|
@@ -1,3 +1,4 @@
|
|
|
+/* clang-format off */
|
|
|
[compute]
|
|
|
|
|
|
#version 450
|
|
@@ -5,26 +6,23 @@
|
|
|
VERSION_DEFINES
|
|
|
|
|
|
#ifdef MODE_DYNAMIC
|
|
|
-
|
|
|
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
|
|
|
-
|
|
|
#else
|
|
|
-
|
|
|
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
|
|
-
|
|
|
#endif
|
|
|
+/* clang-format on */
|
|
|
|
|
|
#ifndef MODE_DYNAMIC
|
|
|
|
|
|
#define NO_CHILDREN 0xFFFFFFFF
|
|
|
-#define GREY_VEC vec3(0.33333,0.33333,0.33333)
|
|
|
+#define GREY_VEC vec3(0.33333, 0.33333, 0.33333)
|
|
|
|
|
|
struct CellChildren {
|
|
|
uint children[8];
|
|
|
};
|
|
|
|
|
|
-layout(set=0,binding=1,std430) buffer CellChildrenBuffer {
|
|
|
- CellChildren data[];
|
|
|
+layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer {
|
|
|
+ CellChildren data[];
|
|
|
} cell_children;
|
|
|
|
|
|
struct CellData {
|
|
@@ -34,11 +32,10 @@ struct CellData {
|
|
|
uint normal; //RGB normal encoded
|
|
|
};
|
|
|
|
|
|
-layout(set=0,binding=2,std430) buffer CellDataBuffer {
|
|
|
- CellData data[];
|
|
|
+layout(set = 0, binding = 2, std430) buffer CellDataBuffer {
|
|
|
+ CellData data[];
|
|
|
} cell_data;
|
|
|
|
|
|
-
|
|
|
#endif // MODE DYNAMIC
|
|
|
|
|
|
#define LIGHT_TYPE_DIRECTIONAL 0
|
|
@@ -64,23 +61,19 @@ struct Light {
|
|
|
bool has_shadow;
|
|
|
};
|
|
|
|
|
|
-
|
|
|
-layout(set=0,binding=3,std140) uniform Lights {
|
|
|
- Light data[MAX_LIGHTS];
|
|
|
+layout(set = 0, binding = 3, std140) uniform Lights {
|
|
|
+ Light data[MAX_LIGHTS];
|
|
|
} lights;
|
|
|
|
|
|
-
|
|
|
-
|
|
|
#endif // MODE COMPUTE LIGHT
|
|
|
|
|
|
-
|
|
|
#ifdef MODE_SECOND_BOUNCE
|
|
|
|
|
|
-layout (set=0,binding=5) uniform texture3D color_texture;
|
|
|
+layout(set = 0, binding = 5) uniform texture3D color_texture;
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
-layout (set=0,binding=7) uniform texture3D aniso_pos_texture;
|
|
|
-layout (set=0,binding=8) uniform texture3D aniso_neg_texture;
|
|
|
+layout(set = 0, binding = 7) uniform texture3D aniso_pos_texture;
|
|
|
+layout(set = 0, binding = 8) uniform texture3D aniso_neg_texture;
|
|
|
#endif // MODE ANISOTROPIC
|
|
|
|
|
|
#endif // MODE_SECOND_BOUNCE
|
|
@@ -88,7 +81,6 @@ layout (set=0,binding=8) uniform texture3D aniso_neg_texture;
|
|
|
#ifndef MODE_DYNAMIC
|
|
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
-
|
|
|
ivec3 limits;
|
|
|
uint stack_size;
|
|
|
|
|
@@ -101,38 +93,33 @@ layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
uint cell_count;
|
|
|
float aniso_strength;
|
|
|
uint pad;
|
|
|
-
|
|
|
} params;
|
|
|
|
|
|
-
|
|
|
-layout(set=0,binding=4,std430) buffer Outputs {
|
|
|
- vec4 data[];
|
|
|
+layout(set = 0, binding = 4, std430) buffer Outputs {
|
|
|
+ vec4 data[];
|
|
|
} outputs;
|
|
|
|
|
|
#endif // MODE DYNAMIC
|
|
|
|
|
|
-layout (set=0,binding=9) uniform texture3D texture_sdf;
|
|
|
-layout (set=0,binding=10) uniform sampler texture_sampler;
|
|
|
+layout(set = 0, binding = 9) uniform texture3D texture_sdf;
|
|
|
+layout(set = 0, binding = 10) uniform sampler texture_sampler;
|
|
|
|
|
|
#ifdef MODE_WRITE_TEXTURE
|
|
|
|
|
|
-layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
|
|
|
+layout(rgba8, set = 0, binding = 5) uniform restrict writeonly image3D color_tex;
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
|
|
-layout (r16ui,set=0,binding=6) uniform restrict writeonly uimage3D aniso_pos_tex;
|
|
|
-layout (r16ui,set=0,binding=7) uniform restrict writeonly uimage3D aniso_neg_tex;
|
|
|
+layout(r16ui, set = 0, binding = 6) uniform restrict writeonly uimage3D aniso_pos_tex;
|
|
|
+layout(r16ui, set = 0, binding = 7) uniform restrict writeonly uimage3D aniso_neg_tex;
|
|
|
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
#ifdef MODE_DYNAMIC
|
|
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
-
|
|
|
ivec3 limits;
|
|
|
uint light_count; //when not lighting
|
|
|
ivec3 x_dir;
|
|
@@ -155,35 +142,35 @@ layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_LIGHTING
|
|
|
|
|
|
-layout (rgba8,set=0,binding=5) uniform restrict readonly image2D source_albedo;
|
|
|
-layout (rgba8,set=0,binding=6) uniform restrict readonly image2D source_normal;
|
|
|
-layout (rgba8,set=0,binding=7) uniform restrict readonly image2D source_orm;
|
|
|
