mesh_storage.cpp 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. #include "../../rendering_server_globals.h"
  32. using namespace RendererRD;
  33. MeshStorage *MeshStorage::singleton = nullptr;
  34. MeshStorage *MeshStorage::get_singleton() {
  35. return singleton;
  36. }
  37. MeshStorage::MeshStorage() {
  38. singleton = this;
  39. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  40. //default rd buffers
  41. {
  42. Vector<uint8_t> buffer;
  43. {
  44. buffer.resize(sizeof(float) * 3);
  45. {
  46. uint8_t *w = buffer.ptrw();
  47. float *fptr = reinterpret_cast<float *>(w);
  48. fptr[0] = 0.0;
  49. fptr[1] = 0.0;
  50. fptr[2] = 0.0;
  51. }
  52. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  53. }
  54. { //normal
  55. buffer.resize(sizeof(float) * 3);
  56. {
  57. uint8_t *w = buffer.ptrw();
  58. float *fptr = reinterpret_cast<float *>(w);
  59. fptr[0] = 1.0;
  60. fptr[1] = 0.0;
  61. fptr[2] = 0.0;
  62. }
  63. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  64. }
  65. { //tangent
  66. buffer.resize(sizeof(float) * 4);
  67. {
  68. uint8_t *w = buffer.ptrw();
  69. float *fptr = reinterpret_cast<float *>(w);
  70. fptr[0] = 1.0;
  71. fptr[1] = 0.0;
  72. fptr[2] = 0.0;
  73. fptr[3] = 0.0;
  74. }
  75. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  76. }
  77. { //color
  78. buffer.resize(sizeof(float) * 4);
  79. {
  80. uint8_t *w = buffer.ptrw();
  81. float *fptr = reinterpret_cast<float *>(w);
  82. fptr[0] = 1.0;
  83. fptr[1] = 1.0;
  84. fptr[2] = 1.0;
  85. fptr[3] = 1.0;
  86. }
  87. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  88. }
  89. { //tex uv 1
  90. buffer.resize(sizeof(float) * 2);
  91. {
  92. uint8_t *w = buffer.ptrw();
  93. float *fptr = reinterpret_cast<float *>(w);
  94. fptr[0] = 0.0;
  95. fptr[1] = 0.0;
  96. }
  97. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  98. }
  99. { //tex uv 2
  100. buffer.resize(sizeof(float) * 2);
  101. {
  102. uint8_t *w = buffer.ptrw();
  103. float *fptr = reinterpret_cast<float *>(w);
  104. fptr[0] = 0.0;
  105. fptr[1] = 0.0;
  106. }
  107. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  108. }
  109. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  110. buffer.resize(sizeof(float) * 4);
  111. {
  112. uint8_t *w = buffer.ptrw();
  113. float *fptr = reinterpret_cast<float *>(w);
  114. fptr[0] = 0.0;
  115. fptr[1] = 0.0;
  116. fptr[2] = 0.0;
  117. fptr[3] = 0.0;
  118. }
  119. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  120. }
  121. { //bones
  122. buffer.resize(sizeof(uint32_t) * 4);
  123. {
  124. uint8_t *w = buffer.ptrw();
  125. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  126. fptr[0] = 0;
  127. fptr[1] = 0;
  128. fptr[2] = 0;
  129. fptr[3] = 0;
  130. }
  131. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  132. }
  133. { //weights
  134. buffer.resize(sizeof(float) * 4);
  135. {
  136. uint8_t *w = buffer.ptrw();
  137. float *fptr = reinterpret_cast<float *>(w);
  138. fptr[0] = 0.0;
  139. fptr[1] = 0.0;
  140. fptr[2] = 0.0;
  141. fptr[3] = 0.0;
  142. }
  143. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  144. }
  145. }
  146. {
  147. Vector<String> skeleton_modes;
  148. skeleton_modes.push_back("\n#define MODE_2D\n");
  149. skeleton_modes.push_back("");
  150. skeleton_shader.shader.initialize(skeleton_modes);
  151. skeleton_shader.version = skeleton_shader.shader.version_create();
  152. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  153. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  154. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  155. }
  156. {
  157. Vector<RD::Uniform> uniforms;
  158. {
  159. RD::Uniform u;
  160. u.binding = 0;
  161. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  162. u.append_id(default_rd_storage_buffer);
  163. uniforms.push_back(u);
  164. }
  165. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  166. }
  167. }
  168. }
  169. MeshStorage::~MeshStorage() {
  170. //def buffers
  171. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  172. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  173. }
  174. skeleton_shader.shader.version_free(skeleton_shader.version);
  175. RD::get_singleton()->free(default_rd_storage_buffer);
  176. singleton = nullptr;
  177. }
  178. bool MeshStorage::free(RID p_rid) {
  179. if (owns_mesh(p_rid)) {
  180. mesh_free(p_rid);
  181. return true;
  182. } else if (owns_mesh_instance(p_rid)) {
  183. mesh_instance_free(p_rid);
  184. return true;
  185. } else if (owns_multimesh(p_rid)) {
  186. multimesh_free(p_rid);
  187. return true;
  188. } else if (owns_skeleton(p_rid)) {
  189. skeleton_free(p_rid);
  190. return true;
  191. }
  192. return false;
  193. }
  194. /* MESH API */
  195. RID MeshStorage::mesh_allocate() {
  196. return mesh_owner.allocate_rid();
  197. }
  198. void MeshStorage::mesh_initialize(RID p_rid) {
  199. mesh_owner.initialize_rid(p_rid, Mesh());
  200. }
  201. void MeshStorage::mesh_free(RID p_rid) {
  202. mesh_clear(p_rid);
  203. mesh_set_shadow_mesh(p_rid, RID());
  204. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  205. ERR_FAIL_COND(!mesh);
  206. mesh->dependency.deleted_notify(p_rid);
  207. if (mesh->instances.size()) {
  208. ERR_PRINT("deleting mesh with active instances");
  209. }
  210. if (mesh->shadow_owners.size()) {
  211. for (Mesh *E : mesh->shadow_owners) {
  212. Mesh *shadow_owner = E;
  213. shadow_owner->shadow_mesh = RID();
  214. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  215. }
  216. }
  217. mesh_owner.free(p_rid);
  218. }
  219. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  220. ERR_FAIL_COND(p_blend_shape_count < 0);
  221. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  222. ERR_FAIL_COND(!mesh);
  223. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  224. mesh->blend_shape_count = p_blend_shape_count;
  225. }
  226. /// Returns stride
  227. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  228. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  229. ERR_FAIL_COND(!mesh);
  230. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  231. #ifdef DEBUG_ENABLED
  232. //do a validation, to catch errors first
  233. {
  234. uint32_t stride = 0;
  235. uint32_t attrib_stride = 0;
  236. uint32_t skin_stride = 0;
  237. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  238. if ((p_surface.format & (1 << i))) {
  239. switch (i) {
  240. case RS::ARRAY_VERTEX: {
  241. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  242. stride += sizeof(float) * 2;
  243. } else {
  244. stride += sizeof(float) * 3;
  245. }
  246. } break;
  247. case RS::ARRAY_NORMAL: {
  248. stride += sizeof(int32_t);
  249. } break;
  250. case RS::ARRAY_TANGENT: {
  251. stride += sizeof(int32_t);
  252. } break;
  253. case RS::ARRAY_COLOR: {
