2
0

mesh_storage.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "mesh_storage.h"
  31. #include "../../rendering_server_globals.h"
  32. using namespace RendererRD;
  33. MeshStorage *MeshStorage::singleton = nullptr;
  34. MeshStorage *MeshStorage::get_singleton() {
  35. return singleton;
  36. }
  37. MeshStorage::MeshStorage() {
  38. singleton = this;
  39. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  40. //default rd buffers
  41. {
  42. Vector<uint8_t> buffer;
  43. {
  44. buffer.resize(sizeof(float) * 3);
  45. {
  46. uint8_t *w = buffer.ptrw();
  47. float *fptr = reinterpret_cast<float *>(w);
  48. fptr[0] = 0.0;
  49. fptr[1] = 0.0;
  50. fptr[2] = 0.0;
  51. }
  52. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  53. }
  54. { //normal
  55. buffer.resize(sizeof(float) * 3);
  56. {
  57. uint8_t *w = buffer.ptrw();
  58. float *fptr = reinterpret_cast<float *>(w);
  59. fptr[0] = 1.0;
  60. fptr[1] = 0.0;
  61. fptr[2] = 0.0;
  62. }
  63. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  64. }
  65. { //tangent
  66. buffer.resize(sizeof(float) * 4);
  67. {
  68. uint8_t *w = buffer.ptrw();
  69. float *fptr = reinterpret_cast<float *>(w);
  70. fptr[0] = 1.0;
  71. fptr[1] = 0.0;
  72. fptr[2] = 0.0;
  73. fptr[3] = 0.0;
  74. }
  75. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  76. }
  77. { //color
  78. buffer.resize(sizeof(float) * 4);
  79. {
  80. uint8_t *w = buffer.ptrw();
  81. float *fptr = reinterpret_cast<float *>(w);
  82. fptr[0] = 1.0;
  83. fptr[1] = 1.0;
  84. fptr[2] = 1.0;
  85. fptr[3] = 1.0;
  86. }
  87. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  88. }
  89. { //tex uv 1
  90. buffer.resize(sizeof(float) * 2);
  91. {
  92. uint8_t *w = buffer.ptrw();
  93. float *fptr = reinterpret_cast<float *>(w);
  94. fptr[0] = 0.0;
  95. fptr[1] = 0.0;
  96. }
  97. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  98. }
  99. { //tex uv 2
  100. buffer.resize(sizeof(float) * 2);
  101. {
  102. uint8_t *w = buffer.ptrw();
  103. float *fptr = reinterpret_cast<float *>(w);
  104. fptr[0] = 0.0;
  105. fptr[1] = 0.0;
  106. }
  107. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  108. }
  109. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  110. buffer.resize(sizeof(float) * 4);
  111. {
  112. uint8_t *w = buffer.ptrw();
  113. float *fptr = reinterpret_cast<float *>(w);
  114. fptr[0] = 0.0;
  115. fptr[1] = 0.0;
  116. fptr[2] = 0.0;
  117. fptr[3] = 0.0;
  118. }
  119. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  120. }
  121. { //bones
  122. buffer.resize(sizeof(uint32_t) * 4);
  123. {
  124. uint8_t *w = buffer.ptrw();
  125. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  126. fptr[0] = 0;
  127. fptr[1] = 0;
  128. fptr[2] = 0;
  129. fptr[3] = 0;
  130. }
  131. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  132. }
  133. { //weights
  134. buffer.resize(sizeof(float) * 4);
  135. {
  136. uint8_t *w = buffer.ptrw();
  137. float *fptr = reinterpret_cast<float *>(w);
  138. fptr[0] = 0.0;
  139. fptr[1] = 0.0;
  140. fptr[2] = 0.0;
  141. fptr[3] = 0.0;
  142. }
  143. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  144. }
  145. }
  146. {
  147. Vector<String> skeleton_modes;
  148. skeleton_modes.push_back("\n#define MODE_2D\n");
  149. skeleton_modes.push_back("");
  150. skeleton_shader.shader.initialize(skeleton_modes);
  151. skeleton_shader.version = skeleton_shader.shader.version_create();
  152. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  153. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  154. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  155. }
  156. {
  157. Vector<RD::Uniform> uniforms;
  158. {
  159. RD::Uniform u;
  160. u.binding = 0;
  161. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  162. u.append_id(default_rd_storage_buffer);
  163. uniforms.push_back(u);
  164. }
  165. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  166. }
  167. }
  168. }
  169. MeshStorage::~MeshStorage() {
  170. //def buffers
  171. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  172. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  173. }
  174. skeleton_shader.shader.version_free(skeleton_shader.version);
  175. RD::get_singleton()->free(default_rd_storage_buffer);
  176. singleton = nullptr;
  177. }
  178. bool MeshStorage::free(RID p_rid) {
  179. if (owns_mesh(p_rid)) {
  180. mesh_free(p_rid);
  181. return true;
  182. } else if (owns_mesh_instance(p_rid)) {
  183. mesh_instance_free(p_rid);
  184. return true;
  185. } else if (owns_multimesh(p_rid)) {
  186. multimesh_free(p_rid);
  187. return true;
  188. } else if (owns_skeleton(p_rid)) {
  189. skeleton_free(p_rid);
  190. return true;
  191. }
  192. return false;
  193. }
  194. /* MESH API */
  195. RID MeshStorage::mesh_allocate() {
  196. return mesh_owner.allocate_rid();
  197. }
  198. void MeshStorage::mesh_initialize(RID p_rid) {
  199. mesh_owner.initialize_rid(p_rid, Mesh());
  200. }
  201. void MeshStorage::mesh_free(RID p_rid) {
  202. mesh_clear(p_rid);
  203. mesh_set_shadow_mesh(p_rid, RID());
  204. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  205. ERR_FAIL_COND(!mesh);
  206. mesh->dependency.deleted_notify(p_rid);
  207. if (mesh->instances.size()) {
  208. ERR_PRINT("deleting mesh with active instances");
  209. }
  210. if (mesh->shadow_owners.size()) {
  211. for (Mesh *E : mesh->shadow_owners) {
  212. Mesh *shadow_owner = E;
  213. shadow_owner->shadow_mesh = RID();
  214. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  215. }
  216. }
  217. mesh_owner.free(p_rid);
  218. }
  219. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  220. ERR_FAIL_COND(p_blend_shape_count < 0);
  221. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  222. ERR_FAIL_COND(!mesh);
  223. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  224. mesh->blend_shape_count = p_blend_shape_count;
  225. }
  226. /// Returns stride
  227. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  228. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  229. ERR_FAIL_COND(!mesh);
  230. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  231. #ifdef DEBUG_ENABLED
  232. //do a validation, to catch errors first
  233. {
  234. uint32_t stride = 0;
  235. uint32_t attrib_stride = 0;
  236. uint32_t skin_stride = 0;
  237. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  238. if ((p_surface.format & (1 << i))) {
  239. switch (i) {
  240. case RS::ARRAY_VERTEX: {
  241. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  242. stride += sizeof(float) * 2;
  243. } else {
  244. stride += sizeof(float) * 3;
  245. }
  246. } break;
  247. case RS::ARRAY_NORMAL: {
  248. stride += sizeof(int32_t);
  249. } break;
  250. case RS::ARRAY_TANGENT: {
  251. stride += sizeof(int32_t);
  252. } break;
  253. case RS::ARRAY_COLOR: {
  254. attrib_stride += sizeof(uint32_t);
  255. } break;