+layout(rgba8, set = 0, binding = 5) uniform restrict readonly image2D source_albedo;
|
|
|
+layout(rgba8, set = 0, binding = 6) uniform restrict readonly image2D source_normal;
|
|
|
+layout(rgba8, set = 0, binding = 7) uniform restrict readonly image2D source_orm;
|
|
|
//layout (set=0,binding=8) uniform texture2D source_depth;
|
|
|
-layout (rgba16f,set=0,binding=11) uniform restrict image2D emission;
|
|
|
-layout (r32f,set=0,binding=12) uniform restrict image2D depth;
|
|
|
+layout(rgba16f, set = 0, binding = 11) uniform restrict image2D emission;
|
|
|
+layout(r32f, set = 0, binding = 12) uniform restrict image2D depth;
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_SHRINK
|
|
|
|
|
|
-layout (rgba16f,set=0,binding=5) uniform restrict readonly image2D source_light;
|
|
|
-layout (r32f,set=0,binding=6) uniform restrict readonly image2D source_depth;
|
|
|
+layout(rgba16f, set = 0, binding = 5) uniform restrict readonly image2D source_light;
|
|
|
+layout(r32f, set = 0, binding = 6) uniform restrict readonly image2D source_depth;
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_SHRINK_WRITE
|
|
|
|
|
|
-layout (rgba16f,set=0,binding=7) uniform restrict writeonly image2D light;
|
|
|
-layout (r32f,set=0,binding=8) uniform restrict writeonly image2D depth;
|
|
|
+layout(rgba16f, set = 0, binding = 7) uniform restrict writeonly image2D light;
|
|
|
+layout(r32f, set = 0, binding = 8) uniform restrict writeonly image2D depth;
|
|
|
|
|
|
#endif // MODE_DYNAMIC_SHRINK_WRITE
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_SHRINK_PLOT
|
|
|
|
|
|
-layout (rgba8,set=0,binding=11) uniform restrict image3D color_texture;
|
|
|
+layout(rgba8, set = 0, binding = 11) uniform restrict image3D color_texture;
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
|
|
-layout (r16ui,set=0,binding=12) uniform restrict writeonly uimage3D aniso_pos_texture;
|
|
|
-layout (r16ui,set=0,binding=13) uniform restrict writeonly uimage3D aniso_neg_texture;
|
|
|
+layout(r16ui, set = 0, binding = 12) uniform restrict writeonly uimage3D aniso_pos_texture;
|
|
|
+layout(r16ui, set = 0, binding = 13) uniform restrict writeonly uimage3D aniso_neg_texture;
|
|
|
|
|
|
#endif // MODE ANISOTROPIC
|
|
|
|
|
@@ -193,25 +180,22 @@ layout (r16ui,set=0,binding=13) uniform restrict writeonly uimage3D aniso_neg_te
|
|
|
|
|
|
//layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex;
|
|
|
|
|
|
-
|
|
|
#endif // MODE DYNAMIC
|
|
|
|
|
|
#if defined(MODE_COMPUTE_LIGHT) || defined(MODE_DYNAMIC_LIGHTING)
|
|
|
|
|
|
-float raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
|
|
|
-
|
|
|
-
|
|
|
+float raymarch(float distance, float distance_adv, vec3 from, vec3 direction) {
|
|
|
|
|
|
vec3 cell_size = 1.0 / vec3(params.limits);
|
|
|
float occlusion = 1.0;
|
|
|
while (distance > 0.5) { //use this to avoid precision errors
|
|
|
- float advance = texture(sampler3D(texture_sdf,texture_sampler),from * cell_size).r * 255.0 - 1.0;
|
|
|
- if (advance<0.0) {
|
|
|
+ float advance = texture(sampler3D(texture_sdf, texture_sampler), from * cell_size).r * 255.0 - 1.0;
|
|
|
+ if (advance < 0.0) {
|
|
|
occlusion = 0.0;
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
- occlusion=min(advance,occlusion);
|
|
|
+ occlusion = min(advance, occlusion);
|
|
|
|
|
|
advance = max(distance_adv, advance - mod(advance, distance_adv)); //should always advance in multiples of distance_adv
|
|
|
|
|
@@ -219,14 +203,12 @@ float raymarch(float distance,float distance_adv,vec3 from,vec3 direction) {
|
|
|
distance -= advance;
|
|
|
}
|
|
|
|
|
|
- return occlusion;//max(0.0,distance);
|
|
|
-
|
|
|
+ return occlusion; //max(0.0,distance);
|
|
|
}
|
|
|
|
|
|
-bool compute_light_vector(uint light, vec3 pos,out float attenuation, out vec3 light_pos) {
|
|
|
+bool compute_light_vector(uint light, vec3 pos, out float attenuation, out vec3 light_pos) {
|
|
|
|
|
|
-
|
|
|
- if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) {
|
|
|
+ if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) {
|
|
|
|
|
|
light_pos = pos - lights.data[light].direction * length(vec3(params.limits));
|
|
|
attenuation = 1.0;
|
|
@@ -239,14 +221,12 @@ bool compute_light_vector(uint light, vec3 pos,out float attenuation, out vec3 l
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
+ attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation);
|
|
|
|
|
|
- attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation );
|
|
|
-
|
|
|
-
|
|
|
- if (lights.data[light].type==LIGHT_TYPE_SPOT) {
|
|
|
+ if (lights.data[light].type == LIGHT_TYPE_SPOT) {
|
|
|
|
|
|
vec3 rel = normalize(pos - light_pos);
|
|
|
- float angle = acos(dot(rel,lights.data[light].direction));
|
|
|
+ float angle = acos(dot(rel, lights.data[light].direction));
|
|
|
if (angle > lights.data[light].spot_angle_radians) {
|
|
|
return false;
|
|
|
}
|
|
@@ -279,23 +259,20 @@ float get_normal_advance(vec3 p_normal) {
|
|
|
unorm = vec3(1.0, 0.0, 0.0);
|
|
|
}
|
|
|
|
|
|
- return 1.0 / dot(normal,unorm);
|
|
|
+ return 1.0 / dot(normal, unorm);
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
void clip_segment(vec4 plane, vec3 begin, inout vec3 end) {
|
|
|
|
|
|
vec3 segment = begin - end;
|
|
|
- float den = dot(plane.xyz,segment);
|
|
|
+ float den = dot(plane.xyz, segment);
|
|
|
|
|
|
//printf("den is %i\n",den);
|
|
|
if (den < 0.0001) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- float dist = (dot(plane.xyz,begin) - plane.w) / den;
|
|
|
+ float dist = (dot(plane.xyz, begin) - plane.w) / den;
|
|
|
|
|
|
if (dist < 0.0001 || dist > 1.0001) {
|
|
|
return;
|
|
@@ -308,13 +285,13 @@ bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, i
|
|
|
float attenuation;
|
|
|
vec3 light_pos;
|
|
|
|
|
|
- if (!compute_light_vector(index,pos,attenuation,light_pos)) {
|
|
|
+ if (!compute_light_vector(index, pos, attenuation, light_pos)) {
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
light_dir = normalize(pos - light_pos);
|
|
|
|
|
|
- if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal,light_dir)>=0)) {
|
|
|
+ if (attenuation < 0.01 || (length(normal) > 0.2 && dot(normal, light_dir) >= 0)) {
|
|
|
return false; //not facing the light, or attenuation is near zero
|
|
|
}
|
|
|
|
|
@@ -322,21 +299,19 @@ bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, i
|
|
|
|
|
|
float distance_adv = get_normal_advance(light_dir);
|
|
|
|
|
|
-
|
|
|
vec3 to = pos;
|
|
|
if (length(normal) > 0.2) {
|
|
|
to += normal * distance_adv * 0.51;
|
|
|
} else {
|
|
|
- to -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion
|
|
|
+ to -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion
|
|
|
}
|
|
|
|
|
|
//clip
|
|
|
- clip_segment(mix(vec4(-1.0,0.0,0.0,0.0),vec4(1.0,0.0,0.0,float(params.limits.x-1)),bvec4(light_dir.x < 0.0)),to,light_pos);
|
|
|
- clip_segment(mix(vec4(0.0,-1.0,0.0,0.0),vec4(0.0,1.0,0.0,float(params.limits.y-1)),bvec4(light_dir.y < 0.0)),to,light_pos);
|
|
|
- clip_segment(mix(vec4(0.0,0.0,-1.0,0.0),vec4(0.0,0.0,1.0,float(params.limits.z-1)),bvec4(light_dir.z < 0.0)),to,light_pos);
|
|
|
+ clip_segment(mix(vec4(-1.0, 0.0, 0.0, 0.0), vec4(1.0, 0.0, 0.0, float(params.limits.x - 1)), bvec4(light_dir.x < 0.0)), to, light_pos);
|
|
|
+ clip_segment(mix(vec4(0.0, -1.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, float(params.limits.y - 1)), bvec4(light_dir.y < 0.0)), to, light_pos);
|
|
|
+ clip_segment(mix(vec4(0.0, 0.0, -1.0, 0.0), vec4(0.0, 0.0, 1.0, float(params.limits.z - 1)), bvec4(light_dir.z < 0.0)), to, light_pos);
|
|
|
|
|
|
-
|
|
|
- float distance = length(to-light_pos);
|
|
|
+ float distance = length(to - light_pos);
|
|
|
if (distance < 0.1) {
|
|
|
return false; // hit
|
|
|
}
|
|
@@ -355,14 +330,13 @@ bool compute_light_at_pos(uint index, vec3 pos, vec3 normal, inout vec3 light, i
|
|
|
attenuation *= 1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
|
|
|
*/
|
|
|
|
|
|
- float occlusion = raymarch(distance,distance_adv,light_pos,light_dir);
|
|
|
+ float occlusion = raymarch(distance, distance_adv, light_pos, light_dir);
|
|
|
|
|
|
- if (occlusion==0.0) {
|
|
|
+ if (occlusion == 0.0) {
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
- attenuation *= occlusion;//1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
|
|
|
-
|
|
|
+ attenuation *= occlusion; //1.0 - smoothstep(0.1*distance_adv,distance_adv,dist);
|
|
|
}
|
|
|
|
|
|
light = lights.data[index].color * attenuation * lights.data[index].energy;
|
|
@@ -375,91 +349,88 @@ void main() {
|
|
|
|
|
|
#ifndef MODE_DYNAMIC
|
|
|
|
|
|
- uint cell_index = gl_GlobalInvocationID.x;;
|
|
|
+ uint cell_index = gl_GlobalInvocationID.x;