  254. attrib_stride += sizeof(uint32_t);
  255. } break;
  256. case RS::ARRAY_TEX_UV: {
  257. attrib_stride += sizeof(float) * 2;
  258. } break;
  259. case RS::ARRAY_TEX_UV2: {
  260. attrib_stride += sizeof(float) * 2;
  261. } break;
  262. case RS::ARRAY_CUSTOM0:
  263. case RS::ARRAY_CUSTOM1:
  264. case RS::ARRAY_CUSTOM2:
  265. case RS::ARRAY_CUSTOM3: {
  266. int idx = i - RS::ARRAY_CUSTOM0;
  267. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  268. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  269. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  270. attrib_stride += fmtsize[fmt];
  271. } break;
  272. case RS::ARRAY_WEIGHTS:
  273. case RS::ARRAY_BONES: {
  274. //uses a separate array
  275. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  276. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  277. } break;
  278. }
  279. }
  280. }
  281. int expected_size = stride * p_surface.vertex_count;
  282. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  283. int bs_expected_size = expected_size * mesh->blend_shape_count;
  284. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  285. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  286. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  287. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  288. expected_size = skin_stride * p_surface.vertex_count;
  289. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  290. }
  291. }
  292. #endif
  293. Mesh::Surface *s = memnew(Mesh::Surface);
  294. s->format = p_surface.format;
  295. s->primitive = p_surface.primitive;
  296. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  297. if (p_surface.vertex_data.size()) {
  298. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  299. s->vertex_buffer_size = p_surface.vertex_data.size();
  300. }
  301. if (p_surface.attribute_data.size()) {
  302. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  303. }
  304. if (p_surface.skin_data.size()) {
  305. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  306. s->skin_buffer_size = p_surface.skin_data.size();
  307. }
  308. s->vertex_count = p_surface.vertex_count;
  309. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  310. mesh->has_bone_weights = true;
  311. }
  312. if (p_surface.index_count) {
  313. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  314. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  315. s->index_count = p_surface.index_count;
  316. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  317. if (p_surface.lods.size()) {
  318. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  319. s->lod_count = p_surface.lods.size();
  320. for (int i = 0; i < p_surface.lods.size(); i++) {
  321. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  322. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  323. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  324. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  325. s->lods[i].index_count = indices;
  326. }
  327. }
  328. }
  329. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  330. s->aabb = p_surface.aabb;
  331. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  332. if (mesh->blend_shape_count > 0) {
  333. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  334. }
  335. if (use_as_storage) {
  336. Vector<RD::Uniform> uniforms;
  337. {
  338. RD::Uniform u;
  339. u.binding = 0;
  340. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  341. if (s->vertex_buffer.is_valid()) {
  342. u.append_id(s->vertex_buffer);
  343. } else {
  344. u.append_id(default_rd_storage_buffer);
  345. }
  346. uniforms.push_back(u);
  347. }
  348. {
  349. RD::Uniform u;
  350. u.binding = 1;
  351. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  352. if (s->skin_buffer.is_valid()) {
  353. u.append_id(s->skin_buffer);
  354. } else {
  355. u.append_id(default_rd_storage_buffer);
  356. }
  357. uniforms.push_back(u);
  358. }
  359. {
  360. RD::Uniform u;
  361. u.binding = 2;
  362. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  363. if (s->blend_shape_buffer.is_valid()) {
  364. u.append_id(s->blend_shape_buffer);
  365. } else {
  366. u.append_id(default_rd_storage_buffer);
  367. }
  368. uniforms.push_back(u);
  369. }
  370. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  371. }
  372. if (mesh->surface_count == 0) {
  373. mesh->aabb = p_surface.aabb;
  374. } else {
  375. mesh->aabb.merge_with(p_surface.aabb);
  376. }
  377. mesh->skeleton_aabb_version = 0;
  378. s->material = p_surface.material;
  379. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  380. mesh->surfaces[mesh->surface_count] = s;
  381. mesh->surface_count++;
  382. for (MeshInstance *mi : mesh->instances) {
  383. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  384. }
  385. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  386. for (Mesh *E : mesh->shadow_owners) {
  387. Mesh *shadow_owner = E;
  388. shadow_owner->shadow_mesh = RID();
  389. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  390. }
  391. mesh->material_cache.clear();
  392. }
  393. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  394. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  395. ERR_FAIL_COND_V(!mesh, -1);
  396. return mesh->blend_shape_count;
  397. }
  398. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  399. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  400. ERR_FAIL_COND(!mesh);
  401. ERR_FAIL_INDEX((int)p_mode, 2);
  402. mesh->blend_shape_mode = p_mode;
  403. }
  404. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  405. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  406. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  407. return mesh->blend_shape_mode;
  408. }
  409. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  410. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  411. ERR_FAIL_COND(!mesh);
  412. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  413. ERR_FAIL_COND(p_data.size() == 0);
  414. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  415. uint64_t data_size = p_data.size();
  416. const uint8_t *r = p_data.ptr();
  417. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  418. }
  419. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  420. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  421. ERR_FAIL_COND(!mesh);
  422. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  423. ERR_FAIL_COND(p_data.size() == 0);
  424. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  425. uint64_t data_size = p_data.size();
  426. const uint8_t *r = p_data.ptr();
  427. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  428. }
  429. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  430. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  431. ERR_FAIL_COND(!mesh);
  432. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  433. ERR_FAIL_COND(p_data.size() == 0);