  256. case RS::ARRAY_TEX_UV: {
  257. attrib_stride += sizeof(float) * 2;
  258. } break;
  259. case RS::ARRAY_TEX_UV2: {
  260. attrib_stride += sizeof(float) * 2;
  261. } break;
  262. case RS::ARRAY_CUSTOM0:
  263. case RS::ARRAY_CUSTOM1:
  264. case RS::ARRAY_CUSTOM2:
  265. case RS::ARRAY_CUSTOM3: {
  266. int idx = i - RS::ARRAY_CUSTOM0;
  267. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  268. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  269. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  270. attrib_stride += fmtsize[fmt];
  271. } break;
  272. case RS::ARRAY_WEIGHTS:
  273. case RS::ARRAY_BONES: {
  274. //uses a separate array
  275. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  276. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  277. } break;
  278. }
  279. }
  280. }
  281. int expected_size = stride * p_surface.vertex_count;
  282. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  283. int bs_expected_size = expected_size * mesh->blend_shape_count;
  284. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  285. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  286. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  287. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  288. expected_size = skin_stride * p_surface.vertex_count;
  289. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  290. }
  291. }
  292. #endif
  293. Mesh::Surface *s = memnew(Mesh::Surface);
  294. s->format = p_surface.format;
  295. s->primitive = p_surface.primitive;
  296. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  297. if (p_surface.vertex_data.size()) {
  298. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  299. s->vertex_buffer_size = p_surface.vertex_data.size();
  300. }
  301. if (p_surface.attribute_data.size()) {
  302. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  303. }
  304. if (p_surface.skin_data.size()) {
  305. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  306. s->skin_buffer_size = p_surface.skin_data.size();
  307. }
  308. s->vertex_count = p_surface.vertex_count;
  309. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  310. mesh->has_bone_weights = true;
  311. }
  312. if (p_surface.index_count) {
  313. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  314. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  315. s->index_count = p_surface.index_count;
  316. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  317. if (p_surface.lods.size()) {
  318. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  319. s->lod_count = p_surface.lods.size();
  320. for (int i = 0; i < p_surface.lods.size(); i++) {
  321. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  322. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  323. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  324. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  325. s->lods[i].index_count = indices;
  326. }
  327. }
  328. }
  329. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  330. s->aabb = p_surface.aabb;
  331. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  332. if (mesh->blend_shape_count > 0) {
  333. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  334. }
  335. if (use_as_storage) {
  336. Vector<RD::Uniform> uniforms;
  337. {
  338. RD::Uniform u;
  339. u.binding = 0;
  340. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  341. if (s->vertex_buffer.is_valid()) {
  342. u.append_id(s->vertex_buffer);
  343. } else {
  344. u.append_id(default_rd_storage_buffer);
  345. }
  346. uniforms.push_back(u);
  347. }
  348. {
  349. RD::Uniform u;
  350. u.binding = 1;
  351. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  352. if (s->skin_buffer.is_valid()) {
  353. u.append_id(s->skin_buffer);
  354. } else {
  355. u.append_id(default_rd_storage_buffer);
  356. }
  357. uniforms.push_back(u);
  358. }
  359. {
  360. RD::Uniform u;
  361. u.binding = 2;
  362. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  363. if (s->blend_shape_buffer.is_valid()) {
  364. u.append_id(s->blend_shape_buffer);
  365. } else {
  366. u.append_id(default_rd_storage_buffer);
  367. }
  368. uniforms.push_back(u);
  369. }
  370. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  371. }
  372. if (mesh->surface_count == 0) {
  373. mesh->bone_aabbs = p_surface.bone_aabbs;
  374. mesh->aabb = p_surface.aabb;
  375. } else {
  376. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  377. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  378. // Each surface may affect different numbers of bones.
  379. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  380. }
  381. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  382. const AABB &bone = p_surface.bone_aabbs[i];
  383. if (bone.has_volume()) {
  384. mesh->bone_aabbs.write[i].merge_with(bone);
  385. }
  386. }
  387. mesh->aabb.merge_with(p_surface.aabb);
  388. }
  389. s->material = p_surface.material;
  390. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  391. mesh->surfaces[mesh->surface_count] = s;
  392. mesh->surface_count++;
  393. for (MeshInstance *mi : mesh->instances) {
  394. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  395. }
  396. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  397. for (Mesh *E : mesh->shadow_owners) {
  398. Mesh *shadow_owner = E;
  399. shadow_owner->shadow_mesh = RID();
  400. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  401. }
  402. mesh->material_cache.clear();
  403. }
  404. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  405. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  406. ERR_FAIL_COND_V(!mesh, -1);
  407. return mesh->blend_shape_count;
  408. }
  409. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  410. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  411. ERR_FAIL_COND(!mesh);
  412. ERR_FAIL_INDEX((int)p_mode, 2);
  413. mesh->blend_shape_mode = p_mode;
  414. }
  415. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  416. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  417. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  418. return mesh->blend_shape_mode;
  419. }
  420. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  421. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  422. ERR_FAIL_COND(!mesh);
  423. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  424. ERR_FAIL_COND(p_data.size() == 0);
  425. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  426. uint64_t data_size = p_data.size();
  427. const uint8_t *r = p_data.ptr();
  428. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  429. }
  430. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  431. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  432. ERR_FAIL_COND(!mesh);
  433. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  434. ERR_FAIL_COND(p_data.size() == 0);
  435. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  436. uint64_t data_size = p_data.size();
