1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378 |
- /*************************************************************************/
- /* geometry.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
- /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "geometry.h"
- #include "core/print_string.h"
- #include "thirdparty/misc/clipper.hpp"
- #include "thirdparty/misc/triangulator.h"
- #define STB_RECT_PACK_IMPLEMENTATION
- #include "thirdparty/misc/stb_rect_pack.h"
- #define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON.
- // This implementation is very inefficient, commenting unless bugs happen. See the other one.
- /*
- bool Geometry::is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
- Vector<int> indices = Geometry::triangulate_polygon(p_polygon);
- for (int j = 0; j + 3 <= indices.size(); j += 3) {
- int i1 = indices[j], i2 = indices[j + 1], i3 = indices[j + 2];
- if (Geometry::is_point_in_triangle(p_point, p_polygon[i1], p_polygon[i2], p_polygon[i3]))
- return true;
- }
- return false;
- }
- */
- void Geometry::MeshData::optimize_vertices() {
- Map<int, int> vtx_remap;
- for (int i = 0; i < faces.size(); i++) {
- for (int j = 0; j < faces[i].indices.size(); j++) {
- int idx = faces[i].indices[j];
- if (!vtx_remap.has(idx)) {
- int ni = vtx_remap.size();
- vtx_remap[idx] = ni;
- }
- faces.write[i].indices.write[j] = vtx_remap[idx];
- }
- }
- for (int i = 0; i < edges.size(); i++) {
- int a = edges[i].a;
- int b = edges[i].b;
- if (!vtx_remap.has(a)) {
- int ni = vtx_remap.size();
- vtx_remap[a] = ni;
- }
- if (!vtx_remap.has(b)) {
- int ni = vtx_remap.size();
- vtx_remap[b] = ni;
- }
- edges.write[i].a = vtx_remap[a];
- edges.write[i].b = vtx_remap[b];
- }
- Vector<Vector3> new_vertices;
- new_vertices.resize(vtx_remap.size());
- for (int i = 0; i < vertices.size(); i++) {
- if (vtx_remap.has(i)) {
- new_vertices.write[vtx_remap[i]] = vertices[i];
- }
- }
- vertices = new_vertices;
- }
- struct _FaceClassify {
- struct _Link {
- int face = -1;
- int edge = -1;
- void clear() {
- face = -1;
- edge = -1;
- }
- _Link() {}
- };
- bool valid = false;
- int group = -1;
- _Link links[3];
- Face3 face;
- _FaceClassify() {}
- };
- static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
- // Connect faces, error will occur if an edge is shared between more than 2 faces.
- // Clear connections.
- bool error = false;
- for (int i = 0; i < len; i++) {
- for (int j = 0; j < 3; j++) {
- p_faces[i].links[j].clear();
- }
- }
- for (int i = 0; i < len; i++) {
- if (p_faces[i].group != p_group) {
- continue;
- }
- for (int j = i + 1; j < len; j++) {
- if (p_faces[j].group != p_group) {
- continue;
- }
- for (int k = 0; k < 3; k++) {
- Vector3 vi1 = p_faces[i].face.vertex[k];
- Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3];
- for (int l = 0; l < 3; l++) {
- Vector3 vj2 = p_faces[j].face.vertex[l];
- Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3];
- if (vi1.distance_to(vj1) < 0.00001 &&
- vi2.distance_to(vj2) < 0.00001) {
- if (p_faces[i].links[k].face != -1) {
- ERR_PRINT("already linked\n");
- error = true;
- break;
- }
- if (p_faces[j].links[l].face != -1) {
- ERR_PRINT("already linked\n");
- error = true;
- break;
- }
- p_faces[i].links[k].face = j;
- p_faces[i].links[k].edge = l;
- p_faces[j].links[l].face = i;
- p_faces[j].links[l].edge = k;
- }
- }
- if (error) {
- break;
- }
- }
- if (error) {
- break;
- }
- }
- if (error) {
- break;
- }
- }
- for (int i = 0; i < len; i++) {
- p_faces[i].valid = true;
- for (int j = 0; j < 3; j++) {
- if (p_faces[i].links[j].face == -1) {
- p_faces[i].valid = false;
- }
- }
- }
- return error;
- }
- static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) {
- if (p_faces[p_index].group >= 0) {
- return false;
- }
- p_faces[p_index].group = p_group;
- for (int i = 0; i < 3; i++) {
- ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true);
- _group_face(p_faces, len, p_faces[p_index].links[i].face, p_group);
- }
- return true;
- }
- Vector<Vector<Face3>> Geometry::separate_objects(Vector<Face3> p_array) {
- Vector<Vector<Face3>> objects;
- int len = p_array.size();
- const Face3 *arrayptr = p_array.ptr();
- Vector<_FaceClassify> fc;
- fc.resize(len);
- _FaceClassify *_fcptr = fc.ptrw();
- for (int i = 0; i < len; i++) {
- _fcptr[i].face = arrayptr[i];
- }
- bool error = _connect_faces(_fcptr, len, -1);
- ERR_FAIL_COND_V_MSG(error, Vector<Vector<Face3>>(), "Invalid geometry.");
- // Group connected faces in separate objects.