  434. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  435. uint64_t data_size = p_data.size();
  436. const uint8_t *r = p_data.ptr();
  437. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  438. }
  439. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  440. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  441. ERR_FAIL_COND(!mesh);
  442. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  443. mesh->surfaces[p_surface]->material = p_material;
  444. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  445. mesh->material_cache.clear();
  446. }
  447. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  448. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  449. ERR_FAIL_COND_V(!mesh, RID());
  450. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  451. return mesh->surfaces[p_surface]->material;
  452. }
  453. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  454. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  455. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  456. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  457. Mesh::Surface &s = *mesh->surfaces[p_surface];
  458. RS::SurfaceData sd;
  459. sd.format = s.format;
  460. if (s.vertex_buffer.is_valid()) {
  461. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  462. }
  463. if (s.attribute_buffer.is_valid()) {
  464. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  465. }
  466. if (s.skin_buffer.is_valid()) {
  467. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  468. }
  469. sd.vertex_count = s.vertex_count;
  470. sd.index_count = s.index_count;
  471. sd.primitive = s.primitive;
  472. if (sd.index_count) {
  473. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  474. }
  475. sd.aabb = s.aabb;
  476. for (uint32_t i = 0; i < s.lod_count; i++) {
  477. RS::SurfaceData::LOD lod;
  478. lod.edge_length = s.lods[i].edge_length;
  479. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  480. sd.lods.push_back(lod);
  481. }
  482. sd.bone_aabbs = s.bone_aabbs;
  483. if (s.blend_shape_buffer.is_valid()) {
  484. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  485. }
  486. return sd;
  487. }
  488. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  489. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  490. ERR_FAIL_COND_V(!mesh, 0);
  491. return mesh->surface_count;
  492. }
  493. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  494. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  495. ERR_FAIL_COND(!mesh);
  496. mesh->custom_aabb = p_aabb;
  497. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  498. }
  499. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  500. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  501. ERR_FAIL_COND_V(!mesh, AABB());
  502. return mesh->custom_aabb;
  503. }
  504. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  505. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  506. ERR_FAIL_COND_V(!mesh, AABB());
  507. if (mesh->custom_aabb != AABB()) {
  508. return mesh->custom_aabb;
  509. }
  510. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  511. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  512. return mesh->aabb;
  513. }
  514. AABB aabb;
  515. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  516. AABB laabb;
  517. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  518. int bs = mesh->surfaces[i]->bone_aabbs.size();
  519. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  520. int sbs = skeleton->size;
  521. ERR_CONTINUE(bs > sbs);
  522. const float *baseptr = skeleton->data.ptr();
  523. bool first = true;
  524. if (skeleton->use_2d) {
  525. for (int j = 0; j < bs; j++) {
  526. if (skbones[j].size == Vector3(-1, -1, -1)) {
  527. continue; //bone is unused
  528. }
  529. const float *dataptr = baseptr + j * 8;
  530. Transform3D mtx;
  531. mtx.basis.rows[0][0] = dataptr[0];
  532. mtx.basis.rows[0][1] = dataptr[1];
  533. mtx.origin.x = dataptr[3];
  534. mtx.basis.rows[1][0] = dataptr[4];
  535. mtx.basis.rows[1][1] = dataptr[5];
  536. mtx.origin.y = dataptr[7];
  537. AABB baabb = mtx.xform(skbones[j]);
  538. if (first) {
  539. laabb = baabb;
  540. first = false;
  541. } else {
  542. laabb.merge_with(baabb);
  543. }
  544. }
  545. } else {
  546. for (int j = 0; j < bs; j++) {
  547. if (skbones[j].size == Vector3(-1, -1, -1)) {
  548. continue; //bone is unused
  549. }
  550. const float *dataptr = baseptr + j * 12;
  551. Transform3D mtx;
  552. mtx.basis.rows[0][0] = dataptr[0];
  553. mtx.basis.rows[0][1] = dataptr[1];
  554. mtx.basis.rows[0][2] = dataptr[2];
  555. mtx.origin.x = dataptr[3];
  556. mtx.basis.rows[1][0] = dataptr[4];
  557. mtx.basis.rows[1][1] = dataptr[5];
  558. mtx.basis.rows[1][2] = dataptr[6];
  559. mtx.origin.y = dataptr[7];
  560. mtx.basis.rows[2][0] = dataptr[8];
  561. mtx.basis.rows[2][1] = dataptr[9];
  562. mtx.basis.rows[2][2] = dataptr[10];
  563. mtx.origin.z = dataptr[11];
  564. AABB baabb = mtx.xform(skbones[j]);
  565. if (first) {
  566. laabb = baabb;
  567. first = false;
  568. } else {
  569. laabb.merge_with(baabb);
  570. }
  571. }
  572. }
  573. if (laabb.size == Vector3()) {
  574. laabb = mesh->surfaces[i]->aabb;
  575. }
  576. } else {
  577. laabb = mesh->surfaces[i]->aabb;
  578. }
  579. if (i == 0) {
  580. aabb = laabb;
  581. } else {
  582. aabb.merge_with(laabb);
  583. }
  584. }
  585. mesh->aabb = aabb;
  586. mesh->skeleton_aabb_version = skeleton->version;
  587. return aabb;
  588. }
  589. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  590. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  591. ERR_FAIL_COND(!mesh);
  592. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  593. if (shadow_mesh) {
  594. shadow_mesh->shadow_owners.erase(mesh);
  595. }
  596. mesh->shadow_mesh = p_shadow_mesh;
  597. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  598. if (shadow_mesh) {
  599. shadow_mesh->shadow_owners.insert(mesh);
  600. }
  601. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  602. }
  603. void MeshStorage::mesh_clear(RID p_mesh) {
  604. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  605. ERR_FAIL_COND(!mesh);
  606. // Clear instance data before mesh data.
  607. for (MeshInstance *mi : mesh->instances) {
  608. _mesh_instance_clear(mi);
  609. }
  610. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  611. Mesh::Surface &s = *mesh->surfaces[i];
  612. if (s.vertex_buffer.is_valid()) {
  613. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  614. }
  615. if (s.attribute_buffer.is_valid()) {
  616. RD::get_singleton()->free(s.attribute_buffer);
  617. }
  618. if (s.skin_buffer.is_valid()) {
  619. RD::get_singleton()->free(s.skin_buffer);
  620. }
  621. if (s.versions) {
  622. memfree(s.versions); //reallocs, so free with memfree.