  437. const uint8_t *r = p_data.ptr();
  438. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  439. }
  440. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  441. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  442. ERR_FAIL_COND(!mesh);
  443. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  444. ERR_FAIL_COND(p_data.size() == 0);
  445. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  446. uint64_t data_size = p_data.size();
  447. const uint8_t *r = p_data.ptr();
  448. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  449. }
  450. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  451. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  452. ERR_FAIL_COND(!mesh);
  453. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  454. mesh->surfaces[p_surface]->material = p_material;
  455. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  456. mesh->material_cache.clear();
  457. }
  458. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  459. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  460. ERR_FAIL_COND_V(!mesh, RID());
  461. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  462. return mesh->surfaces[p_surface]->material;
  463. }
  464. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  465. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  466. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  467. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  468. Mesh::Surface &s = *mesh->surfaces[p_surface];
  469. RS::SurfaceData sd;
  470. sd.format = s.format;
  471. if (s.vertex_buffer.is_valid()) {
  472. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  473. }
  474. if (s.attribute_buffer.is_valid()) {
  475. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  476. }
  477. if (s.skin_buffer.is_valid()) {
  478. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  479. }
  480. sd.vertex_count = s.vertex_count;
  481. sd.index_count = s.index_count;
  482. sd.primitive = s.primitive;
  483. if (sd.index_count) {
  484. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  485. }
  486. sd.aabb = s.aabb;
  487. for (uint32_t i = 0; i < s.lod_count; i++) {
  488. RS::SurfaceData::LOD lod;
  489. lod.edge_length = s.lods[i].edge_length;
  490. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  491. sd.lods.push_back(lod);
  492. }
  493. sd.bone_aabbs = s.bone_aabbs;
  494. if (s.blend_shape_buffer.is_valid()) {
  495. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  496. }
  497. return sd;
  498. }
  499. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  500. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  501. ERR_FAIL_COND_V(!mesh, 0);
  502. return mesh->surface_count;
  503. }
  504. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  505. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  506. ERR_FAIL_COND(!mesh);
  507. mesh->custom_aabb = p_aabb;
  508. }
  509. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  510. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  511. ERR_FAIL_COND_V(!mesh, AABB());
  512. return mesh->custom_aabb;
  513. }
  514. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  515. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  516. ERR_FAIL_COND_V(!mesh, AABB());
  517. if (mesh->custom_aabb != AABB()) {
  518. return mesh->custom_aabb;
  519. }
  520. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  521. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  522. return mesh->aabb;
  523. }
  524. AABB aabb;
  525. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  526. AABB laabb;
  527. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  528. int bs = mesh->surfaces[i]->bone_aabbs.size();
  529. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  530. int sbs = skeleton->size;
  531. ERR_CONTINUE(bs > sbs);
  532. const float *baseptr = skeleton->data.ptr();
  533. bool first = true;
  534. if (skeleton->use_2d) {
  535. for (int j = 0; j < bs; j++) {
  536. if (skbones[0].size == Vector3()) {
  537. continue; //bone is unused
  538. }
  539. const float *dataptr = baseptr + j * 8;
  540. Transform3D mtx;
  541. mtx.basis.rows[0].x = dataptr[0];
  542. mtx.basis.rows[1].x = dataptr[1];
  543. mtx.origin.x = dataptr[3];
  544. mtx.basis.rows[0].y = dataptr[4];
  545. mtx.basis.rows[1].y = dataptr[5];
  546. mtx.origin.y = dataptr[7];
  547. AABB baabb = mtx.xform(skbones[j]);
  548. if (first) {
  549. laabb = baabb;
  550. first = false;
  551. } else {
  552. laabb.merge_with(baabb);
  553. }
  554. }
  555. } else {
  556. for (int j = 0; j < bs; j++) {
  557. if (skbones[0].size == Vector3()) {
  558. continue; //bone is unused
  559. }
  560. const float *dataptr = baseptr + j * 12;
  561. Transform3D mtx;
  562. mtx.basis.rows[0][0] = dataptr[0];
  563. mtx.basis.rows[0][1] = dataptr[1];
  564. mtx.basis.rows[0][2] = dataptr[2];
  565. mtx.origin.x = dataptr[3];
  566. mtx.basis.rows[1][0] = dataptr[4];
  567. mtx.basis.rows[1][1] = dataptr[5];
  568. mtx.basis.rows[1][2] = dataptr[6];
  569. mtx.origin.y = dataptr[7];
  570. mtx.basis.rows[2][0] = dataptr[8];
  571. mtx.basis.rows[2][1] = dataptr[9];
  572. mtx.basis.rows[2][2] = dataptr[10];
  573. mtx.origin.z = dataptr[11];
  574. AABB baabb = mtx.xform(skbones[j]);
  575. if (first) {
  576. laabb = baabb;
  577. first = false;
  578. } else {
  579. laabb.merge_with(baabb);
  580. }
  581. }
  582. }
  583. if (laabb.size == Vector3()) {
  584. laabb = mesh->surfaces[i]->aabb;
  585. }
  586. } else {
  587. laabb = mesh->surfaces[i]->aabb;
  588. }
  589. if (i == 0) {
  590. aabb = laabb;
  591. } else {
  592. aabb.merge_with(laabb);
  593. }
  594. }
  595. mesh->skeleton_aabb_version = skeleton->version;
  596. return aabb;
  597. }
  598. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  599. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  600. ERR_FAIL_COND(!mesh);
  601. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  602. if (shadow_mesh) {
  603. shadow_mesh->shadow_owners.erase(mesh);
  604. }
  605. mesh->shadow_mesh = p_shadow_mesh;
  606. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  607. if (shadow_mesh) {
  608. shadow_mesh->shadow_owners.insert(mesh);
  609. }
  610. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  611. }
  612. void MeshStorage::mesh_clear(RID p_mesh) {
  613. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  614. ERR_FAIL_COND(!mesh);
  615. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  616. Mesh::Surface &s = *mesh->surfaces[i];
  617. if (s.vertex_buffer.is_valid()) {
  618. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  619. }
  620. if (s.attribute_buffer.is_valid()) {
  621. RD::get_singleton()->free(s.attribute_buffer);
  622. }
  623. if (s.skin_buffer.is_valid()) {
  624. RD::get_singleton()->free(s.skin_buffer);
  625. }
  626. if (s.versions) {
  627. memfree(s.versions); //reallocs, so free with memfree.