- int group = 0;
- for (int i = 0; i < len; i++) {
- if (!_fcptr[i].valid) {
- continue;
- }
- if (_group_face(_fcptr, len, i, group)) {
- group++;
- }
- }
- // Group connected faces in separate objects.
- for (int i = 0; i < len; i++) {
- _fcptr[i].face = arrayptr[i];
- }
- if (group >= 0) {
- objects.resize(group);
- Vector<Face3> *group_faces = objects.ptrw();
- for (int i = 0; i < len; i++) {
- if (!_fcptr[i].valid) {
- continue;
- }
- if (_fcptr[i].group >= 0 && _fcptr[i].group < group) {
- group_faces[_fcptr[i].group].push_back(_fcptr[i].face);
- }
- }
- }
- return objects;
- }
- /*** GEOMETRY WRAPPER ***/
- enum _CellFlags {
- _CELL_SOLID = 1,
- _CELL_EXTERIOR = 2,
- _CELL_STEP_MASK = 0x1C,
- _CELL_STEP_NONE = 0 << 2,
- _CELL_STEP_Y_POS = 1 << 2,
- _CELL_STEP_Y_NEG = 2 << 2,
- _CELL_STEP_X_POS = 3 << 2,
- _CELL_STEP_X_NEG = 4 << 2,
- _CELL_STEP_Z_POS = 5 << 2,
- _CELL_STEP_Z_NEG = 6 << 2,
- _CELL_STEP_DONE = 7 << 2,
- _CELL_PREV_MASK = 0xE0,
- _CELL_PREV_NONE = 0 << 5,
- _CELL_PREV_Y_POS = 1 << 5,
- _CELL_PREV_Y_NEG = 2 << 5,
- _CELL_PREV_X_POS = 3 << 5,
- _CELL_PREV_X_NEG = 4 << 5,
- _CELL_PREV_Z_POS = 5 << 5,
- _CELL_PREV_Z_NEG = 6 << 5,
- _CELL_PREV_FIRST = 7 << 5,
- };
- static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
- AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
- aabb.position = aabb.position * voxelsize;
- aabb.size = aabb.size * voxelsize;
- if (!p_face.intersects_aabb(aabb)) {
- return;
- }
- if (len_x == 1 && len_y == 1 && len_z == 1) {
- p_cell_status[x][y][z] = _CELL_SOLID;
- return;
- }
- int div_x = len_x > 1 ? 2 : 1;
- int div_y = len_y > 1 ? 2 : 1;
- int div_z = len_z > 1 ? 2 : 1;
- #define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
- if (m_div == 1) { \
- m_new_v = m_v; \
- m_new_len_v = 1; \
- } else if (m_i == 0) { \
- m_new_v = m_v; \
- m_new_len_v = m_len_v / 2; \
- } else { \
- m_new_v = m_v + m_len_v / 2; \
- m_new_len_v = m_len_v - m_len_v / 2; \
- }
- int new_x;
- int new_len_x;
- int new_y;
- int new_len_y;
- int new_z;
- int new_len_z;
- for (int i = 0; i < div_x; i++) {
- _SPLIT(i, div_x, x, len_x, new_x, new_len_x);
- for (int j = 0; j < div_y; j++) {
- _SPLIT(j, div_y, y, len_y, new_y, new_len_y);
- for (int k = 0; k < div_z; k++) {
- _SPLIT(k, div_z, z, len_z, new_z, new_len_z);
- _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
- }
- }
- }
- }
- static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
- if (p_cell_status[x][y][z] & 3) {
- return; // Nothing to do, already used and/or visited.
