEXTURE_EMISSION);
+
+		Color emission_col = mat->get_emission();
+		float emission_energy = mat->get_emission_energy();
+
+		Ref<Image> img_emission;
+
+		if (emission_tex.is_valid()) {
+
+			img_emission = emission_tex->get_data();
+		}
+
+		if (mat->get_emission_operator() == SpatialMaterial::EMISSION_OP_ADD) {
+			mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
+		} else {
+			mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
+		}
+
+	} else {
+		Ref<Image> empty;
+
+		mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
+		mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
+	}
+
+	material_cache[p_material] = mc;
+	return mc;
+}
+
+void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) {
+
+	for (int i = 0; i < p_mesh->get_surface_count(); i++) {
+
+		if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES)
+			continue; //only triangles
+
+		Ref<Material> src_material;
+
+		if (p_override_material.is_valid()) {
+			src_material = p_override_material;
+		} else if (i < p_materials.size() && p_materials[i].is_valid()) {
+			src_material = p_materials[i];
+		} else {
+			src_material = p_mesh->surface_get_material(i);
+		}
+		MaterialCache material = _get_material_cache(src_material);
+
+		Array a = p_mesh->surface_get_arrays(i);
+
+		PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
+		PoolVector<Vector3>::Read vr = vertices.read();
+		PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
+		PoolVector<Vector2>::Read uvr;
+		PoolVector<int> index = a[Mesh::ARRAY_INDEX];
+
+		bool read_uv = false;
+
+		if (uv.size()) {
+
+			uvr = uv.read();
+			read_uv = true;
+		}
+
+		if (index.size()) {
+
+			int facecount = index.size() / 3;
+			PoolVector<int>::Read ir = index.read();
+
+			for (int j = 0; j < facecount; j++) {
+
+				Vector3 vtxs[3];
+				Vector2 uvs[3];
+
+				for (int k = 0; k < 3; k++) {
+					vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
+				}
+
+				if (read_uv) {
+					for (int k = 0; k < 3; k++) {
+						uvs[k] = uvr[ir[j * 3 + k]];
+					}
+				}
+
+				//test against original bounds
+				if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
+					continue;
+				//plot
+				_plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, po2_bounds);
+			}
+
+		} else {
+
+			int facecount = vertices.size() / 3;
+
+			for (int j = 0; j < facecount; j++) {
+
+				Vector3 vtxs[3];
+				Vector2 uvs[3];
+
+				for (int k = 0; k < 3; k++) {
+					vtxs[k] = p_xform.xform(vr[j * 3 + k]);
+				}
+
+				if (read_uv) {
+					for (int k = 0; k < 3; k++) {
+						uvs[k] = uvr[j * 3 + k];
+					}
+				}
+
+				//test against original bounds
+				if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs))
+					continue;
+				//plot face
+				_plot_face(0, 0, 0, 0, 0, vtxs, uvs, material, po2_bounds);
+			}
+		}
+	}
+
+	max_original_cells = bake_cells.size();
+}
+
+void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) {
+
+	bake_light[p_idx].x = p_x;
+	bake_light[p_idx].y = p_y;
+	bake_light[p_idx].z = p_z;
+
+	if (p_level == cell_subdiv - 1) {
+
+		bake_light[p_idx].next_leaf = first_leaf;
+		first_leaf = p_idx;
+	} else {
+
+		//go down
+		int half = (1 << (cell_subdiv - 1)) >> (p_level + 1);
+		for (int i = 0; i < 8; i++) {
+
+			uint32_t child = bake_cells[p_idx].childs[i];
+
+			if (child == CHILD_EMPTY)
+				continue;
+
+			int nx = p_x;
+			int ny = p_y;
+			int nz = p_z;
+
+			if (i & 1)
+				nx += half;
+			if (i & 2)
+				ny += half;
+			if (i & 4)
+				nz += half;
+
+			_init_light_plot(child, p_level + 1, nx, ny, nz, p_idx);
+		}
+	}
+}
+
+void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) {
+	_check_init_light();
+	propagation = p_propagation;
+	bake_quality = p_quality;
+	bake_mode = p_bake_mode;
+	energy = p_energy;
+}
+
+void VoxelLightBaker::_check_init_light() {
+	if (bake_light.size() == 0) {
+
+		direct_lights_baked = false;
+		leaf_voxel_count = 0;
+		_fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting.
+		bake_light.resize(bake_cells.size());
+		zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light));
+		first_leaf = -1;
+		_init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY);
+	}
+}
+
+static float _get_normal_advance(const Vector3 &p_normal) {
+
+	Vector3 normal = p_normal;
+	Vector3 unorm = normal.abs();
+
+	if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+		// x code
+		unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0);
+	} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+		// y code
+		unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0);
+	} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+		// z code
+		unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0);
+	} else {
+		// oh-no we messed up code
+		// has to be
+		unorm = Vector3(1.0, 0.0, 0.0);
+	}
+
+	return 1.0 / normal.dot(unorm);
+}
+
+static const Vector3 aniso_normal[6] = {
+	Vector3(-1, 0, 0),
+	Vector3(1, 0, 0),
+	Vector3(0, -1, 0),
+	Vector3(0, 1, 0),
+	Vector3(0, 0, -1),
+	Vector3(0, 0, 1)
+};
+
+uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) {
+
+	uint32_t cell = 0;
+
+	int ofs_x = 0;
+	int ofs_y = 0;
+	int ofs_z = 0;
+	int size = 1 << (cell_subdiv - 1);
+	int half = size / 2;
+
+	if (x < 0 || x >= size)
+		return -1;
+	if (y < 0 || y >= size)
+		return -1;
+	if (z < 0 || z >= size)
+		return -1;
+
+	for (int i = 0; i < cell_subdiv - 1; i++) {
+
+		const Cell *bc = &cells[cell];
+
+		int child = 0;
+		if (x >= ofs_x + half) {
+			child |= 1;
+			ofs_x += half;
+		}
+		if (y >= ofs_y + half) {
+			child |= 2;
+			ofs_y += half;
+		}
+		if (z >= ofs_z + half) {
+			child |= 4;
+			ofs_z += half;
+		}
+
+		cell = bc->childs[child];
+		if (cell == CHILD_EMPTY)
+			return CHILD_EMPTY;
+
+		half >>= 1;
+	}
+
+	return cell;
+}
+void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) {
+
+	_check_init_light();
+
+	float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1;
+
+	if (p_direct)
+		direct_lights_baked = true;
+
+	Vector3 light_axis = p_direction;
+	Plane clip[3];
+	int clip_planes = 0;
+
+	Light *light_data = bake_light.ptrw();
+	const Cell *cells = bake_cells.ptr();
+
+	for (int i = 0; i < 3; i++) {
+
+		if (ABS(light_axis[i]) < CMP_EPSILON)
+			continue;
+		clip[clip_planes].normal[i] = 1.0;
+
+		if (light_axis[i] < 0) {
+
+			clip[clip_planes].d = axis_cell_size[i] + 1;
+		} else {
+			clip[clip_planes].d -= 1.0;
+		}
+
+		clip_planes++;
+	}
+
+	float distance_adv = _get_normal_advance(light_axis);
+
+	int success_count = 0;
+
+	Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
+
+	int idx = first_leaf;
+	while (idx >= 0) {
+
+		//print_line("plot idx " + itos(idx));
+		Light *light = &light_data[idx];
+
+		Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
+		to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
+
+		Vector3 from = to - max_len * light_axis;
+
+		for (int j = 0; j < clip_planes; j++) {
+
+			clip[j].intersects_segment(from, to, &from);
+		}
+
+		float distance = (to - from).length();
+		distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always
+		from = to - light_axis * distance;
+
+		uint32_t result = 0xFFFFFFFF;
+
+		while (distance > -distance_adv) { //use this to avoid precision errors
+
+			result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
+			if (result != 0xFFFFFFFF) {
+				break;
+			}
+
+			from += light_axis * distance_adv;
+			distance -= distance_adv;
+		}
+
+		if (result == idx) {
+			//cell hit itself! hooray!
+
+			Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
+			if (normal == Vector3()) {
+				for (int i = 0; i < 6; i++) {
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0];
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1];
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2];
+				}
+
+			} else {
+
+				for (int i = 0; i < 6; i++) {
+					float s = MAX(0.0, aniso_normal[i].dot(-normal));
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s;
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s;
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s;
+				}
+			}
+
+			for (int i = 0; i < 6; i++) {
+				float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
+				light->direct_accum[i][0] += light_energy.x * s;
+				light->direct_accum[i][1] += light_energy.y * s;
+				light->direct_accum[i][2] += light_energy.z * s;
+			}
+			success_count++;
+		}
+
+		idx = light_data[idx].next_leaf;
+	}
+}
+
+void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) {
+
+	_check_init_light();
+
+	if (p_direct)
+		direct_lights_baked = true;
+
+	Plane clip[3];
+	int clip_planes = 0;
+
+	// uint64_t us = OS::get_singleton()->get_ticks_usec();
+
+	Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
+	//Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized();
+
+	float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
+
+	Light *light_data = bake_light.ptrw();
+	const Cell *cells = bake_cells.ptr();
+	Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
+
+	int idx = first_leaf;
+	while (idx >= 0) {
+
+		//print_line("plot idx " + itos(idx));
+		Light *light = &light_data[idx];
+
+		Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
+		to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
+
+		Vector3 light_axis = (to - light_pos).normalized();
+		float distance_adv = _get_normal_advance(light_axis);
+
+		Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
+
+		if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
+			idx = light_data[idx].next_leaf;
+			continue;
+		}
+
+		float att = 1.0;
+		{
+			float d = light_pos.distance_to(to);
+			if (d + distance_adv > local_radius) {
+				idx = light_data[idx].next_leaf;
+				continue; // too far away
+			}
+
+			float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
+			att *= powf(1.0 - dt, p_attenutation);
+		}
+#if 0
+		if (light_cache.type == VS::LIGHT_SPOT) {
+
+			float angle = Math::rad2deg(acos(light_axis.dot(spot_axis)));
+			if (angle > light_cache.spot_angle)