  628. }
  629. if (s.index_buffer.is_valid()) {
  630. RD::get_singleton()->free(s.index_buffer);
  631. }
  632. if (s.lod_count) {
  633. for (uint32_t j = 0; j < s.lod_count; j++) {
  634. RD::get_singleton()->free(s.lods[j].index_buffer);
  635. }
  636. memdelete_arr(s.lods);
  637. }
  638. if (s.blend_shape_buffer.is_valid()) {
  639. RD::get_singleton()->free(s.blend_shape_buffer);
  640. }
  641. memdelete(mesh->surfaces[i]);
  642. }
  643. if (mesh->surfaces) {
  644. memfree(mesh->surfaces);
  645. }
  646. mesh->surfaces = nullptr;
  647. mesh->surface_count = 0;
  648. mesh->material_cache.clear();
  649. //clear instance data
  650. for (MeshInstance *mi : mesh->instances) {
  651. _mesh_instance_clear(mi);
  652. }
  653. mesh->has_bone_weights = false;
  654. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  655. for (Mesh *E : mesh->shadow_owners) {
  656. Mesh *shadow_owner = E;
  657. shadow_owner->shadow_mesh = RID();
  658. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  659. }
  660. }
  661. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  662. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  663. ERR_FAIL_COND_V(!mesh, false);
  664. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  665. }
  666. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  667. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  668. ERR_FAIL_COND_V(!mesh, nullptr);
  669. return &mesh->dependency;
  670. }
  671. /* MESH INSTANCE */
  672. RID MeshStorage::mesh_instance_create(RID p_base) {
  673. Mesh *mesh = mesh_owner.get_or_null(p_base);
  674. ERR_FAIL_COND_V(!mesh, RID());
  675. RID rid = mesh_instance_owner.make_rid();
  676. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  677. mi->mesh = mesh;
  678. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  679. _mesh_instance_add_surface(mi, mesh, i);
  680. }
  681. mi->I = mesh->instances.push_back(mi);
  682. mi->dirty = true;
  683. return rid;
  684. }
  685. void MeshStorage::mesh_instance_free(RID p_rid) {
  686. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  687. _mesh_instance_clear(mi);
  688. mi->mesh->instances.erase(mi->I);
  689. mi->I = nullptr;
  690. mesh_instance_owner.free(p_rid);
  691. }
  692. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  693. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  694. if (mi->skeleton == p_skeleton) {
  695. return;
  696. }
  697. mi->skeleton = p_skeleton;
  698. mi->skeleton_version = 0;
  699. mi->dirty = true;
  700. }
  701. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  702. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  703. ERR_FAIL_COND(!mi);
  704. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  705. mi->blend_weights[p_shape] = p_weight;
  706. mi->weights_dirty = true;
  707. //will be eventually updated
  708. }
  709. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  710. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  711. if (mi->surfaces[i].versions) {
  712. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  713. RD::get_singleton()->free(mi->surfaces[i].versions[j].vertex_array);
  714. }
  715. memfree(mi->surfaces[i].versions);
  716. }
  717. if (mi->surfaces[i].vertex_buffer.is_valid()) {
  718. RD::get_singleton()->free(mi->surfaces[i].vertex_buffer);
  719. }
  720. }
  721. mi->surfaces.clear();
  722. if (mi->blend_weights_buffer.is_valid()) {
  723. RD::get_singleton()->free(mi->blend_weights_buffer);
  724. }
  725. mi->blend_weights.clear();
  726. mi->weights_dirty = false;
  727. mi->skeleton_version = 0;
  728. }
  729. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  730. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  731. mi->blend_weights.resize(mesh->blend_shape_count);
  732. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  733. mi->blend_weights[i] = 0;
  734. }
  735. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  736. mi->weights_dirty = true;
  737. }
  738. MeshInstance::Surface s;
  739. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  740. //surface warrants transform
  741. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  742. Vector<RD::Uniform> uniforms;
  743. {
  744. RD::Uniform u;
  745. u.binding = 1;
  746. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  747. u.append_id(s.vertex_buffer);
  748. uniforms.push_back(u);
  749. }
  750. {
  751. RD::Uniform u;
  752. u.binding = 2;
  753. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  754. if (mi->blend_weights_buffer.is_valid()) {
  755. u.append_id(mi->blend_weights_buffer);
  756. } else {
  757. u.append_id(default_rd_storage_buffer);
  758. }
  759. uniforms.push_back(u);
  760. }
  761. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  762. }
  763. mi->surfaces.push_back(s);
  764. mi->dirty = true;
  765. }
  766. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  767. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  768. bool needs_update = mi->dirty;
  769. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  770. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  771. needs_update = true;
  772. }
  773. if (mi->array_update_list.in_list()) {
  774. return;
  775. }
  776. if (!needs_update && mi->skeleton.is_valid()) {
  777. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  778. if (sk && sk->version != mi->skeleton_version) {
  779. needs_update = true;
  780. }
  781. }
  782. if (needs_update) {
  783. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  784. }
  785. }
  786. void MeshStorage::update_mesh_instances() {
  787. while (dirty_mesh_instance_weights.first()) {
  788. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  789. if (mi->blend_weights_buffer.is_valid()) {
  790. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  791. }
  792. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  793. mi->weights_dirty = false;
  794. }
  795. if (dirty_mesh_instance_arrays.first() == nullptr) {
  796. return; //nothing to do
  797. }
  798. //process skeletons and blend shapes
  799. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  800. while (dirty_mesh_instance_arrays.first()) {
  801. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  802. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  803. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  804. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  805. continue;
  806. }
  807. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  808. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  809. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  810. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  811. if (sk && sk->uniform_set_mi.is_valid()) {
  812. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  813. } else {
  814. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  815. }
  816. SkeletonShader::PushConstant push_constant;
  817. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  818. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  819. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  820. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  821. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  822. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  823. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  824. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  825. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  826. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  827. push_constant.pad0 = 0;
  828. push_constant.pad1 = 0;
  829. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  830. //dispatch without barrier, so all is done at the same time
  831. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  832. }
  833. mi->dirty = false;
  834. if (sk) {
  835. mi->skeleton_version = sk->version;
  836. }
  837. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  838. }
  839. RD::get_singleton()->compute_list_end();
  840. }
  841. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  842. Vector<RD::VertexAttribute> attributes;
  843. Vector<RID> buffers;
  844. uint32_t stride = 0;
  845. uint32_t attribute_stride = 0;
  846. uint32_t skin_stride = 0;
  847. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  848. RD::VertexAttribute vd;
  849. RID buffer;
  850. vd.location = i;
  851. if (!(s->format & (1 << i))) {
  852. // Not supplied by surface, use default value
  853. buffer = mesh_default_rd_buffers[i];
  854. vd.stride = 0;
  855. switch (i) {
  856. case RS::ARRAY_VERTEX: {
  857. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  858. } break;
  859. case RS::ARRAY_NORMAL: {
  860. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  861. } break;
  862. case RS::ARRAY_TANGENT: {
  863. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  864. } break;
  865. case RS::ARRAY_COLOR: {
  866. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  867. } break;
  868. case RS::ARRAY_TEX_UV: {
  869. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  870. } break;
  871. case RS::ARRAY_TEX_UV2: {
  872. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  873. } break;
  874. case RS::ARRAY_CUSTOM0:
  875. case RS::ARRAY_CUSTOM1:
  876. case RS::ARRAY_CUSTOM2:
  877. case RS::ARRAY_CUSTOM3: {
  878. //assumed weights too
  879. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  880. } break;
  881. case RS::ARRAY_BONES: {
  882. //assumed weights too
  883. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  884. } break;
  885. case RS::ARRAY_WEIGHTS: {
  886. //assumed weights too
  887. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  888. } break;
  889. }
  890. } else {
  891. //Supplied, use it