  623. }
  624. if (s.index_buffer.is_valid()) {
  625. RD::get_singleton()->free(s.index_buffer);
  626. }
  627. if (s.lod_count) {
  628. for (uint32_t j = 0; j < s.lod_count; j++) {
  629. RD::get_singleton()->free(s.lods[j].index_buffer);
  630. }
  631. memdelete_arr(s.lods);
  632. }
  633. if (s.blend_shape_buffer.is_valid()) {
  634. RD::get_singleton()->free(s.blend_shape_buffer);
  635. }
  636. memdelete(mesh->surfaces[i]);
  637. }
  638. if (mesh->surfaces) {
  639. memfree(mesh->surfaces);
  640. }
  641. mesh->surfaces = nullptr;
  642. mesh->surface_count = 0;
  643. mesh->material_cache.clear();
  644. mesh->has_bone_weights = false;
  645. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  646. for (Mesh *E : mesh->shadow_owners) {
  647. Mesh *shadow_owner = E;
  648. shadow_owner->shadow_mesh = RID();
  649. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  650. }
  651. }
  652. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  653. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  654. ERR_FAIL_COND_V(!mesh, false);
  655. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  656. }
  657. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  658. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  659. ERR_FAIL_COND_V(!mesh, nullptr);
  660. return &mesh->dependency;
  661. }
  662. /* MESH INSTANCE */
  663. RID MeshStorage::mesh_instance_create(RID p_base) {
  664. Mesh *mesh = mesh_owner.get_or_null(p_base);
  665. ERR_FAIL_COND_V(!mesh, RID());
  666. RID rid = mesh_instance_owner.make_rid();
  667. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  668. mi->mesh = mesh;
  669. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  670. _mesh_instance_add_surface(mi, mesh, i);
  671. }
  672. mi->I = mesh->instances.push_back(mi);
  673. mi->dirty = true;
  674. return rid;
  675. }
  676. void MeshStorage::mesh_instance_free(RID p_rid) {
  677. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  678. _mesh_instance_clear(mi);
  679. mi->mesh->instances.erase(mi->I);
  680. mi->I = nullptr;
  681. mesh_instance_owner.free(p_rid);
  682. }
  683. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  684. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  685. if (mi->skeleton == p_skeleton) {
  686. return;
  687. }
  688. mi->skeleton = p_skeleton;
  689. mi->skeleton_version = 0;
  690. mi->dirty = true;
  691. }
  692. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  693. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  694. ERR_FAIL_COND(!mi);
  695. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  696. mi->blend_weights[p_shape] = p_weight;
  697. mi->weights_dirty = true;
  698. //will be eventually updated
  699. }
  700. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  701. for (const RendererRD::MeshStorage::MeshInstance::Surface &surface : mi->surfaces) {
  702. if (surface.versions) {
  703. for (uint32_t j = 0; j < surface.version_count; j++) {
  704. RD::get_singleton()->free(surface.versions[j].vertex_array);
  705. }
  706. memfree(surface.versions);
  707. }
  708. if (surface.vertex_buffer.is_valid()) {
  709. RD::get_singleton()->free(surface.vertex_buffer);
  710. }
  711. }
  712. mi->surfaces.clear();
  713. if (mi->blend_weights_buffer.is_valid()) {
  714. RD::get_singleton()->free(mi->blend_weights_buffer);
  715. mi->blend_weights_buffer = RID();
  716. }
  717. mi->blend_weights.clear();
  718. mi->weights_dirty = false;
  719. mi->skeleton_version = 0;
  720. }
  721. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  722. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  723. mi->blend_weights.resize(mesh->blend_shape_count);
  724. for (float &weight : mi->blend_weights) {
  725. weight = 0;
  726. }
  727. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  728. mi->weights_dirty = true;
  729. }
  730. MeshInstance::Surface s;
  731. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  732. //surface warrants transform
  733. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  734. Vector<RD::Uniform> uniforms;
  735. {
  736. RD::Uniform u;
  737. u.binding = 1;
  738. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  739. u.append_id(s.vertex_buffer);
  740. uniforms.push_back(u);
  741. }
  742. {
  743. RD::Uniform u;
  744. u.binding = 2;
  745. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  746. if (mi->blend_weights_buffer.is_valid()) {
  747. u.append_id(mi->blend_weights_buffer);
  748. } else {
  749. u.append_id(default_rd_storage_buffer);
  750. }
  751. uniforms.push_back(u);
  752. }
  753. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  754. }
  755. mi->surfaces.push_back(s);
  756. mi->dirty = true;
  757. }
  758. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  759. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  760. bool needs_update = mi->dirty;
  761. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  762. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  763. needs_update = true;
  764. }
  765. if (mi->array_update_list.in_list()) {
  766. return;
  767. }
  768. if (!needs_update && mi->skeleton.is_valid()) {
  769. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  770. if (sk && sk->version != mi->skeleton_version) {
  771. needs_update = true;
  772. }
  773. }
  774. if (needs_update) {
  775. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  776. }
  777. }
  778. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  779. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  780. mi->canvas_item_transform_2d = p_transform;
  781. }
  782. void MeshStorage::update_mesh_instances() {
  783. while (dirty_mesh_instance_weights.first()) {
  784. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  785. if (mi->blend_weights_buffer.is_valid()) {
  786. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  787. }
  788. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  789. mi->weights_dirty = false;
  790. }
  791. if (dirty_mesh_instance_arrays.first() == nullptr) {
  792. return; //nothing to do
  793. }
  794. //process skeletons and blend shapes
  795. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  796. while (dirty_mesh_instance_arrays.first()) {
  797. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  798. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  799. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  800. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  801. continue;
  802. }
  803. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  804. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  805. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  806. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  807. if (sk && sk->uniform_set_mi.is_valid()) {
  808. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  809. } else {
  810. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  811. }
  812. SkeletonShader::PushConstant push_constant;
  813. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  814. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  815. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  816. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  817. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  818. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  819. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  820. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  821. Transform2D transform = Transform2D();
  822. if (sk && sk->use_2d) {
  823. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  824. }
  825. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  826. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  827. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  828. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  829. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  830. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  831. Transform2D inverse_transform = transform.affine_inverse();
  832. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  833. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  834. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  835. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  836. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  837. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  838. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  839. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  840. push_constant.pad0 = 0;
  841. push_constant.pad1 = 0;
  842. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  843. //dispatch without barrier, so all is done at the same time
  844. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  845. }
  846. mi->dirty = false;
  847. if (sk) {
  848. mi->skeleton_version = sk->version;
  849. }
  850. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  851. }
  852. RD::get_singleton()->compute_list_end();
  853. }
  854. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  855. Vector<RD::VertexAttribute> attributes;
  856. Vector<RID> buffers;
  857. uint32_t stride = 0;
  858. uint32_t attribute_stride = 0;
  859. uint32_t skin_stride = 0;
  860. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  861. RD::VertexAttribute vd;
  862. RID buffer;
  863. vd.location = i;
  864. if (!(s->format & (1 << i))) {
  865. // Not supplied by surface, use default value
  866. buffer = mesh_default_rd_buffers[i];
  867. vd.stride = 0;
  868. switch (i) {
  869. case RS::ARRAY_VERTEX: {
  870. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  871. } break;
  872. case RS::ARRAY_NORMAL: {
  873. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  874. } break;
  875. case RS::ARRAY_TANGENT: {
  876. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  877. } break;
  878. case RS::ARRAY_COLOR: {
  879. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  880. } break;
  881. case RS::ARRAY_TEX_UV: {
  882. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  883. } break;
  884. case RS::ARRAY_TEX_UV2: {
  885. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  886. } break;
  887. case RS::ARRAY_CUSTOM0:
  888. case RS::ARRAY_CUSTOM1:
  889. case RS::ARRAY_CUSTOM2:
  890. case RS::ARRAY_CUSTOM3: {
  891. //assumed weights too
  892. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  893. } break;
  894. case RS::ARRAY_BONES: {
  895. //assumed weights too
  896. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  897. } break;
  898. case RS::ARRAY_WEIGHTS: {
  899. //assumed weights too
  900. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  901. } break;
  902. }
  903. } else {
  904. //Supplied, use it
  905. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  906. switch (i) {
  907. case RS::ARRAY_VERTEX: {
  908. vd.offset = stride;
  909. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  910. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  911. stride += sizeof(float) * 2;
  912. } else {
  913. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  914. stride += sizeof(float) * 3;
  915. }
  916. if (mis) {
  917. buffer = mis->vertex_buffer;
  918. } else {
  919. buffer = s->vertex_buffer;
  920. }
  921. } break;
  922. case RS::ARRAY_NORMAL: {
  923. vd.offset = stride;
  924. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  925. stride += sizeof(uint16_t) * 2;
  926. if (mis) {
  927. buffer = mis->vertex_buffer;
  928. } else {
  929. buffer = s->vertex_buffer;
  930. }
  931. } break;
  932. case RS::ARRAY_TANGENT: {
  933. vd.offset = stride;
  934. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  935. stride += sizeof(uint16_t) * 2;
  936. if (mis) {
  937. buffer = mis->vertex_buffer;
  938. } else {
  939. buffer = s->vertex_buffer;
  940. }
  941. } break;
  942. case RS::ARRAY_COLOR: {
  943. vd.offset = attribute_stride;
  944. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  945. attribute_stride += sizeof(int8_t) * 4;
  946. buffer = s->attribute_buffer;
  947. } break;
  948. case RS::ARRAY_TEX_UV: {
  949. vd.offset = attribute_stride;
  950. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  951. attribute_stride += sizeof(float) * 2;
  952. buffer = s->attribute_buffer;
  953. } break;
  954. case RS::ARRAY_TEX_UV2: {
  955. vd.offset = attribute_stride;
  956. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  957. attribute_stride += sizeof(float) * 2;
  958. buffer = s->attribute_buffer;
  959. } break;
  960. case RS::ARRAY_CUSTOM0:
  961. case RS::ARRAY_CUSTOM1:
  962. case RS::ARRAY_CUSTOM2:
  963. case RS::ARRAY_CUSTOM3: {
  964. vd.offset = attribute_stride;
  965. int idx = i - RS::ARRAY_CUSTOM0;
  966. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  967. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  968. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  969. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  970. vd.format = fmtrd[fmt];
  971. attribute_stride += fmtsize[fmt];
  972. buffer = s->attribute_buffer;
  973. } break;
  974. case RS::ARRAY_BONES: {
  975. vd.offset = skin_stride;
  976. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  977. skin_stride += sizeof(int16_t) * 4;
  978. buffer = s->skin_buffer;
  979. } break;
  980. case RS::ARRAY_WEIGHTS: {
  981. vd.offset = skin_stride;
  982. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  983. skin_stride += sizeof(int16_t) * 4;
  984. buffer = s->skin_buffer;
  985. } break;
  986. }
  987. }
  988. if (!(p_input_mask & (1 << i))) {
  989. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  990. }
  991. attributes.push_back(vd);
  992. buffers.push_back(buffer);
  993. }
  994. //update final stride
  995. for (int i = 0; i < attributes.size(); i++) {
  996. if (attributes[i].stride == 0) {
  997. continue; //default location
  998. }
  999. int loc = attributes[i].location;
  1000. if (loc < RS::ARRAY_COLOR) {
  1001. attributes.write[i].stride = stride;
  1002. } else if (loc < RS::ARRAY_BONES) {
  1003. attributes.write[i].stride = attribute_stride;
  1004. } else {
  1005. attributes.write[i].stride = skin_stride;
  1006. }
  1007. }
  1008. v.input_mask = p_input_mask;
  1009. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1010. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  1011. }
  1012. ////////////////// MULTIMESH
  1013. RID MeshStorage::multimesh_allocate() {
  1014. return multimesh_owner.allocate_rid();
  1015. }
  1016. void MeshStorage::multimesh_initialize(RID p_rid) {
  1017. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1018. }
  1019. void MeshStorage::multimesh_free(RID p_rid) {
  1020. _update_dirty_multimeshes();
  1021. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1022. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1023. multimesh->dependency.deleted_notify(p_rid);
  1024. multimesh_owner.free(p_rid);
  1025. }
  1026. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1027. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1028. ERR_FAIL_COND(!multimesh);
  1029. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1030. return;
  1031. }
  1032. if (multimesh->buffer.is_valid()) {
  1033. RD::get_singleton()->free(multimesh->buffer);
  1034. multimesh->buffer = RID();
  1035. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1036. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1037. }
  1038. if (multimesh->data_cache_dirty_regions) {
  1039. memdelete_arr(multimesh->data_cache_dirty_regions);
  1040. multimesh->data_cache_dirty_regions = nullptr;
  1041. multimesh->data_cache_dirty_region_count = 0;
  1042. }
  1043. if (multimesh->previous_data_cache_dirty_regions) {
  1044. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1045. multimesh->previous_data_cache_dirty_regions = nullptr;
  1046. multimesh->previous_data_cache_dirty_region_count = 0;
  1047. }
  1048. multimesh->instances = p_instances;
  1049. multimesh->xform_format = p_transform_format;
  1050. multimesh->uses_colors = p_use_colors;
  1051. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1052. multimesh->uses_custom_data = p_use_custom_data;
  1053. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1054. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1055. multimesh->buffer_set = false;
  1056. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1057. multimesh->data_cache = Vector<float>();
  1058. multimesh->aabb = AABB();
  1059. multimesh->aabb_dirty = false;
  1060. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1061. multimesh->motion_vectors_current_offset = 0;
  1062. multimesh->motion_vectors_previous_offset = 0;
  1063. multimesh->motion_vectors_last_change = -1;
  1064. if (multimesh->instances) {
  1065. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1066. if (multimesh->motion_vectors_enabled) {
  1067. buffer_size *= 2;
  1068. }
  1069. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1070. }
  1071. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1072. }
  1073. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1074. if (multimesh->motion_vectors_enabled) {
  1075. return;
  1076. }
  1077. multimesh->motion_vectors_enabled = true;
  1078. multimesh->motion_vectors_current_offset = 0;
  1079. multimesh->motion_vectors_previous_offset = 0;
  1080. multimesh->motion_vectors_last_change = -1;
  1081. if (!multimesh->data_cache.is_empty()) {
  1082. multimesh->data_cache.append_array(multimesh->data_cache);
  1083. }
  1084. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1085. uint32_t new_buffer_size = buffer_size * 2;
  1086. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1087. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1088. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1089. RD::get_singleton()->barrier();
  1090. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size, RD::BARRIER_MASK_NO_BARRIER);
  1091. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1092. } else if (!multimesh->data_cache.is_empty()) {
  1093. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1094. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1095. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1096. }
  1097. if (multimesh->buffer.is_valid()) {
  1098. RD::get_singleton()->free(multimesh->buffer);
  1099. }
  1100. multimesh->buffer = new_buffer;
  1101. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1102. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1103. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1104. }
  1105. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1106. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1107. ERR_FAIL_COND(!multimesh);
  1108. r_current_offset = multimesh->motion_vectors_current_offset;
  1109. if (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change >= 2) {
  1110. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1111. }
  1112. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1113. }
  1114. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1115. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1116. ERR_FAIL_COND_V(!multimesh, 0);
  1117. return multimesh->instances;
  1118. }
  1119. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1120. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1121. ERR_FAIL_COND(!multimesh);
  1122. if (multimesh->mesh == p_mesh) {
  1123. return;
  1124. }
  1125. multimesh->mesh = p_mesh;
  1126. if (multimesh->instances == 0) {
  1127. return;
  1128. }
  1129. if (multimesh->data_cache.size()) {
  1130. //we have a data cache, just mark it dirt
  1131. _multimesh_mark_all_dirty(multimesh, false, true);
  1132. } else if (multimesh->instances) {
  1133. //need to re-create AABB unfortunately, calling this has a penalty
  1134. if (multimesh->buffer_set) {
  1135. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1136. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1137. const float *data = reinterpret_cast<const float *>(r);
  1138. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1139. }
  1140. }
  1141. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1142. }
  1143. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1144. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1145. if (multimesh->data_cache.size() > 0) {
  1146. return; //already local
  1147. }
  1148. // this means that the user wants to load/save individual elements,
  1149. // for this, the data must reside on CPU, so just copy it there.