+				continue;
+
+			float d = CLAMP(angle / light_cache.spot_angle, 1, 0);
+			att *= powf(1.0 - d, light_cache.spot_attenuation);
+		}
+#endif
+		clip_planes = 0;
+
+		for (int c = 0; c < 3; c++) {
+
+			if (ABS(light_axis[c]) < CMP_EPSILON)
+				continue;
+			clip[clip_planes].normal[c] = 1.0;
+
+			if (light_axis[c] < 0) {
+
+				clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
+			} else {
+				clip[clip_planes].d -= 1.0;
+			}
+
+			clip_planes++;
+		}
+
+		Vector3 from = light_pos;
+
+		for (int j = 0; j < clip_planes; j++) {
+
+			clip[j].intersects_segment(from, to, &from);
+		}
+
+		float distance = (to - from).length();
+
+		distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
+		from = to - light_axis * distance;
+		to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
+
+		uint32_t result = 0xFFFFFFFF;
+
+		while (distance > -distance_adv) { //use this to avoid precision errors
+
+			result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
+			if (result != 0xFFFFFFFF) {
+				break;
+			}
+
+			from += light_axis * distance_adv;
+			distance -= distance_adv;
+		}
+
+		if (result == idx) {
+			//cell hit itself! hooray!
+
+			if (normal == Vector3()) {
+				for (int i = 0; i < 6; i++) {
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
+				}
+
+			} else {
+
+				for (int i = 0; i < 6; i++) {
+					float s = MAX(0.0, aniso_normal[i].dot(-normal));
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
+				}
+			}
+
+			for (int i = 0; i < 6; i++) {
+				float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
+				light->direct_accum[i][0] += light_energy.x * s * att;
+				light->direct_accum[i][1] += light_energy.y * s * att;
+				light->direct_accum[i][2] += light_energy.z * s * att;
+			}
+		}
+
+		idx = light_data[idx].next_leaf;
+	}
+}
+
+void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) {
+
+	_check_init_light();
+
+	if (p_direct)
+		direct_lights_baked = true;
+
+	Plane clip[3];
+	int clip_planes = 0;
+
+	// uint64_t us = OS::get_singleton()->get_ticks_usec();
+
+	Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5);
+	Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized();
+
+	float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius;
+
+	Light *light_data = bake_light.ptrw();
+	const Cell *cells = bake_cells.ptr();
+	Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy;
+
+	int idx = first_leaf;
+	while (idx >= 0) {
+
+		//print_line("plot idx " + itos(idx));
+		Light *light = &light_data[idx];
+
+		Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5);
+
+		Vector3 light_axis = (to - light_pos).normalized();
+		float distance_adv = _get_normal_advance(light_axis);
+
+		Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]);
+
+		if (normal != Vector3() && normal.dot(-light_axis) < 0.001) {
+			idx = light_data[idx].next_leaf;
+			continue;
+		}
+
+		float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis)));
+		if (angle > p_spot_angle) {
+			idx = light_data[idx].next_leaf;
+			continue; // too far away
+		}
+
+		float att = Math::pow(1.0 - angle / p_spot_angle, p_spot_attenuation);
+
+		{
+			float d = light_pos.distance_to(to);
+			if (d + distance_adv > local_radius) {
+				idx = light_data[idx].next_leaf;
+				continue; // too far away
+			}
+
+			float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
+			att *= powf(1.0 - dt, p_attenutation);
+		}
+#if 0
+		if (light_cache.type == VS::LIGHT_SPOT) {
+
+			float angle = Math::rad2deg(acos(light_axis.dot(spot_axis)));
+			if (angle > light_cache.spot_angle)
+				continue;
+
+			float d = CLAMP(angle / light_cache.spot_angle, 1, 0);
+			att *= powf(1.0 - d, light_cache.spot_attenuation);
+		}
+#endif
+		clip_planes = 0;
+
+		for (int c = 0; c < 3; c++) {
+
+			if (ABS(light_axis[c]) < CMP_EPSILON)
+				continue;
+			clip[clip_planes].normal[c] = 1.0;
+
+			if (light_axis[c] < 0) {
+
+				clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1;
+			} else {
+				clip[clip_planes].d -= 1.0;
+			}
+
+			clip_planes++;
+		}
+
+		Vector3 from = light_pos;
+
+		for (int j = 0; j < clip_planes; j++) {
+
+			clip[j].intersects_segment(from, to, &from);
+		}
+
+		float distance = (to - from).length();
+
+		distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
+		from = to - light_axis * distance;
+
+		uint32_t result = 0xFFFFFFFF;
+
+		while (distance > -distance_adv) { //use this to avoid precision errors
+
+			result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)));
+			if (result != 0xFFFFFFFF) {
+				break;
+			}
+
+			from += light_axis * distance_adv;
+			distance -= distance_adv;
+		}
+
+		if (result == idx) {
+			//cell hit itself! hooray!
+
+			if (normal == Vector3()) {
+				for (int i = 0; i < 6; i++) {
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att;
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att;
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att;
+				}
+
+			} else {
+
+				for (int i = 0; i < 6; i++) {
+					float s = MAX(0.0, aniso_normal[i].dot(-normal));
+					light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att;
+					light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att;
+					light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att;
+				}
+			}
+
+			for (int i = 0; i < 6; i++) {
+				float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct
+				light->direct_accum[i][0] += light_energy.x * s * att;
+				light->direct_accum[i][1] += light_energy.y * s * att;
+				light->direct_accum[i][2] += light_energy.z * s * att;
+			}
+		}
+
+		idx = light_data[idx].next_leaf;
+	}
+}
+
+void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) {
+
+	if (p_level == cell_subdiv - 1) {
+
+		leaf_voxel_count++;
+		float alpha = bake_cells[p_idx].alpha;
+
+		bake_cells[p_idx].albedo[0] /= alpha;
+		bake_cells[p_idx].albedo[1] /= alpha;
+		bake_cells[p_idx].albedo[2] /= alpha;
+
+		//transfer emission to light
+		bake_cells[p_idx].emission[0] /= alpha;
+		bake_cells[p_idx].emission[1] /= alpha;
+		bake_cells[p_idx].emission[2] /= alpha;
+
+		bake_cells[p_idx].normal[0] /= alpha;
+		bake_cells[p_idx].normal[1] /= alpha;
+		bake_cells[p_idx].normal[2] /= alpha;
+
+		Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
+		if (n.length() < 0.01) {
+			//too much fight over normal, zero it
+			bake_cells[p_idx].normal[0] = 0;
+			bake_cells[p_idx].normal[1] = 0;
+			bake_cells[p_idx].normal[2] = 0;
+		} else {
+			n.normalize();
+			bake_cells[p_idx].normal[0] = n.x;
+			bake_cells[p_idx].normal[1] = n.y;
+			bake_cells[p_idx].normal[2] = n.z;
+		}
+
+		bake_cells[p_idx].alpha = 1.0;
+
+		/*if (bake_light.size()) {
+			for(int i=0;i<6;i++) {
+
+			}
+		}*/
+
+	} else {
+
+		//go down
+
+		bake_cells[p_idx].emission[0] = 0;
+		bake_cells[p_idx].emission[1] = 0;
+		bake_cells[p_idx].emission[2] = 0;
+		bake_cells[p_idx].normal[0] = 0;
+		bake_cells[p_idx].normal[1] = 0;
+		bake_cells[p_idx].normal[2] = 0;
+		bake_cells[p_idx].albedo[0] = 0;
+		bake_cells[p_idx].albedo[1] = 0;
+		bake_cells[p_idx].albedo[2] = 0;
+		if (bake_light.size()) {
+			for (int j = 0; j < 6; j++) {
+				bake_light[p_idx].accum[j][0] = 0;
+				bake_light[p_idx].accum[j][1] = 0;
+				bake_light[p_idx].accum[j][2] = 0;
+			}
+		}
+
+		float alpha_average = 0;
+		int children_found = 0;
+
+		for (int i = 0; i < 8; i++) {
+
+			uint32_t child = bake_cells[p_idx].childs[i];
+
+			if (child == CHILD_EMPTY)
+				continue;
+
+			_fixup_plot(child, p_level + 1);
+			alpha_average += bake_cells[child].alpha;
+
+			if (bake_light.size() > 0) {
+				for (int j = 0; j < 6; j++) {
+					bake_light[p_idx].accum[j][0] += bake_light[child].accum[j][0];
+					bake_light[p_idx].accum[j][1] += bake_light[child].accum[j][1];
+					bake_light[p_idx].accum[j][2] += bake_light[child].accum[j][2];
+				}
+				bake_cells[p_idx].emission[0] += bake_cells[child].emission[0];
+				bake_cells[p_idx].emission[1] += bake_cells[child].emission[1];
+				bake_cells[p_idx].emission[2] += bake_cells[child].emission[2];
+			}
+
+			children_found++;
+		}
+
+		bake_cells[p_idx].alpha = alpha_average / 8.0;
+		if (bake_light.size() && children_found) {
+			float divisor = Math::lerp(8, children_found, propagation);
+			for (int j = 0; j < 6; j++) {
+				bake_light[p_idx].accum[j][0] /= divisor;
+				bake_light[p_idx].accum[j][1] /= divisor;
+				bake_light[p_idx].accum[j][2] /= divisor;
+			}
+			bake_cells[p_idx].emission[0] /= divisor;
+			bake_cells[p_idx].emission[1] /= divisor;
+			bake_cells[p_idx].emission[2] /= divisor;
+		}
+	}
+}
+
+//make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into
+
+void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) {
+
+	int x[3];
+	int y[3];
+
+	for (int j = 0; j < 3; j++) {
+
+		x[j] = vertices[j].x * width;
+		y[j] = vertices[j].y * height;
+		//x[j] = CLAMP(x[j], 0, bt.width - 1);
+		//y[j] = CLAMP(y[j], 0, bt.height - 1);
+	}
+
+	// sort the points vertically
+	if (y[1] > y[2]) {
+		SWAP(x[1], x[2]);
+		SWAP(y[1], y[2]);
+		SWAP(positions[1], positions[2]);
+		SWAP(normals[1], normals[2]);
+	}
+	if (y[0] > y[1]) {
+		SWAP(x[0], x[1]);
+		SWAP(y[0], y[1]);
+		SWAP(positions[0], positions[1]);
+		SWAP(normals[0], normals[1]);
+	}
+	if (y[1] > y[2]) {
+		SWAP(x[1], x[2]);
+		SWAP(y[1], y[2]);
+		SWAP(positions[1], positions[2]);
+		SWAP(normals[1], normals[2]);
+	}
+
+	double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1);
+	double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1);
+	double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1);
+	double xf = x[0];
+	double xt = x[0] + dx_upper; // if y[0] == y[1], special case
+	for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) {
+		if (yi >= 0) {
+			for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) {
+				//pixels[int(x + y * width)] = color;
+
+				Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
+				Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