  892. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  893. switch (i) {
  894. case RS::ARRAY_VERTEX: {
  895. vd.offset = stride;
  896. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  897. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  898. stride += sizeof(float) * 2;
  899. } else {
  900. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  901. stride += sizeof(float) * 3;
  902. }
  903. if (mis) {
  904. buffer = mis->vertex_buffer;
  905. } else {
  906. buffer = s->vertex_buffer;
  907. }
  908. } break;
  909. case RS::ARRAY_NORMAL: {
  910. vd.offset = stride;
  911. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  912. stride += sizeof(uint16_t) * 2;
  913. if (mis) {
  914. buffer = mis->vertex_buffer;
  915. } else {
  916. buffer = s->vertex_buffer;
  917. }
  918. } break;
  919. case RS::ARRAY_TANGENT: {
  920. vd.offset = stride;
  921. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  922. stride += sizeof(uint16_t) * 2;
  923. if (mis) {
  924. buffer = mis->vertex_buffer;
  925. } else {
  926. buffer = s->vertex_buffer;
  927. }
  928. } break;
  929. case RS::ARRAY_COLOR: {
  930. vd.offset = attribute_stride;
  931. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  932. attribute_stride += sizeof(int8_t) * 4;
  933. buffer = s->attribute_buffer;
  934. } break;
  935. case RS::ARRAY_TEX_UV: {
  936. vd.offset = attribute_stride;
  937. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  938. attribute_stride += sizeof(float) * 2;
  939. buffer = s->attribute_buffer;
  940. } break;
  941. case RS::ARRAY_TEX_UV2: {
  942. vd.offset = attribute_stride;
  943. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  944. attribute_stride += sizeof(float) * 2;
  945. buffer = s->attribute_buffer;
  946. } break;
  947. case RS::ARRAY_CUSTOM0:
  948. case RS::ARRAY_CUSTOM1:
  949. case RS::ARRAY_CUSTOM2:
  950. case RS::ARRAY_CUSTOM3: {
  951. vd.offset = attribute_stride;
  952. int idx = i - RS::ARRAY_CUSTOM0;
  953. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  954. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  955. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  956. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  957. vd.format = fmtrd[fmt];
  958. attribute_stride += fmtsize[fmt];
  959. buffer = s->attribute_buffer;
  960. } break;
  961. case RS::ARRAY_BONES: {
  962. vd.offset = skin_stride;
  963. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  964. skin_stride += sizeof(int16_t) * 4;
  965. buffer = s->skin_buffer;
  966. } break;
  967. case RS::ARRAY_WEIGHTS: {
  968. vd.offset = skin_stride;
  969. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  970. skin_stride += sizeof(int16_t) * 4;
  971. buffer = s->skin_buffer;
  972. } break;
  973. }
  974. }
  975. if (!(p_input_mask & (1 << i))) {
  976. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  977. }
  978. attributes.push_back(vd);
  979. buffers.push_back(buffer);
  980. }
  981. //update final stride
  982. for (int i = 0; i < attributes.size(); i++) {
  983. if (attributes[i].stride == 0) {
  984. continue; //default location
  985. }
  986. int loc = attributes[i].location;
  987. if (loc < RS::ARRAY_COLOR) {
  988. attributes.write[i].stride = stride;
  989. } else if (loc < RS::ARRAY_BONES) {
  990. attributes.write[i].stride = attribute_stride;
  991. } else {
  992. attributes.write[i].stride = skin_stride;
  993. }
  994. }
  995. v.input_mask = p_input_mask;
  996. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  997. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  998. }
  999. ////////////////// MULTIMESH
  1000. RID MeshStorage::multimesh_allocate() {
  1001. return multimesh_owner.allocate_rid();
  1002. }
  1003. void MeshStorage::multimesh_initialize(RID p_rid) {
  1004. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1005. }
  1006. void MeshStorage::multimesh_free(RID p_rid) {
  1007. _update_dirty_multimeshes();
  1008. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1009. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1010. multimesh->dependency.deleted_notify(p_rid);
  1011. multimesh_owner.free(p_rid);
  1012. }
  1013. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1014. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1015. ERR_FAIL_COND(!multimesh);
  1016. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1017. return;
  1018. }
  1019. if (multimesh->buffer.is_valid()) {
  1020. RD::get_singleton()->free(multimesh->buffer);
  1021. multimesh->buffer = RID();
  1022. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1023. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1024. }
  1025. if (multimesh->data_cache_dirty_regions) {
  1026. memdelete_arr(multimesh->data_cache_dirty_regions);
  1027. multimesh->data_cache_dirty_regions = nullptr;
  1028. multimesh->data_cache_dirty_region_count = 0;
  1029. }
  1030. if (multimesh->previous_data_cache_dirty_regions) {
  1031. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1032. multimesh->previous_data_cache_dirty_regions = nullptr;
  1033. multimesh->previous_data_cache_dirty_region_count = 0;
  1034. }
  1035. multimesh->instances = p_instances;
  1036. multimesh->xform_format = p_transform_format;
  1037. multimesh->uses_colors = p_use_colors;
  1038. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1039. multimesh->uses_custom_data = p_use_custom_data;
  1040. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1041. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1042. multimesh->buffer_set = false;
  1043. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1044. multimesh->data_cache = Vector<float>();
  1045. multimesh->aabb = AABB();
  1046. multimesh->aabb_dirty = false;
  1047. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1048. multimesh->motion_vectors_current_offset = 0;
  1049. multimesh->motion_vectors_previous_offset = 0;
  1050. multimesh->motion_vectors_last_change = -1;
  1051. if (multimesh->instances) {
  1052. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1053. if (multimesh->motion_vectors_enabled) {
  1054. buffer_size *= 2;
  1055. }
  1056. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1057. }
  1058. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1059. }
  1060. bool MeshStorage::_multimesh_enable_motion_vectors(RID p_multimesh) {
  1061. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1062. ERR_FAIL_COND_V(!multimesh, false);
  1063. if (multimesh->motion_vectors_enabled) {
  1064. return false;
  1065. }
  1066. multimesh->motion_vectors_enabled = true;
  1067. multimesh->motion_vectors_current_offset = 0;
  1068. multimesh->motion_vectors_previous_offset = 0;
  1069. multimesh->motion_vectors_last_change = -1;
  1070. if (!multimesh->data_cache.is_empty()) {
  1071. multimesh->data_cache.append_array(multimesh->data_cache);
  1072. }
  1073. if (multimesh->buffer_set) {
  1074. RD::get_singleton()->barrier();
  1075. Vector<uint8_t> buffer_data = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1076. if (!multimesh->data_cache.is_empty()) {
  1077. memcpy(buffer_data.ptrw(), multimesh->data_cache.ptr(), buffer_data.size());
  1078. }
  1079. RD::get_singleton()->free(multimesh->buffer);
  1080. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float) * 2;
  1081. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1082. RD::get_singleton()->buffer_update(multimesh->buffer, 0, buffer_data.size(), buffer_data.ptr(), RD::BARRIER_MASK_NO_BARRIER);
  1083. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_data.size(), buffer_data.size(), buffer_data.ptr());
  1084. multimesh->uniform_set_3d = RID(); // Cleared by dependency
  1085. return true;
  1086. }
  1087. return false; // Update the transforms uniform set cache
  1088. }
  1089. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1090. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1091. ERR_FAIL_COND(!multimesh);
  1092. r_current_offset = multimesh->motion_vectors_current_offset;
  1093. if (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change >= 2) {
  1094. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1095. }
  1096. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1097. }
  1098. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1099. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1100. ERR_FAIL_COND_V(!multimesh, 0);
  1101. return multimesh->instances;
  1102. }
  1103. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1104. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1105. ERR_FAIL_COND(!multimesh);
  1106. if (multimesh->mesh == p_mesh) {
  1107. return;
  1108. }
  1109. multimesh->mesh = p_mesh;
  1110. if (multimesh->instances == 0) {
  1111. return;
  1112. }
  1113. if (multimesh->data_cache.size()) {
  1114. //we have a data cache, just mark it dirt
  1115. _multimesh_mark_all_dirty(multimesh, false, true);
  1116. } else if (multimesh->instances) {
  1117. //need to re-create AABB unfortunately, calling this has a penalty
  1118. if (multimesh->buffer_set) {
  1119. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1120. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1121. const float *data = reinterpret_cast<const float *>(r);
  1122. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1123. }
  1124. }
  1125. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1126. }
  1127. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1128. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1129. if (multimesh->data_cache.size() > 0) {
  1130. return; //already local
  1131. }
  1132. // this means that the user wants to load/save individual elements,
  1133. // for this, the data must reside on CPU, so just copy it there.