- }
- p_cell_status[x][y][z] = _CELL_PREV_FIRST;
- while (true) {
- uint8_t &c = p_cell_status[x][y][z];
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
- // Haven't been in here, mark as outside.
- p_cell_status[x][y][z] |= _CELL_EXTERIOR;
- }
- if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
- // If not done, increase step.
- c += 1 << 2;
- }
- if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
- // Go back.
- switch (c & _CELL_PREV_MASK) {
- case _CELL_PREV_FIRST: {
- return;
- } break;
- case _CELL_PREV_Y_POS: {
- y++;
- ERR_FAIL_COND(y >= len_y);
- } break;
- case _CELL_PREV_Y_NEG: {
- y--;
- ERR_FAIL_COND(y < 0);
- } break;
- case _CELL_PREV_X_POS: {
- x++;
- ERR_FAIL_COND(x >= len_x);
- } break;
- case _CELL_PREV_X_NEG: {
- x--;
- ERR_FAIL_COND(x < 0);
- } break;
- case _CELL_PREV_Z_POS: {
- z++;
- ERR_FAIL_COND(z >= len_z);
- } break;
- case _CELL_PREV_Z_NEG: {
- z--;
- ERR_FAIL_COND(z < 0);
- } break;
- default: {
- ERR_FAIL();
- }
- }
- continue;
- }
- int next_x = x, next_y = y, next_z = z;
- uint8_t prev = 0;
- switch (c & _CELL_STEP_MASK) {
- case _CELL_STEP_Y_POS: {
- next_y++;
- prev = _CELL_PREV_Y_NEG;
- } break;
- case _CELL_STEP_Y_NEG: {
- next_y--;
- prev = _CELL_PREV_Y_POS;
- } break;
- case _CELL_STEP_X_POS: {
- next_x++;
- prev = _CELL_PREV_X_NEG;
- } break;
- case _CELL_STEP_X_NEG: {
- next_x--;
- prev = _CELL_PREV_X_POS;
- } break;
- case _CELL_STEP_Z_POS: {
- next_z++;
- prev = _CELL_PREV_Z_NEG;
- } break;
- case _CELL_STEP_Z_NEG: {
- next_z--;
- prev = _CELL_PREV_Z_POS;
- } break;
- default:
- ERR_FAIL();
- }
- if (next_x < 0 || next_x >= len_x) {
- continue;
- }
- if (next_y < 0 || next_y >= len_y) {
- continue;
- }
- if (next_z < 0 || next_z >= len_z) {
- continue;
- }
- if (p_cell_status[next_x][next_y][next_z] & 3) {
- continue;
- }
- x = next_x;
- y = next_y;
- z = next_z;
- p_cell_status[x][y][z] |= prev;
- }
- }
- static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) {
- ERR_FAIL_INDEX(x, len_x);
- ERR_FAIL_INDEX(y, len_y);
- ERR_FAIL_INDEX(z, len_z);
- if (p_cell_status[x][y][z] & _CELL_EXTERIOR) {
- return;
- }
- #define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1)
- static const uint8_t indices[6][4] = {
- { 7, 6, 4, 5 },
- { 7, 3, 2, 6 },
- { 7, 5, 1, 3 },
- { 0, 2, 3, 1 },
- { 0, 1, 5, 4 },
- { 0, 4, 6, 2 },
- };
- for (int i = 0; i < 6; i++) {
- Vector3 face_points[4];
- int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
- bool plot = false;
- if (disp_x < 0 || disp_x >= len_x) {
- plot = true;
- }
- if (disp_y < 0 || disp_y >= len_y) {
- plot = true;
- }
- if (disp_z < 0 || disp_z >= len_z) {
- plot = true;
- }
- if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) {
- plot = true;
- }
- if (!plot) {
- continue;
- }
- for (int j = 0; j < 4; j++) {
- face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
- }
- p_faces.push_back(
- Face3(
- face_points[0],
- face_points[1],
- face_points[2]));
- p_faces.push_back(
- Face3(
- face_points[2],
- face_points[3],
- face_points[0]));
- }
- }
- Vector<Face3> Geometry::wrap_geometry(Vector<Face3> p_array, real_t *p_error) {
- #define _MIN_SIZE 1.0
- #define _MAX_LENGTH 20
- int face_count = p_array.size();
- const Face3 *faces = p_array.ptr();
- AABB global_aabb;
- for (int i = 0; i < face_count; i++) {
- if (i == 0) {
- global_aabb = faces[i].get_aabb();
- } else {
- global_aabb.merge_with(faces[i].get_aabb());
- }
- }
- global_aabb.grow_by(0.01); // Avoid numerical error.