|
|
|
if (cell_index >= params.cell_count) {
|
|
|
return;
|
|
|
}
|
|
|
cell_index += params.cell_offset;
|
|
|
|
|
|
- uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21);
|
|
|
+ uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21);
|
|
|
vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
-/////////////////COMPUTE LIGHT///////////////////////////////
|
|
|
+ /////////////////COMPUTE LIGHT///////////////////////////////
|
|
|
|
|
|
#ifdef MODE_COMPUTE_LIGHT
|
|
|
|
|
|
vec3 pos = vec3(posu) + vec3(0.5);
|
|
|
|
|
|
- vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff,(cell_data.data[cell_index].emission >> 9) & 0x1ff,(cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0);
|
|
|
+ vec3 emission = vec3(uvec3(cell_data.data[cell_index].emission & 0x1ff, (cell_data.data[cell_index].emission >> 9) & 0x1ff, (cell_data.data[cell_index].emission >> 18) & 0x1ff)) * pow(2.0, float(cell_data.data[cell_index].emission >> 27) - 15.0 - 9.0);
|
|
|
vec3 normal = unpackSnorm4x8(cell_data.data[cell_index].normal).xyz;
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
|
|
|
- const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
|
|
|
+ vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
|
|
|
+ const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
|
|
|
#else
|
|
|
vec3 accum = vec3(0.0);
|
|
|
#endif
|
|
|
|
|
|
- for(uint i=0;i<params.light_count;i++) {
|
|
|
+ for (uint i = 0; i < params.light_count; i++) {
|
|
|
|
|
|
vec3 light;
|
|
|
vec3 light_dir;
|
|
|
- if (!compute_light_at_pos(i,pos,normal.xyz,light,light_dir)) {
|
|
|
+ if (!compute_light_at_pos(i, pos, normal.xyz, light, light_dir)) {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- light*= albedo.rgb;
|
|
|
+ light *= albedo.rgb;
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- for(uint j=0;j<6;j++) {
|
|
|
+ for (uint j = 0; j < 6; j++) {
|
|
|
|
|
|
- accum[j]+=max(0.0,dot(accum_dirs[j],-light_dir))*light;
|
|
|
+ accum[j] += max(0.0, dot(accum_dirs[j], -light_dir)) * light;
|
|
|
}
|
|
|
#else
|
|
|
if (length(normal) > 0.2) {
|
|
|
- accum+=max(0.0,dot(normal,-light_dir))*light;
|
|
|
+ accum += max(0.0, dot(normal, -light_dir)) * light;
|
|
|
} else {
|
|
|
//all directions
|
|
|
- accum+=light;
|
|
|
+ accum += light;
|
|
|
}
|
|
|
#endif
|
|
|
}
|
|
|
|
|
|
-
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
|
|
- for(uint i=0;i<6;i++) {
|
|
|
+ for (uint i = 0; i < 6; i++) {
|
|
|
vec3 light = accum[i];
|
|
|
if (length(normal) > 0.2) {
|
|
|
- light += max(0.0,dot(accum_dirs[i],-normal)) * emission;
|
|
|
+ light += max(0.0, dot(accum_dirs[i], -normal)) * emission;
|
|
|
} else {
|
|
|
light += emission;
|
|
|
}
|
|
|
|
|
|
- outputs.data[cell_index*6+i] = vec4(light,0.0);
|
|
|
+ outputs.data[cell_index * 6 + i] = vec4(light, 0.0);
|
|
|
}
|
|
|
|
|
|
#else
|
|
|
- outputs.data[cell_index]=vec4(accum + emission,0.0);
|
|
|
+ outputs.data[cell_index] = vec4(accum + emission, 0.0);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
-
|
|
|
#endif //MODE_COMPUTE_LIGHT
|
|
|
|
|
|
-/////////////////SECOND BOUNCE///////////////////////////////
|
|
|
+ /////////////////SECOND BOUNCE///////////////////////////////
|
|
|
+
|
|
|
#ifdef MODE_SECOND_BOUNCE
|
|
|
vec3 pos = vec3(posu) + vec3(0.5);
|
|
|
ivec3 ipos = ivec3(posu);
|
|
|
vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal);
|
|
|
|
|
|
-
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
vec3 accum[6];
|
|
|
- const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0));
|
|
|
+ const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0));
|
|
|
|
|
|
/*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range;
|
|
|
vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb;
|
|
@@ -471,12 +442,12 @@ void main() {
|
|
|
accum[4]=src_col * src_aniso_pos.z;
|
|
|
accum[5]=src_col * src_aniso_neg.z;*/
|
|
|
|
|
|
- accum[0] = outputs.data[cell_index*6+0].rgb;
|
|
|
- accum[1] = outputs.data[cell_index*6+1].rgb;
|
|
|
- accum[2] = outputs.data[cell_index*6+2].rgb;
|
|
|
- accum[3] = outputs.data[cell_index*6+3].rgb;
|
|
|
- accum[4] = outputs.data[cell_index*6+4].rgb;
|
|
|
- accum[5] = outputs.data[cell_index*6+5].rgb;
|
|
|
+ accum[0] = outputs.data[cell_index * 6 + 0].rgb;
|
|
|
+ accum[1] = outputs.data[cell_index * 6 + 1].rgb;