+				//vertices[2] - vertices[0];
+				Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
+				float d00 = v0.dot(v0);
+				float d01 = v0.dot(v1);
+				float d11 = v1.dot(v1);
+				float d20 = v2.dot(v0);
+				float d21 = v2.dot(v1);
+				float denom = (d00 * d11 - d01 * d01);
+				Vector3 pos;
+				Vector3 normal;
+				if (denom == 0) {
+					pos = positions[0];
+					normal = normals[0];
+				} else {
+					float v = (d11 * d20 - d01 * d21) / denom;
+					float w = (d00 * d21 - d01 * d20) / denom;
+					float u = 1.0f - v - w;
+					pos = positions[0] * u + positions[1] * v + positions[2] * w;
+					normal = normals[0] * u + normals[1] * v + normals[2] * w;
+				}
+
+				int ofs = yi * width + xi;
+				pixels[ofs].normal = normal;
+				pixels[ofs].pos = pos;
+			}
+
+			for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) {
+				//pixels[int(x + y * width)] = color;
+				Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]);
+				Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]);
+				//vertices[2] - vertices[0];
+				Vector2 v2 = Vector2(xi - x[0], yi - y[0]);
+				float d00 = v0.dot(v0);
+				float d01 = v0.dot(v1);
+				float d11 = v1.dot(v1);
+				float d20 = v2.dot(v0);
+				float d21 = v2.dot(v1);
+				float denom = (d00 * d11 - d01 * d01);
+				Vector3 pos;
+				Vector3 normal;
+				if (denom == 0) {
+					pos = positions[0];
+					normal = normals[0];
+				} else {
+					float v = (d11 * d20 - d01 * d21) / denom;
+					float w = (d00 * d21 - d01 * d20) / denom;
+					float u = 1.0f - v - w;
+					pos = positions[0] * u + positions[1] * v + positions[2] * w;
+					normal = normals[0] * u + normals[1] * v + normals[2] * w;
+				}
+
+				int ofs = yi * width + xi;
+				pixels[ofs].normal = normal;
+				pixels[ofs].pos = pos;
+			}
+		}
+		xf += dx_far;
+		if (yi < y[1])
+			xt += dx_upper;
+		else
+			xt += dx_low;
+	}
+}
+
+void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) {
+
+	int size = 1 << (cell_subdiv - 1);
+
+	int clamp_v = size - 1;
+	//first of all, clamp
+	Vector3 pos;
+	pos.x = CLAMP(p_posf.x, 0, clamp_v);
+	pos.y = CLAMP(p_posf.y, 0, clamp_v);
+	pos.z = CLAMP(p_posf.z, 0, clamp_v);
+
+	float level = (cell_subdiv - 1) - p_level;
+
+	int target_level;
+	float level_filter;
+	if (level <= 0.0) {
+		level_filter = 0;
+		target_level = 0;
+	} else {
+		target_level = Math::ceil(level);
+		level_filter = target_level - level;
+	}
+
+	const Cell *cells = bake_cells.ptr();
+	const Light *light = bake_light.ptr();
+
+	Vector3 color[2][8];
+	float alpha[2][8];
+	zeromem(alpha, sizeof(float) * 2 * 8);
+
+	//find cell at given level first
+
+	for (int c = 0; c < 2; c++) {
+
+		int current_level = MAX(0, target_level - c);
+		int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level;
+
+		for (int n = 0; n < 8; n++) {
+
+			int x = int(pos.x);
+			int y = int(pos.y);
+			int z = int(pos.z);
+
+			if (n & 1)
+				x += level_cell_size;
+			if (n & 2)
+				y += level_cell_size;
+			if (n & 4)
+				z += level_cell_size;
+
+			int ofs_x = 0;
+			int ofs_y = 0;
+			int ofs_z = 0;
+
+			x = CLAMP(x, 0, clamp_v);
+			y = CLAMP(y, 0, clamp_v);
+			z = CLAMP(z, 0, clamp_v);
+
+			int half = size / 2;
+			uint32_t cell = 0;
+			for (int i = 0; i < current_level; i++) {
+
+				const Cell *bc = &cells[cell];
+
+				int child = 0;
+				if (x >= ofs_x + half) {
+					child |= 1;
+					ofs_x += half;
+				}
+				if (y >= ofs_y + half) {
+					child |= 2;
+					ofs_y += half;
+				}
+				if (z >= ofs_z + half) {
+					child |= 4;
+					ofs_z += half;
+				}
+
+				cell = bc->childs[child];
+				if (cell == CHILD_EMPTY)
+					break;
+
+				half >>= 1;
+			}
+
+			if (cell == CHILD_EMPTY) {
+				alpha[c][n] = 0;
+			} else {
+				alpha[c][n] = cells[cell].alpha;
+
+				for (int i = 0; i < 6; i++) {
+					//anisotropic read light
+					float amount = p_direction.dot(aniso_normal[i]);
+					//if (c == 0) {
+					//	print_line("\t" + itos(n) + " aniso " + itos(i) + " " + rtos(light[cell].accum[i][0]) + " VEC: " + aniso_normal[i]);
+					//}
+					if (amount < 0)
+						amount = 0;
+					//amount = 1;
+					color[c][n].x += light[cell].accum[i][0] * amount;
+					color[c][n].y += light[cell].accum[i][1] * amount;
+					color[c][n].z += light[cell].accum[i][2] * amount;
+				}
+
+				color[c][n].x += cells[cell].emission[0];
+				color[c][n].y += cells[cell].emission[1];
+				color[c][n].z += cells[cell].emission[2];
+			}
+
+			//print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]);
+		}
+	}
+
+	float target_level_size = size >> target_level;
+	Vector3 pos_fract[2];
+
+	pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
+	pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
+	pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
+
+	target_level_size = size >> MAX(0, target_level - 1);
+
+	pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
+	pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
+	pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
+
+	float alpha_interp[2];
+	Vector3 color_interp[2];
+
+	for (int i = 0; i < 2; i++) {
+
+		Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
+		Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
+		Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
+
+		Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
+		Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
+		Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
+
+		color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
+
+		float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
+		float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
+		float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
+
+		float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
+		float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
+		float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
+
+		alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
+	}
+
+	r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
+	r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
+
+	//	print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha));
+}
+
+Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) {
+
+	float bias = 2.5;
+	float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length();
+
+	float dist = bias;
+	float alpha = 0.0;
+	Vector3 color;
+
+	Vector3 scolor;
+	float salpha;
+
+	while (dist < max_distance && alpha < 0.95) {
+		float diameter = MAX(1.0, 2.0 * p_aperture * dist);
+		//print_line("VCT: pos " + (p_pos + dist * p_normal) + " dist " + rtos(dist) + " mipmap " + rtos(log2(diameter)) + " alpha " + rtos(alpha));
+		//Plane scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
+		_sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha);
+		float a = (1.0 - alpha);
+		color += scolor * a;
+		alpha += a * salpha;
+		dist += diameter * 0.5;
+	}
+
+	/*if (blend_ambient) {
+		color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
+	}*/
+
+	return color;
+}
+
+Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
+
+	//find arbitrary tangent and bitangent, then build a matrix
+	Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
+	Vector3 tangent = v0.cross(p_normal).normalized();
+	Vector3 bitangent = tangent.cross(p_normal).normalized();
+	Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
+
+	//	print_line("normal xform: " + normal_xform);
+	const Vector3 *cone_dirs;
+	const float *cone_weights;
+	int cone_dir_count;
+	float cone_aperture;
+
+	switch (bake_quality) {
+		case BAKE_QUALITY_LOW: {
+			//default quality
+			static const Vector3 dirs[4] = {
+				Vector3(0.707107, 0, 0.707107),
+				Vector3(0, 0.707107, 0.707107),
+				Vector3(-0.707107, 0, 0.707107),
+				Vector3(0, -0.707107, 0.707107)
+			};
+
+			static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 };
+
+			cone_dirs = dirs;
+			cone_dir_count = 4;
+			cone_aperture = 1.0; // tan(angle) 90 degrees
+			cone_weights = weights;
+		} break;
+		case BAKE_QUALITY_MEDIUM: {
+			//default quality
+			static const Vector3 dirs[6] = {
+				Vector3(0, 0, 1),
+				Vector3(0.866025, 0, 0.5),
+				Vector3(0.267617, 0.823639, 0.5),
+				Vector3(-0.700629, 0.509037, 0.5),
+				Vector3(-0.700629, -0.509037, 0.5),
+				Vector3(0.267617, -0.823639, 0.5)
+			};
+			static const float weights[6] = { 0.25, 0.15, 0.15, 0.15, 0.15, 0.15 };
+			//
+			cone_dirs = dirs;
+			cone_dir_count = 6;
+			cone_aperture = 0.577; // tan(angle) 60 degrees
+			cone_weights = weights;
+		} break;
+		case BAKE_QUALITY_HIGH: {
+
+			//high qualily
+			static const Vector3 dirs[10] = {
+				Vector3(0.8781648411741658, 0.0, 0.478358141694643),
+				Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606),
+				Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645),
+				Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604),
+				Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604),
+				Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645),
+				Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606),
+				Vector3(-0.4451656858129485, 0.0, 0.8954482185892644),
+				Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214),
+				Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214),
+			};
+			static const float weights[10] = { 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.08571, 0.133333, 0.133333, 0.13333 };
+			cone_dirs = dirs;
+			cone_dir_count = 10;
+			cone_aperture = 0.404; // tan(angle) 45 degrees
+			cone_weights = weights;
+		} break;
+	}
+
+	Vector3 accum;
+
+	for (int i = 0; i < cone_dir_count; i++) {
+		//	if (i > 0)
+		//		continue;
+		Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell
+		//print_line("direction: " + dir);
+		accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i];
+	}
+
+	return accum;
+}
+
+Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) {
+
+	int samples_per_quality[3] = { 48, 128, 512 };
+
+	int samples = samples_per_quality[bake_quality];
+