  1134. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1135. if (multimesh->motion_vectors_enabled) {
  1136. buffer_size *= 2;
  1137. }
  1138. multimesh->data_cache.resize(buffer_size);
  1139. {
  1140. float *w = multimesh->data_cache.ptrw();
  1141. if (multimesh->buffer_set) {
  1142. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1143. {
  1144. const uint8_t *r = buffer.ptr();
  1145. memcpy(w, r, buffer.size());
  1146. }
  1147. } else {
  1148. memset(w, 0, buffer_size * sizeof(float));
  1149. }
  1150. }
  1151. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1152. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1153. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1154. multimesh->data_cache_dirty_region_count = 0;
  1155. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1156. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1157. multimesh->previous_data_cache_dirty_region_count = 0;
  1158. }
  1159. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1160. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1161. if (!multimesh->motion_vectors_enabled) {
  1162. return;
  1163. }
  1164. uint32_t frame = RSG::rasterizer->get_frame_number();
  1165. if (multimesh->motion_vectors_last_change != frame) {
  1166. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1167. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1168. multimesh->motion_vectors_last_change = frame;
  1169. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1170. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1171. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1172. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1173. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1174. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1175. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1176. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1177. for (uint32_t i = 0; i < visible_region_count; i++) {
  1178. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1179. uint32_t offset = i * region_size;
  1180. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1181. }
  1182. }
  1183. }
  1184. }
  1185. }
  1186. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1187. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1188. #ifdef DEBUG_ENABLED
  1189. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1190. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1191. #endif
  1192. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1193. multimesh->data_cache_dirty_regions[region_index] = true;
  1194. multimesh->data_cache_dirty_region_count++;
  1195. }
  1196. if (p_aabb) {
  1197. multimesh->aabb_dirty = true;
  1198. }
  1199. if (!multimesh->dirty) {
  1200. multimesh->dirty_list = multimesh_dirty_list;
  1201. multimesh_dirty_list = multimesh;
  1202. multimesh->dirty = true;
  1203. }
  1204. }
  1205. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1206. if (p_data) {
  1207. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1208. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1209. if (!multimesh->data_cache_dirty_regions[i]) {
  1210. multimesh->data_cache_dirty_regions[i] = true;
  1211. multimesh->data_cache_dirty_region_count++;
  1212. }
  1213. }
  1214. }
  1215. if (p_aabb) {
  1216. multimesh->aabb_dirty = true;
  1217. }
  1218. if (!multimesh->dirty) {
  1219. multimesh->dirty_list = multimesh_dirty_list;
  1220. multimesh_dirty_list = multimesh;
  1221. multimesh->dirty = true;
  1222. }
  1223. }
  1224. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1225. ERR_FAIL_COND(multimesh->mesh.is_null());
  1226. AABB aabb;
  1227. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1228. for (int i = 0; i < p_instances; i++) {
  1229. const float *data = p_data + multimesh->stride_cache * i;
  1230. Transform3D t;
  1231. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1232. t.basis.rows[0][0] = data[0];
  1233. t.basis.rows[0][1] = data[1];
  1234. t.basis.rows[0][2] = data[2];
  1235. t.origin.x = data[3];
  1236. t.basis.rows[1][0] = data[4];
  1237. t.basis.rows[1][1] = data[5];
  1238. t.basis.rows[1][2] = data[6];
  1239. t.origin.y = data[7];
  1240. t.basis.rows[2][0] = data[8];
  1241. t.basis.rows[2][1] = data[9];
  1242. t.basis.rows[2][2] = data[10];
  1243. t.origin.z = data[11];
  1244. } else {
  1245. t.basis.rows[0].x = data[0];
  1246. t.basis.rows[1].x = data[1];
  1247. t.origin.x = data[3];
  1248. t.basis.rows[0].y = data[4];
  1249. t.basis.rows[1].y = data[5];
  1250. t.origin.y = data[7];
  1251. }
  1252. if (i == 0) {
  1253. aabb = t.xform(mesh_aabb);
  1254. } else {
  1255. aabb.merge_with(t.xform(mesh_aabb));
  1256. }
  1257. }
  1258. multimesh->aabb = aabb;
  1259. }
  1260. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1261. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1262. ERR_FAIL_COND(!multimesh);
  1263. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1264. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1265. _multimesh_make_local(multimesh);
  1266. _multimesh_update_motion_vectors_data_cache(multimesh);
  1267. {
  1268. float *w = multimesh->data_cache.ptrw();
  1269. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1270. dataptr[0] = p_transform.basis.rows[0][0];
  1271. dataptr[1] = p_transform.basis.rows[0][1];
  1272. dataptr[2] = p_transform.basis.rows[0][2];
  1273. dataptr[3] = p_transform.origin.x;
  1274. dataptr[4] = p_transform.basis.rows[1][0];
  1275. dataptr[5] = p_transform.basis.rows[1][1];
  1276. dataptr[6] = p_transform.basis.rows[1][2];
  1277. dataptr[7] = p_transform.origin.y;
  1278. dataptr[8] = p_transform.basis.rows[2][0];
  1279. dataptr[9] = p_transform.basis.rows[2][1];
  1280. dataptr[10] = p_transform.basis.rows[2][2];
  1281. dataptr[11] = p_transform.origin.z;
  1282. }
  1283. _multimesh_mark_dirty(multimesh, p_index, true);
  1284. }
  1285. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1286. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1287. ERR_FAIL_COND(!multimesh);
  1288. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1289. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1290. _multimesh_make_local(multimesh);
  1291. _multimesh_update_motion_vectors_data_cache(multimesh);
  1292. {
  1293. float *w = multimesh->data_cache.ptrw();
  1294. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1295. dataptr[0] = p_transform.columns[0][0];
  1296. dataptr[1] = p_transform.columns[1][0];
  1297. dataptr[2] = 0;
  1298. dataptr[3] = p_transform.columns[2][0];
  1299. dataptr[4] = p_transform.columns[0][1];
  1300. dataptr[5] = p_transform.columns[1][1];
  1301. dataptr[6] = 0;
  1302. dataptr[7] = p_transform.columns[2][1];
  1303. }
  1304. _multimesh_mark_dirty(multimesh, p_index, true);
  1305. }
  1306. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1307. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1308. ERR_FAIL_COND(!multimesh);
  1309. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1310. ERR_FAIL_COND(!multimesh->uses_colors);
  1311. _multimesh_make_local(multimesh);
  1312. _multimesh_update_motion_vectors_data_cache(multimesh);
  1313. {
  1314. float *w = multimesh->data_cache.ptrw();
  1315. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1316. dataptr[0] = p_color.r;
  1317. dataptr[1] = p_color.g;
  1318. dataptr[2] = p_color.b;
  1319. dataptr[3] = p_color.a;
  1320. }
  1321. _multimesh_mark_dirty(multimesh, p_index, false);
  1322. }
  1323. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1324. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1325. ERR_FAIL_COND(!multimesh);
  1326. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1327. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1328. _multimesh_make_local(multimesh);
  1329. _multimesh_update_motion_vectors_data_cache(multimesh);
  1330. {
  1331. float *w = multimesh->data_cache.ptrw();
  1332. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1333. dataptr[0] = p_color.r;
  1334. dataptr[1] = p_color.g;
  1335. dataptr[2] = p_color.b;
  1336. dataptr[3] = p_color.a;
  1337. }