|
|
|
+ accum[2] = outputs.data[cell_index * 6 + 2].rgb;
|
|
|
+ accum[3] = outputs.data[cell_index * 6 + 3].rgb;
|
|
|
+ accum[4] = outputs.data[cell_index * 6 + 4].rgb;
|
|
|
+ accum[5] = outputs.data[cell_index * 6 + 5].rgb;
|
|
|
|
|
|
#else
|
|
|
vec3 accum = outputs.data[cell_index].rgb;
|
|
@@ -493,12 +464,12 @@ void main() {
|
|
|
#define MAX_CONE_DIRS 6
|
|
|
|
|
|
vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
|
|
|
- vec3(0.0, 0.0, 1.0),
|
|
|
- vec3(0.866025, 0.0, 0.5),
|
|
|
- vec3(0.267617, 0.823639, 0.5),
|
|
|
- vec3(-0.700629, 0.509037, 0.5),
|
|
|
- vec3(-0.700629, -0.509037, 0.5),
|
|
|
- vec3(0.267617, -0.823639, 0.5));
|
|
|
+ vec3(0.0, 0.0, 1.0),
|
|
|
+ vec3(0.866025, 0.0, 0.5),
|
|
|
+ vec3(0.267617, 0.823639, 0.5),
|
|
|
+ vec3(-0.700629, 0.509037, 0.5),
|
|
|
+ vec3(-0.700629, -0.509037, 0.5),
|
|
|
+ vec3(0.267617, -0.823639, 0.5));
|
|
|
|
|
|
float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
|
|
|
float tan_half_angle = 0.577;
|
|
@@ -514,7 +485,7 @@ void main() {
|
|
|
vec3 cell_size = 1.0 / vec3(params.limits);
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- vec3 aniso_normal = mix(direction,normal.xyz,params.aniso_strength);
|
|
|
+ vec3 aniso_normal = mix(direction, normal.xyz, params.aniso_strength);
|
|
|
#endif
|
|
|
while (dist < max_distance && color.a < 0.95) {
|
|
|
float diameter = max(1.0, 2.0 * tan_half_angle * dist);
|
|
@@ -526,148 +497,141 @@ void main() {
|
|
|
//}
|
|
|
|
|
|
float log2_diameter = log2(diameter);
|
|
|
- vec4 scolor = textureLod(sampler3D(color_texture,texture_sampler), uvw_pos, log2_diameter);
|
|
|
+ vec4 scolor = textureLod(sampler3D(color_texture, texture_sampler), uvw_pos, log2_diameter);
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
|
|
- vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
|
- vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture,texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
|
+ vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
|
+ vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture, texture_sampler), uvw_pos, log2_diameter).rgb;
|
|
|
|
|
|
- scolor.rgb*=dot(max(vec3(0.0),(aniso_normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-aniso_normal * aniso_neg)),vec3(1.0));
|
|
|
+ scolor.rgb *= dot(max(vec3(0.0), (aniso_normal * aniso_pos)), vec3(1.0)) + dot(max(vec3(0.0), (-aniso_normal * aniso_neg)), vec3(1.0));
|
|
|
#endif
|
|
|
float a = (1.0 - color.a);
|
|
|
color += a * scolor;
|
|
|
dist += half_diameter;
|
|
|
-
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
- color *= cone_weights[i] * vec4(albedo.rgb,1.0) * params.dynamic_range; //restore range
|
|
|
+ color *= cone_weights[i] * vec4(albedo.rgb, 1.0) * params.dynamic_range; //restore range
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- for(uint j=0;j<6;j++) {
|
|
|
+ for (uint j = 0; j < 6; j++) {
|
|
|
|
|
|
- accum[j]+=max(0.0,dot(accum_dirs[j],direction))*color.rgb;
|
|
|
+ accum[j] += max(0.0, dot(accum_dirs[j], direction)) * color.rgb;
|
|
|
}
|
|
|
#else
|
|
|
- accum+=color.rgb;
|
|
|
+ accum += color.rgb;
|
|
|
#endif
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
|
|
|
- outputs.data[cell_index*6+0]=vec4(accum[0],0.0);
|
|
|
- outputs.data[cell_index*6+1]=vec4(accum[1],0.0);
|
|
|
- outputs.data[cell_index*6+2]=vec4(accum[2],0.0);
|
|
|
- outputs.data[cell_index*6+3]=vec4(accum[3],0.0);
|
|
|
- outputs.data[cell_index*6+4]=vec4(accum[4],0.0);
|
|
|
- outputs.data[cell_index*6+5]=vec4(accum[5],0.0);
|
|
|
+ outputs.data[cell_index * 6 + 0] = vec4(accum[0], 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 1] = vec4(accum[1], 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 2] = vec4(accum[2], 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 3] = vec4(accum[3], 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 4] = vec4(accum[4], 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 5] = vec4(accum[5], 0.0);
|
|
|
#else
|
|
|
- outputs.data[cell_index]=vec4(accum,0.0);
|
|
|
+ outputs.data[cell_index] = vec4(accum, 0.0);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#endif // MODE_SECOND_BOUNCE
|
|
|
-/////////////////UPDATE MIPMAPS///////////////////////////////
|
|
|
+
|
|
|
+ /////////////////UPDATE MIPMAPS///////////////////////////////
|
|