+	//create a basis in Z
+	Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0);
+	Vector3 tangent = v0.cross(p_normal).normalized();
+	Vector3 bitangent = tangent.cross(p_normal).normalized();
+	Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed();
+
+	float bias = 1.5;
+	int max_level = cell_subdiv - 1;
+	int size = 1 << max_level;
+
+	Vector3 accum;
+	float spread = Math::deg2rad(80.0);
+
+	const Light *light = bake_light.ptr();
+	const Cell *cells = bake_cells.ptr();
+
+	for (int i = 0; i < samples; i++) {
+
+		float random_angle1 = (((rand() % 65535) / 65535.0) * 2.0 - 1.0) * spread;
+		Vector3 axis(0, sin(random_angle1), cos(random_angle1));
+		float random_angle2 = ((rand() % 65535) / 65535.0) * Math_PI * 2.0;
+		Basis rot(Vector3(0, 0, 1), random_angle2);
+		axis = rot.xform(axis);
+
+		Vector3 direction = normal_xform.xform(axis).normalized();
+
+		Vector3 pos = p_pos + Vector3(0.5, 0.5, 0.5) + direction * bias;
+
+		Vector3 advance = direction * _get_normal_advance(direction);
+
+		uint32_t cell = CHILD_EMPTY;
+
+		while (cell == CHILD_EMPTY) {
+
+			int x = int(pos.x);
+			int y = int(pos.y);
+			int z = int(pos.z);
+
+			int ofs_x = 0;
+			int ofs_y = 0;
+			int ofs_z = 0;
+			int half = size / 2;
+
+			if (x < 0 || x >= size)
+				break;
+			if (y < 0 || y >= size)
+				break;
+			if (z < 0 || z >= size)
+				break;
+
+			//int level_limit = max_level;
+
+			cell = 0; //start from root
+			for (int i = 0; i < max_level; i++) {
+
+				const Cell *bc = &cells[cell];
+
+				int child = 0;
+				if (x >= ofs_x + half) {
+					child |= 1;
+					ofs_x += half;
+				}
+				if (y >= ofs_y + half) {
+					child |= 2;
+					ofs_y += half;
+				}
+				if (z >= ofs_z + half) {
+					child |= 4;
+					ofs_z += half;
+				}
+
+				cell = bc->childs[child];
+				if (cell == CHILD_EMPTY)
+					break;
+
+				half >>= 1;
+			}
+
+			pos += advance;
+		}
+
+		if (cell != CHILD_EMPTY) {
+			for (int i = 0; i < 6; i++) {
+				//anisotropic read light
+				float amount = direction.dot(aniso_normal[i]);
+				if (amount < 0)
+					amount = 0;
+				accum.x += light[cell].accum[i][0] * amount;
+				accum.y += light[cell].accum[i][1] * amount;
+				accum.z += light[cell].accum[i][2] * amount;
+			}
+		}
+	}
+
+	return accum / samples;
+}
+
+Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) {
+
+	//transfer light information to a lightmap
+	Ref<Mesh> mesh = p_mesh;
+
+	int width = mesh->get_lightmap_size_hint().x;
+	int height = mesh->get_lightmap_size_hint().y;
+
+	//step 1 - create lightmap
+	Vector<LightMap> lightmap;
+	lightmap.resize(width * height);
+
+	Transform xform = to_cell_space * p_xform;
+
+	//step 2 plot faces to lightmap
+	for (int i = 0; i < mesh->get_surface_count(); i++) {
+		Array arrays = mesh->surface_get_arrays(i);
+		PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX];
+		PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL];
+		PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2];
+		PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX];
+
+		ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER);
+		ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER);
+		ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER);
+
+		int vc = vertices.size();
+		PoolVector<Vector3>::Read vr = vertices.read();
+		PoolVector<Vector3>::Read nr = normals.read();
+		PoolVector<Vector2>::Read u2r = uv2.read();
+		PoolVector<int>::Read ir;
+		int ic = 0;
+
+		if (indices.size()) {
+			ic = indices.size();
+			ir = indices.read();
+		}
+
+		int faces = ic ? ic / 3 : vc / 3;
+		for (int i = 0; i < faces; i++) {
+			Vector3 vertex[3];
+			Vector3 normal[3];
+			Vector2 uv[3];
+			for (int j = 0; j < 3; j++) {
+				int idx = ic ? ir[i * 3 + j] : i * 3 + j;
+				vertex[j] = xform.xform(vr[idx]);
+				normal[j] = xform.basis.xform(nr[idx]).normalized();
+				uv[j] = u2r[idx];
+			}
+
+			_plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height);
+		}
+	}
+	//step 3 perform voxel cone trace on lightmap pixels
+
+	{
+		LightMap *lightmap_ptr = lightmap.ptrw();
+		uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
+		volatile int lines = 0;
+
+		for (int i = 0; i < height; i++) {
+
+		//print_line("bake line " + itos(i) + " / " + itos(height));
+#ifdef _OPENMP
+#pragma omp parallel for
+#endif
+			for (int j = 0; j < width; j++) {
+
+				//if (i == 125 && j == 280) {
+
+				LightMap *pixel = &lightmap_ptr[i * width + j];
+				if (pixel->pos == Vector3())
+					continue; //unused, skipe
+
+				//print_line("pos: " + pixel->pos + " normal " + pixel->normal);
+				switch (bake_mode) {
+					case BAKE_MODE_CONE_TRACE: {
+						pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy;
+					} break;
+					case BAKE_MODE_RAY_TRACE: {
+						pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy;
+					} break;
+						//	pixel->light = Vector3(1, 1, 1);
+						//}
+				}
+			}
+
+			lines = MAX(lines, i); //for multithread
+			if (p_bake_time_func) {
+				uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
+				float elapsed_sec = double(elapsed) / 1000000.0;
+				float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1);
+				if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) {
+					return ERR_SKIP;
+				}
+			}
+		}
+
+		if (bake_mode == BAKE_MODE_RAY_TRACE) {
+			//blur
+			print_line("bluring, use pos for separatable copy");
+			//gauss kernel, 7 step sigma 2
+			static const float gauss_kernel[4] = { 0.214607, 0.189879, 0.131514, 0.071303 };
+			//horizontal pass
+			for (int i = 0; i < height; i++) {
+				for (int j = 0; j < width; j++) {
+					if (lightmap_ptr[i * width + j].normal == Vector3()) {
+						continue; //empty
+					}
+					float gauss_sum = gauss_kernel[0];
+					Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0];
+					for (int k = 1; k < 4; k++) {
+						int new_x = j + k;
+						if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3())
+							break;
+						gauss_sum += gauss_kernel[k];
+						accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
+					}
+					for (int k = 1; k < 4; k++) {
+						int new_x = j - k;
+						if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3())
+							break;
+						gauss_sum += gauss_kernel[k];
+						accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k];
+					}
+
+					lightmap_ptr[i * width + j].pos = accum /= gauss_sum;
+				}
+			}
+			//vertical pass
+			for (int i = 0; i < height; i++) {
+				for (int j = 0; j < width; j++) {
+					if (lightmap_ptr[i * width + j].normal == Vector3())
+						continue; //empty, dont write over it anyway
+					float gauss_sum = gauss_kernel[0];
+					Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0];
+					for (int k = 1; k < 4; k++) {
+						int new_y = i + k;
+						if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3())
+							break;
+						gauss_sum += gauss_kernel[k];
+						accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
+					}
+					for (int k = 1; k < 4; k++) {
+						int new_y = i - k;
+						if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3())
+							break;
+						gauss_sum += gauss_kernel[k];
+						accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k];
+					}
+
+					lightmap_ptr[i * width + j].light = accum /= gauss_sum;
+				}
+			}
+		}
+
+		//add directional light (do this after blur)
+		{
+			LightMap *lightmap_ptr = lightmap.ptrw();
+			const Cell *cells = bake_cells.ptr();
+			const Light *light = bake_light.ptr();
+
+			for (int i = 0; i < height; i++) {
+
+			//print_line("bake line " + itos(i) + " / " + itos(height));
+#ifdef _OPENMP
+#pragma omp parallel for
+#endif
+				for (int j = 0; j < width; j++) {
+
+					//if (i == 125 && j == 280) {
+
+					LightMap *pixel = &lightmap_ptr[i * width + j];
+					if (pixel->pos == Vector3())
+						continue; //unused, skipe
+
+					int x = int(pixel->pos.x) - 1;
+					int y = int(pixel->pos.y) - 1;
+					int z = int(pixel->pos.z) - 1;
+					Color accum;
+					int size = 1 << (cell_subdiv - 1);
+
+					int found = 0;
+
+					for (int k = 0; k < 8; k++) {
+
+						int ofs_x = x;
+						int ofs_y = y;
+						int ofs_z = z;
+
+						if (k & 1)
+							ofs_x++;
+						if (k & 2)
+							ofs_y++;
+						if (k & 4)
+							ofs_z++;
+
+						if (x < 0 || x >= size)
+							continue;
+						if (y < 0 || y >= size)
+							continue;
+						if (z < 0 || z >= size)
+							continue;
+
+						uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z);
+
+						if (cell == CHILD_EMPTY)
+							continue;
+						for (int l = 0; l < 6; l++) {
+							float s = pixel->normal.dot(aniso_normal[l]);
+							if (s < 0)
+								s = 0;
+							accum.r += light[cell].direct_accum[l][0] * s;
+							accum.g += light[cell].direct_accum[l][1] * s;
+							accum.b += light[cell].direct_accum[l][2] * s;
+						}
+						found++;
+					}
+					if (found) {
+						accum /= found;
+						pixel->light.x += accum.r;
+						pixel->light.y += accum.g;
+						pixel->light.z += accum.b;
+					}
+				}
+			}
+		}
+
+		{
+			//fill gaps with neighbour vertices to avoid filter fades to black on edges
+
+			for (int i = 0; i < height; i++) {
+				for (int j = 0; j < width; j++) {
+					if (lightmap_ptr[i * width + j].normal != Vector3()) {
+						continue; //filled, skip
+					}
+
+					//this can't be made separatable..
+
+					int closest_i = -1, closest_j = 1;
+					float closest_dist = 1e20;
+
+					const int margin = 3;
+					for (int y = i - margin; y <= i + margin; y++) {
+						for (int x = j - margin; x <= j + margin; x++) {
+
+							if (x == j && y == i)
+								continue;
+							if (x < 0 || x >= width)
+								continue;
+							if (y < 0 || y >= height)
+								continue;
+							if (lightmap_ptr[y * width + x].normal == Vector3())
+								continue; //also ensures that blitted stuff is not reused
+
+							float dist = Vector2(i - y, j - x).length();
+							if (dist > closest_dist)
+								continue;
+
+							closest_dist = dist;