  1338. _multimesh_mark_dirty(multimesh, p_index, false);
  1339. }
  1340. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1341. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1342. ERR_FAIL_COND_V(!multimesh, RID());
  1343. return multimesh->mesh;
  1344. }
  1345. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1346. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1347. ERR_FAIL_COND_V(!multimesh, nullptr);
  1348. return &multimesh->dependency;
  1349. }
  1350. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1351. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1352. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1353. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1354. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1355. _multimesh_make_local(multimesh);
  1356. Transform3D t;
  1357. {
  1358. const float *r = multimesh->data_cache.ptr();
  1359. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1360. t.basis.rows[0][0] = dataptr[0];
  1361. t.basis.rows[0][1] = dataptr[1];
  1362. t.basis.rows[0][2] = dataptr[2];
  1363. t.origin.x = dataptr[3];
  1364. t.basis.rows[1][0] = dataptr[4];
  1365. t.basis.rows[1][1] = dataptr[5];
  1366. t.basis.rows[1][2] = dataptr[6];
  1367. t.origin.y = dataptr[7];
  1368. t.basis.rows[2][0] = dataptr[8];
  1369. t.basis.rows[2][1] = dataptr[9];
  1370. t.basis.rows[2][2] = dataptr[10];
  1371. t.origin.z = dataptr[11];
  1372. }
  1373. return t;
  1374. }
  1375. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1376. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1377. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1378. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1379. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1380. _multimesh_make_local(multimesh);
  1381. Transform2D t;
  1382. {
  1383. const float *r = multimesh->data_cache.ptr();
  1384. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1385. t.columns[0][0] = dataptr[0];
  1386. t.columns[1][0] = dataptr[1];
  1387. t.columns[2][0] = dataptr[3];
  1388. t.columns[0][1] = dataptr[4];
  1389. t.columns[1][1] = dataptr[5];
  1390. t.columns[2][1] = dataptr[7];
  1391. }
  1392. return t;
  1393. }
  1394. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1395. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1396. ERR_FAIL_COND_V(!multimesh, Color());
  1397. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1398. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1399. _multimesh_make_local(multimesh);
  1400. Color c;
  1401. {
  1402. const float *r = multimesh->data_cache.ptr();
  1403. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1404. c.r = dataptr[0];
  1405. c.g = dataptr[1];
  1406. c.b = dataptr[2];
  1407. c.a = dataptr[3];
  1408. }
  1409. return c;
  1410. }
  1411. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1412. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1413. ERR_FAIL_COND_V(!multimesh, Color());
  1414. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1415. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1416. _multimesh_make_local(multimesh);
  1417. Color c;
  1418. {
  1419. const float *r = multimesh->data_cache.ptr();
  1420. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1421. c.r = dataptr[0];
  1422. c.g = dataptr[1];
  1423. c.b = dataptr[2];
  1424. c.a = dataptr[3];
  1425. }
  1426. return c;
  1427. }
  1428. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1429. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1430. ERR_FAIL_COND(!multimesh);
  1431. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1432. if (multimesh->motion_vectors_enabled) {
  1433. uint32_t frame = RSG::rasterizer->get_frame_number();
  1434. if (multimesh->motion_vectors_last_change != frame) {
  1435. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1436. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1437. multimesh->motion_vectors_last_change = frame;
  1438. }
  1439. }
  1440. {
  1441. const float *r = p_buffer.ptr();
  1442. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1443. multimesh->buffer_set = true;
  1444. }
  1445. if (multimesh->data_cache.size()) {
  1446. float *cache_data = multimesh->data_cache.ptrw();
  1447. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1448. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1449. } else if (multimesh->mesh.is_valid()) {
  1450. //if we have a mesh set, we need to re-generate the AABB from the new data
  1451. const float *data = p_buffer.ptr();
  1452. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1453. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1454. }
  1455. }
  1456. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1457. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1458. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1459. if (multimesh->buffer.is_null()) {
  1460. return Vector<float>();
  1461. } else {
  1462. Vector<float> ret;
  1463. ret.resize(multimesh->instances * multimesh->stride_cache);
  1464. float *w = ret.ptrw();
  1465. if (multimesh->data_cache.size()) {
  1466. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1467. memcpy(w, r, ret.size() * sizeof(float));
  1468. } else {
  1469. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1470. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1471. memcpy(w, r, ret.size() * sizeof(float));
  1472. }
  1473. return ret;
  1474. }
  1475. }
  1476. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1477. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1478. ERR_FAIL_COND(!multimesh);
  1479. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1480. if (multimesh->visible_instances == p_visible) {
  1481. return;
  1482. }
  1483. if (multimesh->data_cache.size()) {
  1484. //there is a data cache..
  1485. _multimesh_mark_all_dirty(multimesh, false, true);
  1486. }
  1487. multimesh->visible_instances = p_visible;
  1488. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1489. }
  1490. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1491. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1492. ERR_FAIL_COND_V(!multimesh, 0);
  1493. return multimesh->visible_instances;
  1494. }
  1495. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1496. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1497. ERR_FAIL_COND_V(!multimesh, AABB());
  1498. if (multimesh->aabb_dirty) {
  1499. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1500. }
  1501. return multimesh->aabb;
  1502. }
  1503. void MeshStorage::_update_dirty_multimeshes() {
  1504. while (multimesh_dirty_list) {
  1505. MultiMesh *multimesh = multimesh_dirty_list;
  1506. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1507. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1508. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1509. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1510. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1511. if (total_dirty_regions != 0) {
  1512. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1513. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1514. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1515. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1516. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1517. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1518. } else {
  1519. //not that many regions? update them all
  1520. for (uint32_t i = 0; i < visible_region_count; i++) {
  1521. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1522. uint32_t offset = i * region_size;
  1523. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1524. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1525. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1526. }
  1527. }
  1528. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL);
  1529. }
  1530. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1531. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1532. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1533. multimesh->data_cache_dirty_region_count = 0;
  1534. }
  1535. if (multimesh->aabb_dirty) {
  1536. //aabb is dirty..