|
|
|
|
#ifdef MODE_UPDATE_MIPMAPS
|
|
|
|
|
|
{
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0));
|
|
|
+ vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0));
|
|
|
#else
|
|
|
vec3 light_accum = vec3(0.0);
|
|
|
#endif
|
|
|
float count = 0.0;
|
|
|
- for(uint i=0;i<8;i++) {
|
|
|
+ for (uint i = 0; i < 8; i++) {
|
|
|
uint child_index = cell_children.data[cell_index].children[i];
|
|
|
- if (child_index==NO_CHILDREN) {
|
|
|
+ if (child_index == NO_CHILDREN) {
|
|
|
continue;
|
|
|
}
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- light_accum[0] += outputs.data[child_index*6+0].rgb;
|
|
|
- light_accum[1] += outputs.data[child_index*6+1].rgb;
|
|
|
- light_accum[2] += outputs.data[child_index*6+2].rgb;
|
|
|
- light_accum[3] += outputs.data[child_index*6+3].rgb;
|
|
|
- light_accum[4] += outputs.data[child_index*6+4].rgb;
|
|
|
- light_accum[5] += outputs.data[child_index*6+5].rgb;
|
|
|
+ light_accum[0] += outputs.data[child_index * 6 + 0].rgb;
|
|
|
+ light_accum[1] += outputs.data[child_index * 6 + 1].rgb;
|
|
|
+ light_accum[2] += outputs.data[child_index * 6 + 2].rgb;
|
|
|
+ light_accum[3] += outputs.data[child_index * 6 + 3].rgb;
|
|
|
+ light_accum[4] += outputs.data[child_index * 6 + 4].rgb;
|
|
|
+ light_accum[5] += outputs.data[child_index * 6 + 5].rgb;
|
|
|
|
|
|
#else
|
|
|
light_accum += outputs.data[child_index].rgb;
|
|
|
|
|
|
#endif
|
|
|
|
|
|
- count+=1.0;
|
|
|
+ count += 1.0;
|
|
|
}
|
|
|
|
|
|
- float divisor = mix(8.0,count,params.propagation);
|
|
|
+ float divisor = mix(8.0, count, params.propagation);
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
- outputs.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0);
|
|
|
- outputs.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0);
|
|
|
- outputs.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0);
|
|
|
- outputs.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0);
|
|
|
- outputs.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0);
|
|
|
- outputs.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0);
|
|
|
+ outputs.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0);
|
|
|
+ outputs.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0);
|
|
|
|
|
|
#else
|
|
|
- outputs.data[cell_index]=vec4(light_accum / divisor,0.0);
|
|
|
+ outputs.data[cell_index] = vec4(light_accum / divisor, 0.0);
|
|
|
#endif
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-///////////////////WRITE TEXTURE/////////////////////////////
|
|
|
+ ///////////////////WRITE TEXTURE/////////////////////////////
|
|
|
|
|
|
#ifdef MODE_WRITE_TEXTURE
|
|
|
{
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
vec3 accum_total = vec3(0.0);
|
|
|
- accum_total += outputs.data[cell_index*6+0].rgb;
|
|
|
- accum_total += outputs.data[cell_index*6+1].rgb;
|
|
|
- accum_total += outputs.data[cell_index*6+2].rgb;
|
|
|
- accum_total += outputs.data[cell_index*6+3].rgb;
|
|
|
- accum_total += outputs.data[cell_index*6+4].rgb;
|
|
|
- accum_total += outputs.data[cell_index*6+5].rgb;
|
|
|
-
|
|
|
- float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001);
|
|
|
- vec3 iso_positive = vec3(dot(outputs.data[cell_index*6+0].rgb,GREY_VEC),dot(outputs.data[cell_index*6+2].rgb,GREY_VEC),dot(outputs.data[cell_index*6+4].rgb,GREY_VEC))/vec3(accum_total_energy);
|
|
|
- vec3 iso_negative = vec3(dot(outputs.data[cell_index*6+1].rgb,GREY_VEC),dot(outputs.data[cell_index*6+3].rgb,GREY_VEC),dot(outputs.data[cell_index*6+5].rgb,GREY_VEC))/vec3(accum_total_energy);
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 0].rgb;
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 1].rgb;
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 2].rgb;
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 3].rgb;
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 4].rgb;
|
|
|
+ accum_total += outputs.data[cell_index * 6 + 5].rgb;
|
|
|
|
|
|
+ float accum_total_energy = max(dot(accum_total, GREY_VEC), 0.00001);
|
|
|
+ vec3 iso_positive = vec3(dot(outputs.data[cell_index * 6 + 0].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 2].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 4].rgb, GREY_VEC)) / vec3(accum_total_energy);
|
|
|