  1150. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1151. if (multimesh->motion_vectors_enabled) {
  1152. buffer_size *= 2;
  1153. }
  1154. multimesh->data_cache.resize(buffer_size);
  1155. {
  1156. float *w = multimesh->data_cache.ptrw();
  1157. if (multimesh->buffer_set) {
  1158. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1159. {
  1160. const uint8_t *r = buffer.ptr();
  1161. memcpy(w, r, buffer.size());
  1162. }
  1163. } else {
  1164. memset(w, 0, buffer_size * sizeof(float));
  1165. }
  1166. }
  1167. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1168. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1169. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1170. multimesh->data_cache_dirty_region_count = 0;
  1171. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1172. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1173. multimesh->previous_data_cache_dirty_region_count = 0;
  1174. }
  1175. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1176. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1177. if (!multimesh->motion_vectors_enabled) {
  1178. return;
  1179. }
  1180. uint32_t frame = RSG::rasterizer->get_frame_number();
  1181. if (multimesh->motion_vectors_last_change != frame) {
  1182. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1183. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1184. multimesh->motion_vectors_last_change = frame;
  1185. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1186. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1187. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1188. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1189. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1190. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1191. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1192. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1193. for (uint32_t i = 0; i < visible_region_count; i++) {
  1194. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1195. uint32_t offset = i * region_size;
  1196. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1197. }
  1198. }
  1199. }
  1200. }
  1201. }
  1202. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1203. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1204. #ifdef DEBUG_ENABLED
  1205. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1206. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1207. #endif
  1208. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1209. multimesh->data_cache_dirty_regions[region_index] = true;
  1210. multimesh->data_cache_dirty_region_count++;
  1211. }
  1212. if (p_aabb) {
  1213. multimesh->aabb_dirty = true;
  1214. }
  1215. if (!multimesh->dirty) {
  1216. multimesh->dirty_list = multimesh_dirty_list;
  1217. multimesh_dirty_list = multimesh;
  1218. multimesh->dirty = true;
  1219. }
  1220. }
  1221. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1222. if (p_data) {
  1223. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1224. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1225. if (!multimesh->data_cache_dirty_regions[i]) {
  1226. multimesh->data_cache_dirty_regions[i] = true;
  1227. multimesh->data_cache_dirty_region_count++;
  1228. }
  1229. }
  1230. }
  1231. if (p_aabb) {
  1232. multimesh->aabb_dirty = true;
  1233. }
  1234. if (!multimesh->dirty) {
  1235. multimesh->dirty_list = multimesh_dirty_list;
  1236. multimesh_dirty_list = multimesh;
  1237. multimesh->dirty = true;
  1238. }
  1239. }
  1240. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1241. ERR_FAIL_COND(multimesh->mesh.is_null());
  1242. AABB aabb;
  1243. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1244. for (int i = 0; i < p_instances; i++) {
  1245. const float *data = p_data + multimesh->stride_cache * i;
  1246. Transform3D t;
  1247. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1248. t.basis.rows[0][0] = data[0];
  1249. t.basis.rows[0][1] = data[1];
  1250. t.basis.rows[0][2] = data[2];
  1251. t.origin.x = data[3];
  1252. t.basis.rows[1][0] = data[4];
  1253. t.basis.rows[1][1] = data[5];
  1254. t.basis.rows[1][2] = data[6];
  1255. t.origin.y = data[7];
  1256. t.basis.rows[2][0] = data[8];
  1257. t.basis.rows[2][1] = data[9];
  1258. t.basis.rows[2][2] = data[10];
  1259. t.origin.z = data[11];
  1260. } else {
  1261. t.basis.rows[0][0] = data[0];
  1262. t.basis.rows[0][1] = data[1];
  1263. t.origin.x = data[3];
  1264. t.basis.rows[1][0] = data[4];
  1265. t.basis.rows[1][1] = data[5];
  1266. t.origin.y = data[7];
  1267. }
  1268. if (i == 0) {
  1269. aabb = t.xform(mesh_aabb);
  1270. } else {
  1271. aabb.merge_with(t.xform(mesh_aabb));
  1272. }
  1273. }
  1274. multimesh->aabb = aabb;
  1275. }
  1276. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1277. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1278. ERR_FAIL_COND(!multimesh);
  1279. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1280. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1281. _multimesh_make_local(multimesh);
  1282. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1283. if (uses_motion_vectors) {
  1284. _multimesh_enable_motion_vectors(multimesh);
  1285. }
  1286. _multimesh_update_motion_vectors_data_cache(multimesh);
  1287. {
  1288. float *w = multimesh->data_cache.ptrw();
  1289. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1290. dataptr[0] = p_transform.basis.rows[0][0];
  1291. dataptr[1] = p_transform.basis.rows[0][1];
  1292. dataptr[2] = p_transform.basis.rows[0][2];
  1293. dataptr[3] = p_transform.origin.x;
  1294. dataptr[4] = p_transform.basis.rows[1][0];
  1295. dataptr[5] = p_transform.basis.rows[1][1];
  1296. dataptr[6] = p_transform.basis.rows[1][2];
  1297. dataptr[7] = p_transform.origin.y;
  1298. dataptr[8] = p_transform.basis.rows[2][0];
  1299. dataptr[9] = p_transform.basis.rows[2][1];
  1300. dataptr[10] = p_transform.basis.rows[2][2];
  1301. dataptr[11] = p_transform.origin.z;
  1302. }
  1303. _multimesh_mark_dirty(multimesh, p_index, true);
  1304. }
  1305. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1306. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1307. ERR_FAIL_COND(!multimesh);
  1308. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1309. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1310. _multimesh_make_local(multimesh);
  1311. _multimesh_update_motion_vectors_data_cache(multimesh);
  1312. {
  1313. float *w = multimesh->data_cache.ptrw();
  1314. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1315. dataptr[0] = p_transform.columns[0][0];
  1316. dataptr[1] = p_transform.columns[1][0];
  1317. dataptr[2] = 0;
  1318. dataptr[3] = p_transform.columns[2][0];
  1319. dataptr[4] = p_transform.columns[0][1];
  1320. dataptr[5] = p_transform.columns[1][1];
  1321. dataptr[6] = 0;
  1322. dataptr[7] = p_transform.columns[2][1];
  1323. }
  1324. _multimesh_mark_dirty(multimesh, p_index, true);
  1325. }
  1326. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1327. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1328. ERR_FAIL_COND(!multimesh);
  1329. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1330. ERR_FAIL_COND(!multimesh->uses_colors);
  1331. _multimesh_make_local(multimesh);
  1332. _multimesh_update_motion_vectors_data_cache(multimesh);
  1333. {
  1334. float *w = multimesh->data_cache.ptrw();
  1335. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1336. dataptr[0] = p_color.r;
  1337. dataptr[1] = p_color.g;
  1338. dataptr[2] = p_color.b;
  1339. dataptr[3] = p_color.a;
  1340. }
  1341. _multimesh_mark_dirty(multimesh, p_index, false);
  1342. }
  1343. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1344. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1345. ERR_FAIL_COND(!multimesh);
  1346. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1347. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1348. _multimesh_make_local(multimesh);
  1349. _multimesh_update_motion_vectors_data_cache(multimesh);
  1350. {
  1351. float *w = multimesh->data_cache.ptrw();
  1352. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1353. dataptr[0] = p_color.r;
  1354. dataptr[1] = p_color.g;
  1355. dataptr[2] = p_color.b;
  1356. dataptr[3] = p_color.a;
  1357. }
  1358. _multimesh_mark_dirty(multimesh, p_index, false);
  1359. }