  1537. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1538. multimesh->aabb_dirty = false;
  1539. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1540. }
  1541. }
  1542. multimesh_dirty_list = multimesh->dirty_list;
  1543. multimesh->dirty_list = nullptr;
  1544. multimesh->dirty = false;
  1545. }
  1546. multimesh_dirty_list = nullptr;
  1547. }
  1548. /* SKELETON API */
  1549. RID MeshStorage::skeleton_allocate() {
  1550. return skeleton_owner.allocate_rid();
  1551. }
  1552. void MeshStorage::skeleton_initialize(RID p_rid) {
  1553. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1554. }
  1555. void MeshStorage::skeleton_free(RID p_rid) {
  1556. _update_dirty_skeletons();
  1557. skeleton_allocate_data(p_rid, 0);
  1558. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1559. skeleton->dependency.deleted_notify(p_rid);
  1560. skeleton_owner.free(p_rid);
  1561. }
  1562. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1563. if (!skeleton->dirty) {
  1564. skeleton->dirty = true;
  1565. skeleton->dirty_list = skeleton_dirty_list;
  1566. skeleton_dirty_list = skeleton;
  1567. }
  1568. }
  1569. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1570. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1571. ERR_FAIL_COND(!skeleton);
  1572. ERR_FAIL_COND(p_bones < 0);
  1573. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1574. return;
  1575. }
  1576. skeleton->size = p_bones;
  1577. skeleton->use_2d = p_2d_skeleton;
  1578. skeleton->uniform_set_3d = RID();
  1579. if (skeleton->buffer.is_valid()) {
  1580. RD::get_singleton()->free(skeleton->buffer);
  1581. skeleton->buffer = RID();
  1582. skeleton->data.clear();
  1583. skeleton->uniform_set_mi = RID();
  1584. }
  1585. if (skeleton->size) {
  1586. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1587. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1588. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1589. _skeleton_make_dirty(skeleton);
  1590. {
  1591. Vector<RD::Uniform> uniforms;
  1592. {
  1593. RD::Uniform u;
  1594. u.binding = 0;
  1595. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1596. u.append_id(skeleton->buffer);
  1597. uniforms.push_back(u);
  1598. }
  1599. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1600. }
  1601. }
  1602. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1603. }
  1604. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1605. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1606. ERR_FAIL_COND_V(!skeleton, 0);
  1607. return skeleton->size;
  1608. }
  1609. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1610. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1611. ERR_FAIL_COND(!skeleton);
  1612. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1613. ERR_FAIL_COND(skeleton->use_2d);
  1614. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1615. dataptr[0] = p_transform.basis.rows[0][0];
  1616. dataptr[1] = p_transform.basis.rows[0][1];
  1617. dataptr[2] = p_transform.basis.rows[0][2];
  1618. dataptr[3] = p_transform.origin.x;
  1619. dataptr[4] = p_transform.basis.rows[1][0];
  1620. dataptr[5] = p_transform.basis.rows[1][1];
  1621. dataptr[6] = p_transform.basis.rows[1][2];
  1622. dataptr[7] = p_transform.origin.y;
  1623. dataptr[8] = p_transform.basis.rows[2][0];
  1624. dataptr[9] = p_transform.basis.rows[2][1];
  1625. dataptr[10] = p_transform.basis.rows[2][2];
  1626. dataptr[11] = p_transform.origin.z;
  1627. _skeleton_make_dirty(skeleton);
  1628. }
  1629. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1630. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1631. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1632. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1633. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1634. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1635. Transform3D t;
  1636. t.basis.rows[0][0] = dataptr[0];
  1637. t.basis.rows[0][1] = dataptr[1];
  1638. t.basis.rows[0][2] = dataptr[2];
  1639. t.origin.x = dataptr[3];
  1640. t.basis.rows[1][0] = dataptr[4];
  1641. t.basis.rows[1][1] = dataptr[5];
  1642. t.basis.rows[1][2] = dataptr[6];
  1643. t.origin.y = dataptr[7];
  1644. t.basis.rows[2][0] = dataptr[8];
  1645. t.basis.rows[2][1] = dataptr[9];
  1646. t.basis.rows[2][2] = dataptr[10];
  1647. t.origin.z = dataptr[11];
  1648. return t;
  1649. }
  1650. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1651. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1652. ERR_FAIL_COND(!skeleton);
  1653. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1654. ERR_FAIL_COND(!skeleton->use_2d);
  1655. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1656. dataptr[0] = p_transform.columns[0][0];
  1657. dataptr[1] = p_transform.columns[1][0];
  1658. dataptr[2] = 0;
  1659. dataptr[3] = p_transform.columns[2][0];
  1660. dataptr[4] = p_transform.columns[0][1];
  1661. dataptr[5] = p_transform.columns[1][1];
  1662. dataptr[6] = 0;
  1663. dataptr[7] = p_transform.columns[2][1];
  1664. _skeleton_make_dirty(skeleton);
  1665. }
  1666. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1667. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1668. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1669. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1670. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1671. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1672. Transform2D t;
  1673. t.columns[0][0] = dataptr[0];
  1674. t.columns[1][0] = dataptr[1];
  1675. t.columns[2][0] = dataptr[3];
  1676. t.columns[0][1] = dataptr[4];
  1677. t.columns[1][1] = dataptr[5];
  1678. t.columns[2][1] = dataptr[7];
  1679. return t;
  1680. }
  1681. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1682. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1683. ERR_FAIL_NULL(skeleton);
  1684. ERR_FAIL_COND(!skeleton->use_2d);
  1685. skeleton->base_transform_2d = p_base_transform;
  1686. }
  1687. void MeshStorage::_update_dirty_skeletons() {
  1688. while (skeleton_dirty_list) {
  1689. Skeleton *skeleton = skeleton_dirty_list;
  1690. if (skeleton->size) {
  1691. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1692. }
  1693. skeleton_dirty_list = skeleton->dirty_list;
  1694. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1695. skeleton->version++;
  1696. skeleton->dirty = false;
  1697. skeleton->dirty_list = nullptr;
  1698. }
  1699. skeleton_dirty_list = nullptr;
  1700. }
  1701. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1702. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1703. ERR_FAIL_COND(!skeleton);
  1704. p_instance->update_dependency(&skeleton->dependency);
  1705. }