+ vec3 iso_negative = vec3(dot(outputs.data[cell_index * 6 + 1].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 3].rgb, GREY_VEC), dot(outputs.data[cell_index * 6 + 5].rgb, GREY_VEC)) / vec3(accum_total_energy);
|
|
|
|
|
|
{
|
|
|
- uint aniso_pos = uint(clamp(iso_positive.b * 31.0,0.0,31.0));
|
|
|
- aniso_pos |= uint(clamp(iso_positive.g * 63.0,0.0,63.0))<<5;
|
|
|
- aniso_pos |= uint(clamp(iso_positive.r * 31.0,0.0,31.0))<<11;
|
|
|
- imageStore(aniso_pos_tex,ivec3(posu),uvec4(aniso_pos));
|
|
|
+ uint aniso_pos = uint(clamp(iso_positive.b * 31.0, 0.0, 31.0));
|
|
|
+ aniso_pos |= uint(clamp(iso_positive.g * 63.0, 0.0, 63.0)) << 5;
|
|
|
+ aniso_pos |= uint(clamp(iso_positive.r * 31.0, 0.0, 31.0)) << 11;
|
|
|
+ imageStore(aniso_pos_tex, ivec3(posu), uvec4(aniso_pos));
|
|
|
}
|
|
|
|
|
|
{
|
|
|
- uint aniso_neg = uint(clamp(iso_negative.b * 31.0,0.0,31.0));
|
|
|
- aniso_neg |= uint(clamp(iso_negative.g * 63.0,0.0,63.0))<<5;
|
|
|
- aniso_neg |= uint(clamp(iso_negative.r * 31.0,0.0,31.0))<<11;
|
|
|
- imageStore(aniso_neg_tex,ivec3(posu),uvec4(aniso_neg));
|
|
|
+ uint aniso_neg = uint(clamp(iso_negative.b * 31.0, 0.0, 31.0));
|
|
|
+ aniso_neg |= uint(clamp(iso_negative.g * 63.0, 0.0, 63.0)) << 5;
|
|
|
+ aniso_neg |= uint(clamp(iso_negative.r * 31.0, 0.0, 31.0)) << 11;
|
|
|
+ imageStore(aniso_neg_tex, ivec3(posu), uvec4(aniso_neg));
|
|
|
}
|
|
|
|
|
|
- imageStore(color_tex,ivec3(posu),vec4(accum_total / params.dynamic_range ,albedo.a));
|
|
|
+ imageStore(color_tex, ivec3(posu), vec4(accum_total / params.dynamic_range, albedo.a));
|
|
|
|
|
|
#else
|
|
|
|
|
|
- imageStore(color_tex,ivec3(posu),vec4(outputs.data[cell_index].rgb / params.dynamic_range,albedo.a));
|
|
|
+ imageStore(color_tex, ivec3(posu), vec4(outputs.data[cell_index].rgb / params.dynamic_range, albedo.a));
|
|
|
|
|
|
#endif
|
|
|
-
|
|
|
-
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-///////////////////DYNAMIC LIGHTING/////////////////////////////
|
|
|
+ ///////////////////DYNAMIC LIGHTING/////////////////////////////
|
|
|
|
|
|
#ifdef MODE_DYNAMIC
|
|
|
|
|
|
ivec2 pos_xy = ivec2(gl_GlobalInvocationID.xy);
|
|
|
- if (any(greaterThanEqual(pos_xy,params.rect_size))) {
|
|
|
+ if (any(greaterThanEqual(pos_xy, params.rect_size))) {
|
|
|
return; //out of bounds
|
|
|
}
|
|
|
|
|
@@ -679,47 +643,38 @@ void main() {
|
|
|
uv_xy.y = params.rect_size.y - pos_xy.y - 1;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
#ifdef MODE_DYNAMIC_LIGHTING
|
|
|
|
|
|
-
|
|
|
{
|
|
|
+ float z = params.z_base + imageLoad(depth, uv_xy).x * params.z_sign;
|
|
|
|
|
|
+ ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);
|
|
|
|
|
|
- float z = params.z_base + imageLoad(depth,uv_xy).x * params.z_sign;
|
|
|
-
|
|
|
- ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(z);
|
|
|
-
|
|
|
- vec3 normal = imageLoad(source_normal,uv_xy).xyz * 2.0 - 1.0;
|
|
|
- normal = vec3(params.x_dir) * normal.x * mix(1.0,-1.0,params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0,-1.0,params.flip_y) - vec3(params.z_dir) * normal.z;
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
+ vec3 normal = imageLoad(source_normal, uv_xy).xyz * 2.0 - 1.0;
|
|
|
+ normal = vec3(params.x_dir) * normal.x * mix(1.0, -1.0, params.flip_x) + vec3(params.y_dir) * normal.y * mix(1.0, -1.0, params.flip_y) - vec3(params.z_dir) * normal.z;
|
|
|
|
|
|
- vec4 albedo = imageLoad(source_albedo,uv_xy);
|
|
|
+ vec4 albedo = imageLoad(source_albedo, uv_xy);
|
|
|
|
|
|
//determine the position in space
|
|
|
|
|
|
vec3 accum = vec3(0.0);
|
|
|
- for(uint i=0;i<params.light_count;i++) {
|
|
|
+ for (uint i = 0; i < params.light_count; i++) {
|
|
|
|
|
|
vec3 light;
|
|
|
vec3 light_dir;
|
|
|
- if (!compute_light_at_pos(i,vec3(pos) * params.pos_multiplier,normal,light,light_dir)) {
|
|
|
+ if (!compute_light_at_pos(i, vec3(pos) * params.pos_multiplier, normal, light, light_dir)) {
|
|
|
continue;
|
|
|
}
|
|
|
|
|
|
- light*= albedo.rgb;
|
|
|
-
|
|
|
- accum+=max(0.0,dot(normal,-light_dir))*light;
|
|
|
+ light *= albedo.rgb;
|
|
|
|
|
|
+ accum += max(0.0, dot(normal, -light_dir)) * light;
|
|
|
}
|
|
|
|
|
|
- accum+=imageLoad(emission,uv_xy).xyz;
|
|
|
-
|
|
|
- imageStore(emission,uv_xy,vec4(accum,albedo.a));
|
|
|
- imageStore(depth,uv_xy,vec4(z));
|
|
|
+ accum += imageLoad(emission, uv_xy).xyz;
|
|
|
|
|
|
+ imageStore(emission, uv_xy, vec4(accum, albedo.a));