  1360. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1361. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1362. ERR_FAIL_COND_V(!multimesh, RID());
  1363. return multimesh->mesh;
  1364. }
  1365. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1366. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1367. ERR_FAIL_COND_V(!multimesh, nullptr);
  1368. return &multimesh->dependency;
  1369. }
  1370. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1371. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1372. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1373. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1374. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1375. _multimesh_make_local(multimesh);
  1376. Transform3D t;
  1377. {
  1378. const float *r = multimesh->data_cache.ptr();
  1379. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1380. t.basis.rows[0][0] = dataptr[0];
  1381. t.basis.rows[0][1] = dataptr[1];
  1382. t.basis.rows[0][2] = dataptr[2];
  1383. t.origin.x = dataptr[3];
  1384. t.basis.rows[1][0] = dataptr[4];
  1385. t.basis.rows[1][1] = dataptr[5];
  1386. t.basis.rows[1][2] = dataptr[6];
  1387. t.origin.y = dataptr[7];
  1388. t.basis.rows[2][0] = dataptr[8];
  1389. t.basis.rows[2][1] = dataptr[9];
  1390. t.basis.rows[2][2] = dataptr[10];
  1391. t.origin.z = dataptr[11];
  1392. }
  1393. return t;
  1394. }
  1395. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1396. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1397. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1398. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1399. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1400. _multimesh_make_local(multimesh);
  1401. Transform2D t;
  1402. {
  1403. const float *r = multimesh->data_cache.ptr();
  1404. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1405. t.columns[0][0] = dataptr[0];
  1406. t.columns[1][0] = dataptr[1];
  1407. t.columns[2][0] = dataptr[3];
  1408. t.columns[0][1] = dataptr[4];
  1409. t.columns[1][1] = dataptr[5];
  1410. t.columns[2][1] = dataptr[7];
  1411. }
  1412. return t;
  1413. }
  1414. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1415. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1416. ERR_FAIL_COND_V(!multimesh, Color());
  1417. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1418. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1419. _multimesh_make_local(multimesh);
  1420. Color c;
  1421. {
  1422. const float *r = multimesh->data_cache.ptr();
  1423. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1424. c.r = dataptr[0];
  1425. c.g = dataptr[1];
  1426. c.b = dataptr[2];
  1427. c.a = dataptr[3];
  1428. }
  1429. return c;
  1430. }
  1431. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1432. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1433. ERR_FAIL_COND_V(!multimesh, Color());
  1434. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1435. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1436. _multimesh_make_local(multimesh);
  1437. Color c;
  1438. {
  1439. const float *r = multimesh->data_cache.ptr();
  1440. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1441. c.r = dataptr[0];
  1442. c.g = dataptr[1];
  1443. c.b = dataptr[2];
  1444. c.a = dataptr[3];
  1445. }
  1446. return c;
  1447. }
  1448. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1449. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1450. ERR_FAIL_COND(!multimesh);
  1451. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1452. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1453. if (uses_motion_vectors) {
  1454. _multimesh_enable_motion_vectors(multimesh);
  1455. }
  1456. if (multimesh->motion_vectors_enabled) {
  1457. uint32_t frame = RSG::rasterizer->get_frame_number();
  1458. if (multimesh->motion_vectors_last_change != frame) {
  1459. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1460. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1461. multimesh->motion_vectors_last_change = frame;
  1462. }
  1463. }
  1464. {
  1465. const float *r = p_buffer.ptr();
  1466. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1467. multimesh->buffer_set = true;
  1468. }
  1469. if (multimesh->data_cache.size()) {
  1470. float *cache_data = multimesh->data_cache.ptrw();
  1471. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1472. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1473. } else if (multimesh->mesh.is_valid()) {
  1474. //if we have a mesh set, we need to re-generate the AABB from the new data
  1475. const float *data = p_buffer.ptr();
  1476. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1477. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1478. }
  1479. }
  1480. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1481. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1482. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1483. if (multimesh->buffer.is_null()) {
  1484. return Vector<float>();
  1485. } else {
  1486. Vector<float> ret;
  1487. ret.resize(multimesh->instances * multimesh->stride_cache);
  1488. float *w = ret.ptrw();
  1489. if (multimesh->data_cache.size()) {
  1490. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1491. memcpy(w, r, ret.size() * sizeof(float));
  1492. } else {
  1493. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1494. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1495. memcpy(w, r, ret.size() * sizeof(float));
  1496. }
  1497. return ret;
  1498. }
  1499. }
  1500. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1501. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1502. ERR_FAIL_COND(!multimesh);
  1503. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1504. if (multimesh->visible_instances == p_visible) {
  1505. return;
  1506. }
  1507. if (multimesh->data_cache.size()) {
  1508. // There is a data cache, but we may need to update some sections.
  1509. _multimesh_mark_all_dirty(multimesh, false, true);
  1510. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1511. for (int i = start; i < p_visible; i++) {
  1512. _multimesh_mark_dirty(multimesh, i, true);
  1513. }
  1514. }
  1515. multimesh->visible_instances = p_visible;
  1516. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1517. }
  1518. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1519. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1520. ERR_FAIL_COND_V(!multimesh, 0);
  1521. return multimesh->visible_instances;
  1522. }
  1523. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1524. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1525. ERR_FAIL_COND_V(!multimesh, AABB());
  1526. if (multimesh->aabb_dirty) {
  1527. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1528. }
  1529. return multimesh->aabb;
  1530. }
  1531. void MeshStorage::_update_dirty_multimeshes() {
  1532. while (multimesh_dirty_list) {
  1533. MultiMesh *multimesh = multimesh_dirty_list;
  1534. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1535. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1536. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1537. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1538. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1539. if (total_dirty_regions != 0) {
  1540. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1541. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1542. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1543. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1544. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1545. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1546. } else {
  1547. //not that many regions? update them all
  1548. for (uint32_t i = 0; i < visible_region_count; i++) {
  1549. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1550. uint32_t offset = i * region_size;
  1551. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1552. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1553. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1554. }
  1555. }
  1556. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1557. }
  1558. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1559. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1560. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1561. multimesh->data_cache_dirty_region_count = 0;
  1562. }
  1563. if (multimesh->aabb_dirty) {
  1564. //aabb is dirty..