+							closest_i = y;
+							closest_j = x;
+						}
+					}
+
+					if (closest_i != -1) {
+						lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light;
+					}
+				}
+			}
+		}
+
+		{
+			//fill the lightmap data
+			r_lightmap.width = width;
+			r_lightmap.height = height;
+			r_lightmap.light.resize(lightmap.size() * 3);
+			PoolVector<float>::Write w = r_lightmap.light.write();
+			for (int i = 0; i < lightmap.size(); i++) {
+				w[i * 3 + 0] = lightmap[i].light.x;
+				w[i * 3 + 1] = lightmap[i].light.y;
+				w[i * 3 + 2] = lightmap[i].light.z;
+			}
+		}
+
+#if 0
+		{
+			PoolVector<uint8_t> img;
+			int ls = lightmap.size();
+			img.resize(ls * 3);
+			{
+				PoolVector<uint8_t>::Write w = img.write();
+				for (int i = 0; i < ls; i++) {
+					w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255);
+					w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255);
+					w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255);
+					//w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255);
+					//w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255);
+					//w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255);
+					//w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255);
+					//w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255);
+					//w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255);
+				}
+			}
+
+			Ref<Image> image;
+			image.instance();
+			image->create(width, height, false, Image::FORMAT_RGB8, img);
+
+			String name = p_mesh->get_name();
+			if (name == "") {
+				name = "Mesh" + itos(p_mesh->get_instance_id());
+			}
+			image->save_png(name + ".png");
+		}
+#endif
+	}
+
+	return OK;
+}
+
+void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) {
+
+	original_bounds = p_bounds;
+	cell_subdiv = p_subdiv;
+	bake_cells.resize(1);
+	material_cache.clear();
+
+	//find out the actual real bounds, power of 2, which gets the highest subdivision
+	po2_bounds = p_bounds;
+	int longest_axis = po2_bounds.get_longest_axis_index();
+	axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1));
+	leaf_voxel_count = 0;
+
+	for (int i = 0; i < 3; i++) {
+
+		if (i == longest_axis)
+			continue;
+
+		axis_cell_size[i] = axis_cell_size[longest_axis];
+		float axis_size = po2_bounds.size[longest_axis];
+
+		//shrink until fit subdiv
+		while (axis_size / 2.0 >= po2_bounds.size[i]) {
+			axis_size /= 2.0;
+			axis_cell_size[i] >>= 1;
+		}
+
+		po2_bounds.size[i] = po2_bounds.size[longest_axis];
+	}
+
+	Transform to_bounds;
+	to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
+	to_bounds.origin = po2_bounds.position;
+
+	Transform to_grid;
+	to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
+
+	to_cell_space = to_grid * to_bounds.affine_inverse();
+
+	cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
+}
+
+void VoxelLightBaker::end_bake() {
+	_fixup_plot(0, 0);
+}
+
+//create the data for visual server
+
+PoolVector<int> VoxelLightBaker::create_gi_probe_data() {
+
+	PoolVector<int> data;
+
+	data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest.
+
+	{
+		PoolVector<int>::Write w = data.write();
+
+		uint32_t *w32 = (uint32_t *)w.ptr();
+
+		w32[0] = 0; //version
+		w32[1] = cell_subdiv; //subdiv
+		w32[2] = axis_cell_size[0];
+		w32[3] = axis_cell_size[1];
+		w32[4] = axis_cell_size[2];
+		w32[5] = bake_cells.size();
+		w32[6] = leaf_voxel_count;
+
+		int ofs = 16;
+
+		for (int i = 0; i < bake_cells.size(); i++) {
+
+			for (int j = 0; j < 8; j++) {
+				w32[ofs++] = bake_cells[i].childs[j];
+			}
+
+			{ //albedo
+				uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16;
+				rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8;
+				rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0;
+
+				w32[ofs++] = rgba;
+			}
+			{ //emission
+
+				Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]);
+				float l = e.length();
+				if (l > 0) {
+					e.normalize();
+					l = CLAMP(l / 8.0, 0, 1.0);
+				}
+
+				uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24;
+				em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16;
+				em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8;
+				em |= uint32_t(CLAMP(l * 255, 0, 255));
+
+				w32[ofs++] = em;
+			}
+
+			//w32[ofs++]=bake_cells[i].used_sides;
+			{ //normal
+
+				Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
+				n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5);
+				uint32_t norm = 0;
+
+				norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16;
+				norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8;
+				norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0;
+
+				w32[ofs++] = norm;
+			}
+
+			{
+				uint16_t alpha = CLAMP(uint32_t(bake_cells[i].alpha * 65535.0), 0, 65535);
+				uint16_t level = bake_cells[i].level;
+
+				w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha);
+			}
+		}
+	}
+
+	return data;
+}
+
+void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) {
+
+	if (p_level == cell_subdiv - 1) {
+
+		Vector3 center = p_aabb.position + p_aabb.size * 0.5;
+		Transform xform;
+		xform.origin = center;
+		xform.basis.scale(p_aabb.size * 0.5);
+		p_multimesh->set_instance_transform(idx, xform);
+		Color col;
+		if (p_mode == DEBUG_ALBEDO) {
+			col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
+		} else if (p_mode == DEBUG_LIGHT) {
+			for (int i = 0; i < 6; i++) {
+				col.r += bake_light[p_idx].accum[i][0];
+				col.g += bake_light[p_idx].accum[i][1];
+				col.b += bake_light[p_idx].accum[i][2];
+				col.r += bake_light[p_idx].direct_accum[i][0];
+				col.g += bake_light[p_idx].direct_accum[i][1];
+				col.b += bake_light[p_idx].direct_accum[i][2];
+			}
+		}
+		//Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
+		p_multimesh->set_instance_color(idx, col);
+
+		idx++;
+
+	} else {
+
+		for (int i = 0; i < 8; i++) {
+
+			uint32_t child = bake_cells[p_idx].childs[i];
+
+			if (child == CHILD_EMPTY || child >= max_original_cells)
+				continue;
+
+			AABB aabb = p_aabb;
+			aabb.size *= 0.5;
+
+			if (i & 1)
+				aabb.position.x += aabb.size.x;
+			if (i & 2)
+				aabb.position.y += aabb.size.y;
+			if (i & 4)
+				aabb.position.z += aabb.size.z;
+
+			_debug_mesh(bake_cells[p_idx].childs[i], p_level + 1, aabb, p_multimesh, idx, p_mode);
+		}
+	}
+}
+
+Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) {
+
+	Ref<MultiMesh> mm;
+
+	ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm);
+	mm.instance();
+
+	mm->set_transform_format(MultiMesh::TRANSFORM_3D);
+	mm->set_color_format(MultiMesh::COLOR_8BIT);
+	print_line("leaf voxels: " + itos(leaf_voxel_count));
+	mm->set_instance_count(leaf_voxel_count);
+
+	Ref<ArrayMesh> mesh;
+	mesh.instance();
+
+	{
+		Array arr;
+		arr.resize(Mesh::ARRAY_MAX);
+
+		PoolVector<Vector3> vertices;
+		PoolVector<Color> colors;
+
+		int vtx_idx = 0;
+#define ADD_VTX(m_idx)                      \
+	;                                       \
+	vertices.push_back(face_points[m_idx]); \
+	colors.push_back(Color(1, 1, 1, 1));    \
+	vtx_idx++;
+
+		for (int i = 0; i < 6; i++) {
+
+			Vector3 face_points[4];
+
+			for (int j = 0; j < 4; j++) {
+
+				float v[3];
+				v[0] = 1.0;
+				v[1] = 1 - 2 * ((j >> 1) & 1);
+				v[2] = v[1] * (1 - 2 * (j & 1));
+
+				for (int k = 0; k < 3; k++) {
+
+					if (i < 3)
+						face_points[j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
+					else
+						face_points[3 - j][(i + k) % 3] = v[k] * (i >= 3 ? -1 : 1);
+				}
+			}
+
+			//tri 1
+			ADD_VTX(0);
+			ADD_VTX(1);
+			ADD_VTX(2);
+			//tri 2
+			ADD_VTX(2);
+			ADD_VTX(3);
+			ADD_VTX(0);
+		}
+
+		arr[Mesh::ARRAY_VERTEX] = vertices;
+		arr[Mesh::ARRAY_COLOR] = colors;
+		mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
+	}
+
+	{
+		Ref<SpatialMaterial> fsm;
+		fsm.instance();
+		fsm->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
+		fsm->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
+		fsm->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
+		fsm->set_albedo(Color(1, 1, 1, 1));
+
+		mesh->surface_set_material(0, fsm);
+	}
+
+	mm->set_mesh(mesh);
+
+	int idx = 0;
+	_debug_mesh(0, 0, po2_bounds, mm, idx, p_mode);
+
+	return mm;
+}
+
+struct VoxelLightBakerOctree {
+
+	enum {
+		CHILD_EMPTY = 0xFFFFFFFF
+	};
+
+	uint16_t light[6][3]; //anisotropic light
+	float alpha;
+	uint32_t children[8];
+};
+
+PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) {
+
+	p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one
+
+	Vector<uint32_t> remap;
+	int bc = bake_cells.size();
+	remap.resize(bc);
+	Vector<uint32_t> demap;
+
+	int new_size = 0;
+	for (int i = 0; i < bc; i++) {
+		uint32_t c = CHILD_EMPTY;
+		if (bake_cells[i].level < p_subdiv) {
+			c = new_size;
+			new_size++;
+			demap.push_back(i);
+		}
+		remap[i] = c;
+	}
+
+	Vector<VoxelLightBakerOctree> octree;
+	octree.resize(new_size);
+
+	for (int i = 0; i < new_size; i++) {
+		octree[i].alpha = bake_cells[demap[i]].alpha;
+		for (int j = 0; j < 6; j++) {
+			for (int k = 0; k < 3; k++) {
+				float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light
+				l += bake_cells[demap[i]].emission[k]; //add emission
+				octree[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree
+			}
+		}
+
+		for (int j = 0; j < 8; j++) {
+			uint32_t child = bake_cells[demap[i]].childs[j];
+			octree[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child];
+		}
+	}
+
+	PoolVector<uint8_t> ret;
+	int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree);
+	ret.resize(ret_bytes);
+	{
+		PoolVector<uint8_t>::Write w = ret.write();
+		copymem(w.ptr(), octree.ptr(), ret_bytes);
+	}
+
+	return ret;
+}
+
+float VoxelLightBaker::get_cell_size() const {
+	return cell_size;
+}
+
+Transform VoxelLightBaker::get_to_cell_space_xform() const {
+	return to_cell_space;
+}
+VoxelLightBaker::VoxelLightBaker() {
+	color_scan_cell_width = 4;
+	bake_texture_size = 128;
+	propagation = 0.85;
+	energy = 1.0;
+}

