| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- /*************************************************************************/
- /* main_timer_sync.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "main_timer_sync.h"
- void MainFrameTime::clamp_process_step(double min_process_step, double max_process_step) {
- if (process_step < min_process_step) {
- process_step = min_process_step;
- } else if (process_step > max_process_step) {
- process_step = max_process_step;
- }
- }
- /////////////////////////////////
- // returns the fraction of p_physics_step required for the timer to overshoot
- // before advance_core considers changing the physics_steps return from
- // the typical values as defined by typical_physics_steps
- double MainTimerSync::get_physics_jitter_fix() {
- return Engine::get_singleton()->get_physics_jitter_fix();
- }
- // gets our best bet for the average number of physics steps per render frame
- // return value: number of frames back this data is consistent
- int MainTimerSync::get_average_physics_steps(double &p_min, double &p_max) {
- p_min = typical_physics_steps[0];
- p_max = p_min + 1;
- for (int i = 1; i < CONTROL_STEPS; ++i) {
- const double typical_lower = typical_physics_steps[i];
- const double current_min = typical_lower / (i + 1);
- if (current_min > p_max) {
- return i; // bail out if further restrictions would void the interval
- } else if (current_min > p_min) {
- p_min = current_min;
- }
- const double current_max = (typical_lower + 1) / (i + 1);
- if (current_max < p_min) {
- return i;
- } else if (current_max < p_max) {
- p_max = current_max;
- }
- }
- return CONTROL_STEPS;
- }
- // advance physics clock by p_process_step, return appropriate number of steps to simulate
- MainFrameTime MainTimerSync::advance_core(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) {
- MainFrameTime ret;
- ret.process_step = p_process_step;
- // simple determination of number of physics iteration
- time_accum += ret.process_step;
- ret.physics_steps = floor(time_accum * p_physics_ticks_per_second);
- int min_typical_steps = typical_physics_steps[0];
- int max_typical_steps = min_typical_steps + 1;
- // given the past recorded steps and typical steps to match, calculate bounds for this
- // step to be typical
- bool update_typical = false;
- for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
- int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
- if (steps_left_to_match_typical > max_typical_steps ||
- steps_left_to_match_typical + 1 < min_typical_steps) {
- update_typical = true;
- break;
- }
- if (steps_left_to_match_typical > min_typical_steps) {
- min_typical_steps = steps_left_to_match_typical;
- }
- if (steps_left_to_match_typical + 1 < max_typical_steps) {
- max_typical_steps = steps_left_to_match_typical + 1;
- }
- }
- #ifdef DEBUG_ENABLED
- if (max_typical_steps < 0) {
- WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration.");
- }
- #endif
- // try to keep it consistent with previous iterations
- if (ret.physics_steps < min_typical_steps) {
- const int max_possible_steps = floor((time_accum)*p_physics_ticks_per_second + get_physics_jitter_fix());
- if (max_possible_steps < min_typical_steps) {
- ret.physics_steps = max_possible_steps;
- update_typical = true;
- } else {
- ret.physics_steps = min_typical_steps;
- }
- } else if (ret.physics_steps > max_typical_steps) {
- const int min_possible_steps = floor((time_accum)*p_physics_ticks_per_second - get_physics_jitter_fix());
- if (min_possible_steps > max_typical_steps) {
- ret.physics_steps = min_possible_steps;
- update_typical = true;
- } else {
- ret.physics_steps = max_typical_steps;
- }
- }
- if (ret.physics_steps < 0) {
- ret.physics_steps = 0;
- }
- time_accum -= ret.physics_steps * p_physics_step;
- // keep track of accumulated step counts
- for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
- accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
- }
- accumulated_physics_steps[0] = ret.physics_steps;
- if (update_typical) {
- for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
- if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
- typical_physics_steps[i] = accumulated_physics_steps[i];
- } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
- typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
- }
- }
- }
- return ret;
- }
- // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
- MainFrameTime MainTimerSync::advance_checked(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) {
- if (fixed_fps != -1) {
- p_process_step = 1.0 / fixed_fps;
- }
- float min_output_step = p_process_step / 8;
- min_output_step = MAX(min_output_step, 1E-6);
- // compensate for last deficit
- p_process_step += time_deficit;
- MainFrameTime ret = advance_core(p_physics_step, p_physics_ticks_per_second, p_process_step);
- // we will do some clamping on ret.process_step and need to sync those changes to time_accum,
- // that's easiest if we just remember their fixed difference now
- const double process_minus_accum = ret.process_step - time_accum;
- // first, least important clamping: keep ret.process_step consistent with typical_physics_steps.
- // this smoothes out the process steps and culls small but quick variations.
- {
- double min_average_physics_steps, max_average_physics_steps;
- int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
- if (consistent_steps > 3) {
- ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step);
- }
- }
- // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
- double max_clock_deviation = get_physics_jitter_fix() * p_physics_step;
- ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation);
- // last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process
- ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step);
- // all the operations above may have turned ret.p_process_step negative or zero, keep a minimal value
- if (ret.process_step < min_output_step) {
- ret.process_step = min_output_step;
- }
- // restore time_accum
- time_accum = ret.process_step - process_minus_accum;
- // forcing ret.process_step to be positive may trigger a violation of the
- // promise that time_accum is between 0 and p_physics_step
- #ifdef DEBUG_ENABLED
- if (time_accum < -1E-7) {
- WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration.");
- }
- #endif
- if (time_accum > p_physics_step) {
- const int extra_physics_steps = floor(time_accum * p_physics_ticks_per_second);
- time_accum -= extra_physics_steps * p_physics_step;
- ret.physics_steps += extra_physics_steps;
- }
- #ifdef DEBUG_ENABLED
- if (time_accum < -1E-7) {
- WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
- }
- if (time_accum > p_physics_step + 1E-7) {
- WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_physics_step`. It should always be between 0 and `p_physics_step`. This hints at an engine bug.");
- }
- #endif
- // track deficit
- time_deficit = p_process_step - ret.process_step;
- // p_physics_step is 1.0 / iterations_per_sec
- // i.e. the time in seconds taken by a physics tick
- ret.interpolation_fraction = time_accum / p_physics_step;
- return ret;
- }
- // determine wall clock step since last iteration
- double MainTimerSync::get_cpu_process_step() {
- uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
- last_cpu_ticks_usec = current_cpu_ticks_usec;
- return cpu_ticks_elapsed / 1000000.0;
- }
- MainTimerSync::MainTimerSync() {
- for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
- typical_physics_steps[i] = i;
- accumulated_physics_steps[i] = i;
- }
- }
- // start the clock
- void MainTimerSync::init(uint64_t p_cpu_ticks_usec) {
- current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
- }
- // set measured wall clock time
- void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
- current_cpu_ticks_usec = p_cpu_ticks_usec;
- }
- void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
- fixed_fps = p_fixed_fps;
- }
- // advance one physics frame, return timesteps to take
- MainFrameTime MainTimerSync::advance(double p_physics_step, int p_physics_ticks_per_second) {
- double cpu_process_step = get_cpu_process_step();
- return advance_checked(p_physics_step, p_physics_ticks_per_second, cpu_process_step);
- }
|