  1565. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1566. multimesh->aabb_dirty = false;
  1567. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1568. }
  1569. }
  1570. multimesh_dirty_list = multimesh->dirty_list;
  1571. multimesh->dirty_list = nullptr;
  1572. multimesh->dirty = false;
  1573. }
  1574. multimesh_dirty_list = nullptr;
  1575. }
  1576. /* SKELETON API */
  1577. RID MeshStorage::skeleton_allocate() {
  1578. return skeleton_owner.allocate_rid();
  1579. }
  1580. void MeshStorage::skeleton_initialize(RID p_rid) {
  1581. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1582. }
  1583. void MeshStorage::skeleton_free(RID p_rid) {
  1584. _update_dirty_skeletons();
  1585. skeleton_allocate_data(p_rid, 0);
  1586. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1587. skeleton->dependency.deleted_notify(p_rid);
  1588. skeleton_owner.free(p_rid);
  1589. }
  1590. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1591. if (!skeleton->dirty) {
  1592. skeleton->dirty = true;
  1593. skeleton->dirty_list = skeleton_dirty_list;
  1594. skeleton_dirty_list = skeleton;
  1595. }
  1596. }
  1597. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1598. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1599. ERR_FAIL_COND(!skeleton);
  1600. ERR_FAIL_COND(p_bones < 0);
  1601. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1602. return;
  1603. }
  1604. skeleton->size = p_bones;
  1605. skeleton->use_2d = p_2d_skeleton;
  1606. skeleton->uniform_set_3d = RID();
  1607. if (skeleton->buffer.is_valid()) {
  1608. RD::get_singleton()->free(skeleton->buffer);
  1609. skeleton->buffer = RID();
  1610. skeleton->data.clear();
  1611. skeleton->uniform_set_mi = RID();
  1612. }
  1613. if (skeleton->size) {
  1614. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1615. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1616. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1617. _skeleton_make_dirty(skeleton);
  1618. {
  1619. Vector<RD::Uniform> uniforms;
  1620. {
  1621. RD::Uniform u;
  1622. u.binding = 0;
  1623. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1624. u.append_id(skeleton->buffer);
  1625. uniforms.push_back(u);
  1626. }
  1627. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1628. }
  1629. }
  1630. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1631. }
  1632. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1633. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1634. ERR_FAIL_COND_V(!skeleton, 0);
  1635. return skeleton->size;
  1636. }
  1637. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1638. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1639. ERR_FAIL_COND(!skeleton);
  1640. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1641. ERR_FAIL_COND(skeleton->use_2d);
  1642. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1643. dataptr[0] = p_transform.basis.rows[0][0];
  1644. dataptr[1] = p_transform.basis.rows[0][1];
  1645. dataptr[2] = p_transform.basis.rows[0][2];
  1646. dataptr[3] = p_transform.origin.x;
  1647. dataptr[4] = p_transform.basis.rows[1][0];
  1648. dataptr[5] = p_transform.basis.rows[1][1];
  1649. dataptr[6] = p_transform.basis.rows[1][2];
  1650. dataptr[7] = p_transform.origin.y;
  1651. dataptr[8] = p_transform.basis.rows[2][0];
  1652. dataptr[9] = p_transform.basis.rows[2][1];
  1653. dataptr[10] = p_transform.basis.rows[2][2];
  1654. dataptr[11] = p_transform.origin.z;
  1655. _skeleton_make_dirty(skeleton);
  1656. }
  1657. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1658. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1659. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1660. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1661. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1662. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1663. Transform3D t;
  1664. t.basis.rows[0][0] = dataptr[0];
  1665. t.basis.rows[0][1] = dataptr[1];
  1666. t.basis.rows[0][2] = dataptr[2];
  1667. t.origin.x = dataptr[3];
  1668. t.basis.rows[1][0] = dataptr[4];
  1669. t.basis.rows[1][1] = dataptr[5];
  1670. t.basis.rows[1][2] = dataptr[6];
  1671. t.origin.y = dataptr[7];
  1672. t.basis.rows[2][0] = dataptr[8];
  1673. t.basis.rows[2][1] = dataptr[9];
  1674. t.basis.rows[2][2] = dataptr[10];
  1675. t.origin.z = dataptr[11];
  1676. return t;
  1677. }
  1678. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1679. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1680. ERR_FAIL_COND(!skeleton);
  1681. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1682. ERR_FAIL_COND(!skeleton->use_2d);
  1683. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1684. dataptr[0] = p_transform.columns[0][0];
  1685. dataptr[1] = p_transform.columns[1][0];
  1686. dataptr[2] = 0;
  1687. dataptr[3] = p_transform.columns[2][0];
  1688. dataptr[4] = p_transform.columns[0][1];
  1689. dataptr[5] = p_transform.columns[1][1];
  1690. dataptr[6] = 0;
  1691. dataptr[7] = p_transform.columns[2][1];
  1692. _skeleton_make_dirty(skeleton);
  1693. }
  1694. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1695. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1696. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1697. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1698. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1699. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1700. Transform2D t;
  1701. t.columns[0][0] = dataptr[0];
  1702. t.columns[1][0] = dataptr[1];
  1703. t.columns[2][0] = dataptr[3];
  1704. t.columns[0][1] = dataptr[4];
  1705. t.columns[1][1] = dataptr[5];
  1706. t.columns[2][1] = dataptr[7];
  1707. return t;
  1708. }
  1709. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1710. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1711. ERR_FAIL_NULL(skeleton);
  1712. ERR_FAIL_COND(!skeleton->use_2d);
  1713. skeleton->base_transform_2d = p_base_transform;
  1714. }
  1715. void MeshStorage::_update_dirty_skeletons() {
  1716. while (skeleton_dirty_list) {
  1717. Skeleton *skeleton = skeleton_dirty_list;
  1718. if (skeleton->size) {
  1719. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1720. }
  1721. skeleton_dirty_list = skeleton->dirty_list;
  1722. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1723. skeleton->version++;
  1724. skeleton->dirty = false;
  1725. skeleton->dirty_list = nullptr;
  1726. }
  1727. skeleton_dirty_list = nullptr;
  1728. }
  1729. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1730. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1731. ERR_FAIL_COND(!skeleton);
  1732. p_instance->update_dependency(&skeleton->dependency);
  1733. }