+ 148 - 0
scene/3d/voxel_light_baker.h

@@ -0,0 +1,148 @@
+#ifndef VOXEL_LIGHT_BAKER_H
+#define VOXEL_LIGHT_BAKER_H
+
+#include "scene/3d/mesh_instance.h"
+#include "scene/resources/multimesh.h"
+
+class VoxelLightBaker {
+public:
+	enum DebugMode {
+		DEBUG_ALBEDO,
+		DEBUG_LIGHT
+	};
+
+	enum BakeQuality {
+		BAKE_QUALITY_LOW,
+		BAKE_QUALITY_MEDIUM,
+		BAKE_QUALITY_HIGH
+	};
+
+	enum BakeMode {
+		BAKE_MODE_CONE_TRACE,
+		BAKE_MODE_RAY_TRACE,
+	};
+
+private:
+	enum {
+		CHILD_EMPTY = 0xFFFFFFFF
+
+	};
+
+	struct Cell {
+
+		uint32_t childs[8];
+		float albedo[3]; //albedo in RGB24
+		float emission[3]; //accumulated light in 16:16 fixed point (needs to be integer for moving lights fast)
+		float normal[3];
+		uint32_t used_sides;
+		float alpha; //used for upsampling
+		int level;
+
+		Cell() {
+			for (int i = 0; i < 8; i++) {
+				childs[i] = CHILD_EMPTY;
+			}
+
+			for (int i = 0; i < 3; i++) {
+				emission[i] = 0;
+				albedo[i] = 0;
+				normal[i] = 0;
+			}
+			alpha = 0;
+			used_sides = 0;
+			level = 0;
+		}
+	};
+
+	Vector<Cell> bake_cells;
+	int cell_subdiv;
+
+	struct Light {
+		int x, y, z;
+		float accum[6][3]; //rgb anisotropic
+		float direct_accum[6][3]; //for direct bake
+		int next_leaf;
+	};
+
+	int first_leaf;
+
+	Vector<Light> bake_light;
+
+	struct MaterialCache {
+		//128x128 textures
+		Vector<Color> albedo;
+		Vector<Color> emission;
+	};
+
+	Map<Ref<Material>, MaterialCache> material_cache;
+	int leaf_voxel_count;
+	bool direct_lights_baked;
+
+	AABB original_bounds;
+	AABB po2_bounds;
+	int axis_cell_size[3];
+
+	Transform to_cell_space;
+
+	int color_scan_cell_width;
+	int bake_texture_size;
+	float cell_size;
+	float propagation;
+	float energy;
+
+	BakeQuality bake_quality;
+	BakeMode bake_mode;
+
+	int max_original_cells;
+
+	void _init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent);
+
+	Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add);
+	MaterialCache _get_material_cache(Ref<Material> p_material);
+	void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb);
+	void _fixup_plot(int p_idx, int p_level);
+	void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode);
+	void _check_init_light();
+
+	uint32_t _find_cell_at_pos(const Cell *cells, int x, int y, int z);
+
+	struct LightMap {
+		Vector3 light;
+		Vector3 pos;
+		Vector3 normal;
+	};
+
+	void _plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height);
+
+	_FORCE_INLINE_ void _sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha);
+	_FORCE_INLINE_ Vector3 _voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture);
+	_FORCE_INLINE_ Vector3 _compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal);
+	_FORCE_INLINE_ Vector3 _compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal);
+
+public:
+	void begin_bake(int p_subdiv, const AABB &p_bounds);
+	void plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material);
+	void begin_bake_light(BakeQuality p_quality = BAKE_QUALITY_MEDIUM, BakeMode p_bake_mode = BAKE_MODE_CONE_TRACE, float p_propagation = 0.85, float p_energy = 1);
+	void plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct);
+	void plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct);
+	void plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct);
+	void end_bake();
+
+	struct LightMapData {
+		int width;
+		int height;
+		PoolVector<float> light;
+	};
+
+	Error make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float) = NULL, void *p_bake_time_ud = NULL);
+
+	PoolVector<int> create_gi_probe_data();
+	Ref<MultiMesh> create_debug_multimesh(DebugMode p_mode = DEBUG_ALBEDO);
+	PoolVector<uint8_t> create_capture_octree(int p_subdiv);
+
+	float get_cell_size() const;
+	Transform get_to_cell_space_xform() const;
+	VoxelLightBaker();
+};
+
+#endif // VOXEL_LIGHT_BAKER_H

+ 1 - 1
scene/main/node.cpp

@@ -177,8 +177,8 @@ void Node::_propagate_ready() {
 	}
 	data.blocked--;
 	if (data.ready_first) {
-		notification(NOTIFICATION_READY);
 		data.ready_first = false;
+		notification(NOTIFICATION_READY);
 	}
 }
 

+ 3 - 0
scene/register_scene_types.cpp

@@ -160,6 +160,7 @@
 #include "scene/3d/area.h"
 #include "scene/3d/arvr_nodes.h"
 #include "scene/3d/audio_stream_player_3d.h"
+#include "scene/3d/baked_lightmap.h"
 #include "scene/3d/bone_attachment.h"
 #include "scene/3d/camera.h"
 #include "scene/3d/collision_polygon.h"
@@ -375,6 +376,8 @@ void register_scene_types() {
 	ClassDB::register_class<ReflectionProbe>();
 	ClassDB::register_class<GIProbe>();
 	ClassDB::register_class<GIProbeData>();
+	ClassDB::register_class<BakedLightmap>();
+	ClassDB::register_class<BakedLightmapData>();
 	ClassDB::register_class<AnimationTreePlayer>();
 	ClassDB::register_class<Particles>();
 	ClassDB::register_class<Position3D>();

+ 15 - 4
scene/resources/material.cpp

@@ -645,7 +645,7 @@ void SpatialMaterial::_update_shader() {
 		code += "\tvec2 base_uv = UV;\n";
 	}
 
-	if ((features[FEATURE_DETAIL] && detail_uv == DETAIL_UV_2) || (features[FEATURE_AMBIENT_OCCLUSION] && flags[FLAG_AO_ON_UV2])) {
+	if ((features[FEATURE_DETAIL] && detail_uv == DETAIL_UV_2) || (features[FEATURE_AMBIENT_OCCLUSION] && flags[FLAG_AO_ON_UV2]) || (features[FEATURE_EMISSION] && flags[FLAG_EMISSION_ON_UV2])) {
 		code += "\tvec2 base_uv2 = UV2;\n";
 	}
 
@@ -729,11 +729,20 @@ void SpatialMaterial::_update_shader() {
 	}
 
 	if (features[FEATURE_EMISSION]) {
-		if (flags[FLAG_UV1_USE_TRIPLANAR]) {
-			code += "\tvec3 emission_tex = triplanar_texture(texture_emission,uv1_power_normal,uv1_triplanar_pos).rgb;\n";
+		if (flags[FLAG_EMISSION_ON_UV2]) {
+			if (flags[FLAG_UV2_USE_TRIPLANAR]) {
+				code += "\tvec3 emission_tex = triplanar_texture(texture_emission,uv2_power_normal,uv2_triplanar_pos).rgb;\n";
+			} else {
+				code += "\tvec3 emission_tex = texture(texture_emission,base_uv2).rgb;\n";
+			}
 		} else {
-			code += "\tvec3 emission_tex = texture(texture_emission,base_uv).rgb;\n";
+			if (flags[FLAG_UV1_USE_TRIPLANAR]) {
+				code += "\tvec3 emission_tex = triplanar_texture(texture_emission,uv1_power_normal,uv1_triplanar_pos).rgb;\n";
+			} else {
+				code += "\tvec3 emission_tex = texture(texture_emission,base_uv).rgb;\n";
+			}
 		}
+
 		if (emission_op == EMISSION_OP_ADD) {
 			code += "\tEMISSION = (emission.rgb+emission_tex)*emission_energy;\n";
 		} else {
@@ -1892,6 +1901,7 @@ void SpatialMaterial::_bind_methods() {
 	ADD_PROPERTY(PropertyInfo(Variant::COLOR, "emission", PROPERTY_HINT_COLOR_NO_ALPHA), "set_emission", "get_emission");
 	ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_energy", PROPERTY_HINT_RANGE, "0,16,0.01"), "set_emission_energy", "get_emission_energy");
 	ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_operator", PROPERTY_HINT_ENUM, "Add,Multiply"), "set_emission_operator", "get_emission_operator");
+	ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "emission_on_uv2"), "set_flag", "get_flag", FLAG_EMISSION_ON_UV2);
 	ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "emission_texture", PROPERTY_HINT_RESOURCE_TYPE, "Texture"), "set_texture", "get_texture", TEXTURE_EMISSION);
 
 	ADD_GROUP("NormalMap", "normal_");
@@ -2034,6 +2044,7 @@ void SpatialMaterial::_bind_methods() {
 	BIND_ENUM_CONSTANT(FLAG_UV1_USE_TRIPLANAR);
 	BIND_ENUM_CONSTANT(FLAG_UV2_USE_TRIPLANAR);
 	BIND_ENUM_CONSTANT(FLAG_AO_ON_UV2);
+	BIND_ENUM_CONSTANT(FLAG_EMISSION_ON_UV2);
 	BIND_ENUM_CONSTANT(FLAG_USE_ALPHA_SCISSOR);
 	BIND_ENUM_CONSTANT(FLAG_TRIPLANAR_USE_WORLD);
 	BIND_ENUM_CONSTANT(FLAG_ALBEDO_TEXTURE_FORCE_SRGB);

+ 2 - 1
scene/resources/material.h

@@ -184,6 +184,7 @@ public:
 		FLAG_UV2_USE_TRIPLANAR,
 		FLAG_TRIPLANAR_USE_WORLD,
 		FLAG_AO_ON_UV2,
+		FLAG_EMISSION_ON_UV2,
 		FLAG_USE_ALPHA_SCISSOR,
 		FLAG_ALBEDO_TEXTURE_FORCE_SRGB,
 		FLAG_MAX
@@ -234,7 +235,7 @@ private:
 			uint64_t blend_mode : 2;
 			uint64_t depth_draw_mode : 2;
 			uint64_t cull_mode : 2;
-			uint64_t flags : 13;
+			uint64_t flags : 14;
 			uint64_t detail_blend_mode : 2;
 			uint64_t diffuse_mode : 3;
 			uint64_t specular_mode : 2;

+ 15 - 13
scene/resources/mesh.cpp

@@ -1123,27 +1123,29 @@ Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texe
 
 		PoolVector<int> rindices = arrays[Mesh::ARRAY_INDEX];
 		int ic = rindices.size();
-		int index_ofs = indices.size();
 
 		if (ic == 0) {
-			indices.resize(index_ofs + vc);
-			face_materials.resize((index_ofs + vc) / 3);
-			for (int j = 0; j < vc; j++) {
-				indices[index_ofs + j] = vertex_ofs + j;
-			}
+
 			for (int j = 0; j < vc / 3; j++) {
-				face_materials[(index_ofs / 3) + j] = i;
+				if (Face3(r[j * 3 + 0], r[j * 3 + 1], r[j * 3 + 2]).is_degenerate())
+					continue;
+
+				indices.push_back(vertex_ofs + j * 3 + 0);
+				indices.push_back(vertex_ofs + j * 3 + 1);
+				indices.push_back(vertex_ofs + j * 3 + 2);
+				face_materials.push_back(i);
 			}
 
 		} else {
 			PoolVector<int>::Read ri = rindices.read();
-			indices.resize(index_ofs + ic);
-			face_materials.resize((index_ofs + ic) / 3);
-			for (int j = 0; j < ic; j++) {
-				indices[index_ofs + j] = vertex_ofs + ri[j];
-			}
+
 			for (int j = 0; j < ic / 3; j++) {
-				face_materials[(index_ofs / 3) + j] = i;
+				if (Face3(r[ri[j * 3 + 0]], r[ri[j * 3 + 1]], r[ri[j * 3 + 2]]).is_degenerate())
+					continue;
+				indices.push_back(vertex_ofs + ri[j * 3 + 0]);
+				indices.push_back(vertex_ofs + ri[j * 3 + 1]);
+				indices.push_back(vertex_ofs + ri[j * 3 + 2]);
+				face_materials.push_back(i);
 			}
 		}
 

+ 31 - 0
servers/visual/rasterizer.h

@@ -112,6 +112,10 @@ public:
 
 		SelfList<InstanceBase> dependency_item;
 