|
|
|
+ imageStore(depth, uv_xy, vec4(z));
|
|
|
}
|
|
|
|
|
|
#endif // MODE DYNAMIC LIGHTING
|
|
@@ -731,9 +686,9 @@ void main() {
|
|
|
float accum_z = 0.0;
|
|
|
float count = 0.0;
|
|
|
|
|
|
- for(int i=0;i<4;i++) {
|
|
|
- ivec2 ofs = pos_xy*2 + ivec2(i&1,i>>1) - params.prev_rect_ofs;
|
|
|
- if (any(lessThan(ofs,ivec2(0))) || any(greaterThanEqual(ofs,params.prev_rect_size))) {
|
|
|
+ for (int i = 0; i < 4; i++) {
|
|
|
+ ivec2 ofs = pos_xy * 2 + ivec2(i & 1, i >> 1) - params.prev_rect_ofs;
|
|
|
+ if (any(lessThan(ofs, ivec2(0))) || any(greaterThanEqual(ofs, params.prev_rect_size))) {
|
|
|
continue;
|
|
|
}
|
|
|
if (params.flip_x) {
|
|
@@ -743,67 +698,64 @@ void main() {
|
|
|
ofs.y = params.prev_rect_size.y - ofs.y - 1;
|
|
|
}
|
|
|
|
|
|
- vec4 light = imageLoad(source_light,ofs);
|
|
|
- if (light.a==0.0) { //ignore empty
|
|
|
+ vec4 light = imageLoad(source_light, ofs);
|
|
|
+ if (light.a == 0.0) { //ignore empty
|
|
|
continue;
|
|
|
}
|
|
|
accum += light;
|
|
|
- float z = imageLoad(source_depth,ofs).x;
|
|
|
- accum_z += z*0.5; //shrink half too
|
|
|
- count+=1.0;
|
|
|
+ float z = imageLoad(source_depth, ofs).x;
|
|
|
+ accum_z += z * 0.5; //shrink half too
|
|
|
+ count += 1.0;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
if (params.on_mipmap) {
|
|
|
- accum.rgb /= mix(8.0,count,params.propagation);
|
|
|
+ accum.rgb /= mix(8.0, count, params.propagation);
|
|
|
accum.a /= 8.0;
|
|
|
} else {
|
|
|
- accum/=4.0;
|
|
|
+ accum /= 4.0;
|
|
|
}
|
|
|
|
|
|
- if (count==0.0) {
|
|
|
- accum_z=0.0; //avoid nan
|
|
|
+ if (count == 0.0) {
|
|
|
+ accum_z = 0.0; //avoid nan
|
|
|
} else {
|
|
|
- accum_z/=count;
|
|
|
+ accum_z /= count;
|
|
|
}
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_SHRINK_WRITE
|
|
|
|
|
|
- imageStore(light,uv_xy,accum);
|
|
|
- imageStore(depth,uv_xy,vec4(accum_z));
|
|
|
+ imageStore(light, uv_xy, accum);
|
|
|
+ imageStore(depth, uv_xy, vec4(accum_z));
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_DYNAMIC_SHRINK_PLOT
|
|
|
|
|
|
-
|
|
|
- if (accum.a<0.001) {
|
|
|
+ if (accum.a < 0.001) {
|
|
|
return; //do not blit if alpha is too low
|
|
|
}
|
|
|
|
|
|
- ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z);
|
|
|
+ ivec3 pos = params.x_dir * (params.rect_pos.x + pos_xy.x) + params.y_dir * (params.rect_pos.y + pos_xy.y) + abs(params.z_dir) * int(accum_z);
|
|
|
|
|
|
float z_frac = fract(accum_z);
|
|
|
|
|
|
- for(int i = 0; i< 2; i++) {
|
|
|
+ for (int i = 0; i < 2; i++) {
|
|
|
ivec3 pos3d = pos + abs(params.z_dir) * i;
|
|
|
- if (any(lessThan(pos3d,ivec3(0))) || any(greaterThanEqual(pos3d,params.limits))) {
|
|
|
+ if (any(lessThan(pos3d, ivec3(0))) || any(greaterThanEqual(pos3d, params.limits))) {
|
|
|
//skip if offlimits
|
|
|
continue;
|
|
|
}
|
|
|
- vec4 color_blit = accum * (i==0 ? 1.0 - z_frac : z_frac );
|
|
|
- vec4 color = imageLoad(color_texture,pos3d);
|
|
|
- color.rgb *=params.dynamic_range;
|
|
|
+ vec4 color_blit = accum * (i == 0 ? 1.0 - z_frac : z_frac);
|
|
|
+ vec4 color = imageLoad(color_texture, pos3d);
|
|
|
+ color.rgb *= params.dynamic_range;
|
|
|
|
|
|
#if 0
|
|
|
color.rgb = mix(color.rgb,color_blit.rgb,color_blit.a);
|
|
|
color.a+=color_blit.a;
|
|
|
#else
|
|
|
|
|
|
-
|
|
|
float sa = 1.0 - color_blit.a;
|
|
|
vec4 result;
|
|
|
result.a = color.a * sa + color_blit.a;
|
|
|
- if (result.a==0.0) {
|
|
|
+ if (result.a == 0.0) {
|
|
|
result = vec4(0.0);
|
|
|
} else {
|
|
|
result.rgb = (color.rgb * color.a * sa + color_blit.rgb * color_blit.a) / result.a;
|
|
@@ -812,19 +764,17 @@ void main() {
|
|
|
|
|
|
#endif
|
|
|
color.rgb /= params.dynamic_range;
|
|
|
- imageStore(color_texture,pos3d,color);
|
|
|
+ imageStore(color_texture, pos3d, color);
|
|
|
//imageStore(color_texture,pos3d,vec4(1,1,1,1));
|
|
|
|
|
|
#ifdef MODE_ANISOTROPIC
|
|
|
//do not care about anisotropy for dynamic objects, just store full lit in all directions
|
|
|
- imageStore(aniso_pos_texture,pos3d,uvec4(0xFFFF));
|
|
|
- imageStore(aniso_neg_texture,pos3d,uvec4(0xFFFF));
|
|
|
+ imageStore(aniso_pos_texture, pos3d, uvec4(0xFFFF));
|
|
|
+ imageStore(aniso_neg_texture, pos3d, uvec4(0xFFFF));
|
|
|
|
|
|
#endif // ANISOTROPIC
|
|
|
}
|
|
|
#endif // MODE_DYNAMIC_SHRINK_PLOT
|
|
|
-
|
|
|
-
|
|
|
}
|
|
|
#endif
|
|
|
|