+		InstanceBase *lightmap_capture;
+		RID lightmap;
+		Vector<Color> lightmap_capture_data; //in a array (12 values) to avoid wasting space if unused. Alpha is unused, but needed to send to shader
+
 		virtual void base_removed() = 0;
 		virtual void base_changed() = 0;
 		virtual void base_material_changed() = 0;
@@ -126,6 +130,7 @@ public:
 			depth_layer = 0;
 			layer_mask = 1;
 			baked_light = false;
+			lightmap_capture = NULL;
 		}
 	};
 
@@ -437,6 +442,32 @@ public:
 	virtual RID gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) = 0;
 	virtual void gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) = 0;
 
+	/* LIGHTMAP CAPTURE */
+
+	struct LightmapCaptureOctree {
+
+		enum {
+			CHILD_EMPTY = 0xFFFFFFFF
+		};
+
+		uint16_t light[6][3]; //anisotropic light
+		float alpha;
+		uint32_t children[8];
+	};
+
+	virtual RID lightmap_capture_create() = 0;
+	virtual void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) = 0;
+	virtual AABB lightmap_capture_get_bounds(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) = 0;
+	virtual PoolVector<uint8_t> lightmap_capture_get_octree(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) = 0;
+	virtual Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) = 0;
+	virtual int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_energy(RID p_capture, float p_energy) = 0;
+	virtual float lightmap_capture_get_energy(RID p_capture) const = 0;
+	virtual const PoolVector<LightmapCaptureOctree> *lightmap_capture_get_octree_ptr(RID p_capture) const = 0;
+
 	/* PARTICLES */
 
 	virtual RID particles_create() = 0;

+ 19 - 0
servers/visual/visual_server_raster.h

@@ -361,6 +361,24 @@ public:
 	BIND2(gi_probe_set_dynamic_data, RID, const PoolVector<int> &)
 	BIND1RC(PoolVector<int>, gi_probe_get_dynamic_data, RID)
 
+	/* LIGHTMAP CAPTURE */
+
+	BIND0R(RID, lightmap_capture_create)
+
+	BIND2(lightmap_capture_set_bounds, RID, const AABB &)
+	BIND1RC(AABB, lightmap_capture_get_bounds, RID)
+
+	BIND2(lightmap_capture_set_octree, RID, const PoolVector<uint8_t> &)
+	BIND1RC(PoolVector<uint8_t>, lightmap_capture_get_octree, RID)
+
+	BIND2(lightmap_capture_set_octree_cell_transform, RID, const Transform &)
+	BIND1RC(Transform, lightmap_capture_get_octree_cell_transform, RID)
+	BIND2(lightmap_capture_set_octree_cell_subdiv, RID, int)
+	BIND1RC(int, lightmap_capture_get_octree_cell_subdiv, RID)
+
+	BIND2(lightmap_capture_set_energy, RID, float)
+	BIND1RC(float, lightmap_capture_get_energy, RID)
+
 	/* PARTICLES */
 
 	BIND0R(RID, particles_create)
@@ -504,6 +522,7 @@ public:
 	BIND3(instance_set_blend_shape_weight, RID, int, float)
 	BIND3(instance_set_surface_material, RID, int, RID)
 	BIND2(instance_set_visible, RID, bool)
+	BIND3(instance_set_use_lightmap, RID, RID, RID)
 
 	BIND2(instance_set_custom_aabb, RID, AABB)
 

+ 328 - 4
servers/visual/visual_server_scene.cpp

@@ -132,6 +132,19 @@ void *VisualServerScene::_instance_pair(void *p_self, OctreeElementID, Instance
 
 		geom->reflection_dirty = true;
 
+		return E; //this element should make freeing faster
+	} else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
+
+		InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
+		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
+
+		InstanceLightmapCaptureData::PairInfo pinfo;
+		pinfo.geometry = A;
+		pinfo.L = geom->lightmap_captures.push_back(B);
+
+		List<InstanceLightmapCaptureData::PairInfo>::Element *E = lightmap_capture->geometries.push_back(pinfo);
+		((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
+
 		return E; //this element should make freeing faster
 	} else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
 
@@ -193,6 +206,16 @@ void VisualServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance
 		reflection_probe->geometries.erase(E);
 
 		geom->reflection_dirty = true;
+	} else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
+
+		InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
+		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
+
+		List<InstanceLightmapCaptureData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapCaptureData::PairInfo>::Element *>(udata);
+
+		geom->lightmap_captures.erase(E->get().L);
+		lightmap_capture->geometries.erase(E);
+		((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
 
 	} else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
 
@@ -344,6 +367,14 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) {
 					reflection_probe_render_list.remove(&reflection_probe->update_list);
 				}
 			} break;
+			case VS::INSTANCE_LIGHTMAP_CAPTURE: {
+
+				InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(instance->base_data);
+				//erase dependencies, since no longer a lightmap
+				while (lightmap_capture->users.front()) {
+					instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID());
+				}
+			} break;
 			case VS::INSTANCE_GI_PROBE: {
 
 				InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
@@ -355,6 +386,14 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) {
 					VSG::storage->free(gi_probe->dynamic.probe_data);
 				}
 
+				if (instance->lightmap_capture) {
+					Instance *capture = (Instance *)instance->lightmap_capture;
+					InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(capture->base_data);
+					lightmap_capture->users.erase(instance);
+					instance->lightmap_capture = NULL;
+					instance->lightmap = RID();
+				}
+
 				VSG::scene_render->free(gi_probe->probe_instance);
 
 			} break;
@@ -412,6 +451,12 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) {
 
 				reflection_probe->instance = VSG::scene_render->reflection_probe_instance_create(p_base);
 			} break;
+			case VS::INSTANCE_LIGHTMAP_CAPTURE: {
+
+				InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData);
+				instance->base_data = lightmap_capture;
+				//lightmap_capture->instance = VSG::scene_render->lightmap_capture_instance_create(p_base);
+			} break;
 			case VS::INSTANCE_GI_PROBE: {
 
 				InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
@@ -590,6 +635,12 @@ void VisualServerScene::instance_set_visible(RID p_instance, bool p_visible) {
 				instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << VS::INSTANCE_REFLECTION_PROBE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0);
 			}
 
+		} break;
+		case VS::INSTANCE_LIGHTMAP_CAPTURE: {
+			if (instance->octree_id && instance->scenario) {
+				instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << VS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0);
+			}
+
 		} break;
 		case VS::INSTANCE_GI_PROBE: {
 			if (instance->octree_id && instance->scenario) {
@@ -599,11 +650,35 @@ void VisualServerScene::instance_set_visible(RID p_instance, bool p_visible) {
 		} break;
 	}
 }
-
 inline bool is_geometry_instance(VisualServer::InstanceType p_type) {
 	return p_type == VS::INSTANCE_MESH || p_type == VS::INSTANCE_MULTIMESH || p_type == VS::INSTANCE_PARTICLES || p_type == VS::INSTANCE_IMMEDIATE;
 }
 
+void VisualServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap) {
+
+	Instance *instance = instance_owner.get(p_instance);
+	ERR_FAIL_COND(!instance);
+	ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
+
+	if (instance->lightmap_capture) {
+		InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
+		lightmap_capture->users.erase(instance);
+		instance->lightmap = RID();
+		instance->lightmap_capture = NULL;
+	}
+
+	if (p_lightmap_instance.is_valid()) {
+		Instance *lightmap_instance = instance_owner.get(p_lightmap_instance);
+		ERR_FAIL_COND(!lightmap_instance);
+		ERR_FAIL_COND(lightmap_instance->base_type != VS::INSTANCE_LIGHTMAP_CAPTURE);
+		instance->lightmap_capture = lightmap_instance;
+
+		InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
+		lightmap_capture->users.insert(instance);
+		instance->lightmap = p_lightmap;
+	}
+}
+
 void VisualServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
 
 	Instance *instance = instance_owner.get(p_instance);
@@ -811,6 +886,15 @@ void VisualServerScene::_update_instance(Instance *p_instance) {
 				light->shadow_dirty = true;
 			}
 		}
+
+		if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) {
+			//affected by lightmap captures, must update capture info!
+			_update_instance_lightmap_captures(p_instance);
+		} else {
+			if (!p_instance->lightmap_capture_data.empty()) {
+				!p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data
+			}
+		}
 	}
 
 	p_instance->mirror = p_instance->transform.basis.determinant() < 0.0;
@@ -832,7 +916,7 @@ void VisualServerScene::_update_instance(Instance *p_instance) {
 		uint32_t pairable_mask = 0;
 		bool pairable = false;
 
-		if (p_instance->base_type == VS::INSTANCE_LIGHT || p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE) {
+		if (p_instance->base_type == VS::INSTANCE_LIGHT || p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE) {
 
 			pairable_mask = p_instance->visible ? VS::INSTANCE_GEOMETRY_MASK : 0;
 			pairable = true;
@@ -916,6 +1000,11 @@ void VisualServerScene::_update_instance_aabb(Instance *p_instance) {
 
 			new_aabb = VSG::storage->gi_probe_get_bounds(p_instance->base);
 
+		} break;
+		case VisualServer::INSTANCE_LIGHTMAP_CAPTURE: {
+
+			new_aabb = VSG::storage->lightmap_capture_get_bounds(p_instance->base);
+
 		} break;
 
 		default: {}
@@ -928,6 +1017,237 @@ void VisualServerScene::_update_instance_aabb(Instance *p_instance) {
 	p_instance->aabb = new_aabb;
 }
 
+_FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) {
+
+	static const Vector3 aniso_normal[6] = {
+		Vector3(-1, 0, 0),
+		Vector3(1, 0, 0),
+		Vector3(0, -1, 0),
+		Vector3(0, 1, 0),
+		Vector3(0, 0, -1),
+		Vector3(0, 0, 1)
+	};
+
+	int size = 1 << (p_cell_subdiv - 1);
+
+	int clamp_v = size - 1;
+	//first of all, clamp
+	Vector3 pos;
+	pos.x = CLAMP(p_pos.x, 0, clamp_v);
+	pos.y = CLAMP(p_pos.y, 0, clamp_v);
+	pos.z = CLAMP(p_pos.z, 0, clamp_v);
+
+	float level = (p_cell_subdiv - 1) - p_level;
+
+	int target_level;
+	float level_filter;
+	if (level <= 0.0) {
+		level_filter = 0;
+		target_level = 0;
+	} else {
+		target_level = Math::ceil(level);
+		level_filter = target_level - level;
+	}
+
+	Vector3 color[2][8];
+	float alpha[2][8];
+	zeromem(alpha, sizeof(float) * 2 * 8);
+
+	//find cell at given level first
+
+	for (int c = 0; c < 2; c++) {
+
+		int current_level = MAX(0, target_level - c);
+		int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level;
+
+		for (int n = 0; n < 8; n++) {
+
+			int x = int(pos.x);
+			int y = int(pos.y);
+			int z = int(pos.z);
+
+			if (n & 1)
+				x += level_cell_size;
+			if (n & 2)
+				y += level_cell_size;
+			if (n & 4)
+				z += level_cell_size;
+
+			int ofs_x = 0;
+			int ofs_y = 0;
+			int ofs_z = 0;
+
+			x = CLAMP(x, 0, clamp_v);
+			y = CLAMP(y, 0, clamp_v);
+			z = CLAMP(z, 0, clamp_v);
+
+			int half = size / 2;
+			uint32_t cell = 0;
+			for (int i = 0; i < current_level; i++) {
+
+				const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell];
+
+				int child = 0;
+				if (x >= ofs_x + half) {
+					child |= 1;
+					ofs_x += half;
+				}
+				if (y >= ofs_y + half) {
+					child |= 2;
+					ofs_y += half;
+				}
+				if (z >= ofs_z + half) {
+					child |= 4;
+					ofs_z += half;
+				}
+
+				cell = bc->children[child];
+				if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY)
+					break;
+
+				half >>= 1;
+			}
+
+			if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) {
+				alpha[c][n] = 0;
+			} else {
+				alpha[c][n] = p_octree[cell].alpha;
+
+				for (int i = 0; i < 6; i++) {
+					//anisotropic read light
+					float amount = p_dir.dot(aniso_normal[i]);
+					if (amount < 0)
+						amount = 0;
+					color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount;
+					color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount;
+					color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount;
+				}
+			}
+
+			//print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]);
+		}
+	}
+
+	float target_level_size = size >> target_level;
+	Vector3 pos_fract[2];
+
+	pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
+	pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
+	pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
+
+	target_level_size = size >> MAX(0, target_level - 1);
+
+	pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
+	pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
+	pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
+
+	float alpha_interp[2];
+	Vector3 color_interp[2];
+
+	for (int i = 0; i < 2; i++) {
+
+		Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
+		Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
+		Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
+
+		Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
+		Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
+		Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
+
+		color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
+
+		float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
+		float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
+		float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
+
+		float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
+		float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
+		float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
+
+		alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
+	}
+
+	r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
+	r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
+
+	//	print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha));
+}
+
+_FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) {
+
+	float bias = 0.0; //no need for bias here
+	float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length();
+
+	float dist = bias;
+	float alpha = 0.0;
+	Vector3 color;
+
+	Vector3 scolor;
+	float salpha;
+
+	while (dist < max_distance && alpha < 0.95) {
+		float diameter = MAX(1.0, 2.0 * p_aperture * dist);
+		_light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha);
+		float a = (1.0 - alpha);
+		color += scolor * a;
+		alpha += a * salpha;
+		dist += diameter * 0.5;
+	}
+
+	return Color(color.x, color.y, color.z, alpha);
+}
+
+void VisualServerScene::_update_instance_lightmap_captures(Instance *p_instance) {
+
+	InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
+
+	static const Vector3 cone_traces[12] = {
+		Vector3(0, 0, 1),
+		Vector3(0.866025, 0, 0.5),
+		Vector3(0.267617, 0.823639, 0.5),
+		Vector3(-0.700629, 0.509037, 0.5),
+		Vector3(-0.700629, -0.509037, 0.5),
+		Vector3(0.267617, -0.823639, 0.5),
+		Vector3(0, 0, -1),
+		Vector3(0.866025, 0, -0.5),
+		Vector3(0.267617, 0.823639, -0.5),
+		Vector3(-0.700629, 0.509037, -0.5),
+		Vector3(-0.700629, -0.509037, -0.5),
+		Vector3(0.267617, -0.823639, -0.5)
+	};
+
+	float cone_aperture = 0.577; // tan(angle) 60 degrees
+
+	if (p_instance->lightmap_capture_data.empty()) {
+		p_instance->lightmap_capture_data.resize(12);
+	}
+
+	//print_line("update captures for pos: " + p_instance->transform.origin);
+
+	zeromem(p_instance->lightmap_capture_data.ptrw(), 12 * sizeof(Color));
+	//this could use some sort of blending..
+	for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
+		const PoolVector<RasterizerStorage::LightmapCaptureOctree> *octree = VSG::storage->lightmap_capture_get_octree_ptr(E->get()->base);
+		//print_line("octree size: " + itos(octree->size()));
+		if (octree->size() == 0)
+			continue;
+		Transform to_cell_xform = VSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base);
+		int cell_subdiv = VSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base);
+		to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse();
+
+		PoolVector<RasterizerStorage::LightmapCaptureOctree>::Read octree_r = octree->read();
+
+		Vector3 pos = to_cell_xform.xform(p_instance->transform.origin);
+
+		for (int i = 0; i < 12; i++) {
+
+			Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized();
+			Color capture = _light_capture_voxel_cone_trace(octree_r.ptr(), pos, dir, cone_aperture, cell_subdiv);
+			p_instance->lightmap_capture_data[i] += capture;
+		}
+	}
+}
+
 void VisualServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario) {
 
 	InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
@@ -2188,6 +2508,8 @@ void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header, co
 				InstanceGIProbeData::LocalData *light = &local_data[idx];
 
 				Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5);
+				to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
+
 				Vector3 norm(
 						(((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0,
 						(((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0,
@@ -2254,6 +2576,8 @@ void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header, co
 				InstanceGIProbeData::LocalData *light = &local_data[idx];
 
 				Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5);
+				to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
+
 				Vector3 norm(
 						(((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0,
 						(((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0,
@@ -2927,12 +3251,12 @@ void VisualServerScene::_update_dirty_instance(Instance *p_instance) {
 		}
 	}
 
+	_instance_update_list.remove(&p_instance->update_item);
+
 	_update_instance(p_instance);
 
 	p_instance->update_aabb = false;
 	p_instance->update_materials = false;
-
-	_instance_update_list.remove(&p_instance->update_item);
 }
 
 void VisualServerScene::update_dirty_instances() {

+ 18 - 0
servers/visual/visual_server_scene.h

@@ -281,6 +281,8 @@ public:
 		List<Instance *> gi_probes;
 		bool gi_probes_dirty;
 
+		List<Instance *> lightmap_captures;
+
 		InstanceGeometryData() {
 
 			lighting_dirty = false;
@@ -445,6 +447,20 @@ public:
 
 	SelfList<InstanceGIProbeData>::List gi_probe_update_list;
 
+	struct InstanceLightmapCaptureData : public InstanceBaseData {
+
+		struct PairInfo {
+			List<Instance *>::Element *L; //iterator in geometry
+			Instance *geometry;
+		};
+		List<PairInfo> geometries;
+
+		Set<Instance *> users;
+
+		InstanceLightmapCaptureData() {
+		}
+	};
+
 	Instance *instance_cull_result[MAX_INSTANCE_CULL];
 	Instance *instance_shadow_cull_result[MAX_INSTANCE_CULL]; //used for generating shadowmaps
 	Instance *light_cull_result[MAX_LIGHTS_CULLED];
@@ -466,6 +482,7 @@ public:
 	virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight);
 	virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material);
 	virtual void instance_set_visible(RID p_instance, bool p_visible);
+	virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap);
 
 	virtual void instance_set_custom_aabb(RID p_insatnce, AABB aabb);
 
@@ -489,6 +506,7 @@ public:
 	_FORCE_INLINE_ void _update_instance(Instance *p_instance);
 	_FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance);
 	_FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance);
+	_FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance);
 
 	_FORCE_INLINE_ void _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario);
 

+ 18 - 0
servers/visual/visual_server_wrap_mt.h

@@ -294,6 +294,22 @@ public:
 	FUNC2(gi_probe_set_dynamic_data, RID, const PoolVector<int> &)
 	FUNC1RC(PoolVector<int>, gi_probe_get_dynamic_data, RID)
 
+	/* LIGHTMAP CAPTURE */
+
+	FUNCRID(lightmap_capture)
+
+	FUNC2(lightmap_capture_set_bounds, RID, const AABB &)
+	FUNC1RC(AABB, lightmap_capture_get_bounds, RID)
+
+	FUNC2(lightmap_capture_set_octree, RID, const PoolVector<uint8_t> &)
+	FUNC1RC(PoolVector<uint8_t>, lightmap_capture_get_octree, RID)
+	FUNC2(lightmap_capture_set_octree_cell_transform, RID, const Transform &)
+	FUNC1RC(Transform, lightmap_capture_get_octree_cell_transform, RID)
+	FUNC2(lightmap_capture_set_octree_cell_subdiv, RID, int)
+	FUNC1RC(int, lightmap_capture_get_octree_cell_subdiv, RID)
+	FUNC2(lightmap_capture_set_energy, RID, float)
+	FUNC1RC(float, lightmap_capture_get_energy, RID)
+
 	/* PARTICLES */
 
 	FUNCRID(particles)
@@ -425,6 +441,8 @@ public:
 	FUNC3(instance_set_blend_shape_weight, RID, int, float)
 	FUNC3(instance_set_surface_material, RID, int, RID)
 	FUNC2(instance_set_visible, RID, bool)
+	FUNC3(instance_set_use_lightmap, RID, RID, RID)
+
 	FUNC2(instance_set_custom_aabb, RID, AABB)
 
 	FUNC2(instance_attach_skeleton, RID, RID)

+ 17 - 0
servers/visual_server.h

@@ -485,6 +485,20 @@ public:
 	virtual void gi_probe_set_compress(RID p_probe, bool p_enable) = 0;
 	virtual bool gi_probe_is_compressed(RID p_probe) const = 0;
 
+	/* LIGHTMAP CAPTURE */
+
+	virtual RID lightmap_capture_create() = 0;
+	virtual void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) = 0;
+	virtual AABB lightmap_capture_get_bounds(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_octree(RID p_capture, const PoolVector<uint8_t> &p_octree) = 0;
+	virtual void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) = 0;
+	virtual Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) = 0;
+	virtual int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const = 0;
+	virtual PoolVector<uint8_t> lightmap_capture_get_octree(RID p_capture) const = 0;
+	virtual void lightmap_capture_set_energy(RID p_capture, float p_energy) = 0;
+	virtual float lightmap_capture_get_energy(RID p_capture) const = 0;
+
 	/* PARTICLES API */
 
 	virtual RID particles_create() = 0;
@@ -735,6 +749,7 @@ public:
 		INSTANCE_LIGHT,
 		INSTANCE_REFLECTION_PROBE,
 		INSTANCE_GI_PROBE,
+		INSTANCE_LIGHTMAP_CAPTURE,
 		INSTANCE_MAX,
 		/*INSTANCE_BAKED_LIGHT_SAMPLER,*/
 
@@ -755,6 +770,8 @@ public:
 	virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material) = 0;
 	virtual void instance_set_visible(RID p_instance, bool p_visible) = 0;
 
+	virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap) = 0;
+
 	virtual void instance_set_custom_aabb(RID p_instance, AABB aabb) = 0;
 
 	virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton) = 0;

Some files were not shown because too many files changed in this diff