- // Determine amount of cells in grid axis.
- int div_x, div_y, div_z;
- if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH) {
- div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
- } else {
- div_x = _MAX_LENGTH;
- }
- if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH) {
- div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
- } else {
- div_y = _MAX_LENGTH;
- }
- if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH) {
- div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
- } else {
- div_z = _MAX_LENGTH;
- }
- Vector3 voxelsize = global_aabb.size;
- voxelsize.x /= div_x;
- voxelsize.y /= div_y;
- voxelsize.z /= div_z;
- // Create and initialize cells to zero.
- uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
- for (int i = 0; i < div_x; i++) {
- cell_status[i] = memnew_arr(uint8_t *, div_y);
- for (int j = 0; j < div_y; j++) {
- cell_status[i][j] = memnew_arr(uint8_t, div_z);
- for (int k = 0; k < div_z; k++) {
- cell_status[i][j][k] = 0;
- }
- }
- }
- // Plot faces into cells.
- for (int i = 0; i < face_count; i++) {
- Face3 f = faces[i];
- for (int j = 0; j < 3; j++) {
- f.vertex[j] -= global_aabb.position;
- }
- _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
- }
- // Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
- _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_z; i++) {
- for (int j = 0; j < div_y; j++) {
- _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
- _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
- }
- }
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_z; j++) {
- _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
- _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
- }
- }
- // Build faces for the inside-outside cell divisors.
- Vector<Face3> wrapped_faces;
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- for (int k = 0; k < div_z; k++) {
- _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
- }
- }
- }
- // Transform face vertices to global coords.
- int wrapped_faces_count = wrapped_faces.size();
- Face3 *wrapped_faces_ptr = wrapped_faces.ptrw();
- for (int i = 0; i < wrapped_faces_count; i++) {
- for (int j = 0; j < 3; j++) {
- Vector3 &v = wrapped_faces_ptr[i].vertex[j];
- v = v * voxelsize;
- v += global_aabb.position;
- }
- }
- // clean up grid
- for (int i = 0; i < div_x; i++) {
- for (int j = 0; j < div_y; j++) {
- memdelete_arr(cell_status[i][j]);
- }
- memdelete_arr(cell_status[i]);
- }
- memdelete_arr(cell_status);
- if (p_error) {
- *p_error = voxelsize.length();
- }
- return wrapped_faces;
- }
- Vector<Vector<Vector2>> Geometry::decompose_polygon_in_convex(Vector<Point2> polygon) {
- Vector<Vector<Vector2>> decomp;
- List<TriangulatorPoly> in_poly, out_poly;
- TriangulatorPoly inp;
- inp.Init(polygon.size());
- for (int i = 0; i < polygon.size(); i++) {
- inp.GetPoint(i) = polygon[i];
- }
- inp.SetOrientation(TRIANGULATOR_CCW);
- in_poly.push_back(inp);
- TriangulatorPartition tpart;
- if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
- ERR_PRINT("Convex decomposing failed!");
- return decomp;
- }
- decomp.resize(out_poly.size());
- int idx = 0;
- for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
- TriangulatorPoly &tp = I->get();
- decomp.write[idx].resize(tp.GetNumPoints());
- for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
- decomp.write[idx].write[i] = tp.GetPoint(i);
- }
- idx++;
- }
- return decomp;
- }
- Geometry::MeshData Geometry::build_convex_mesh(const Vector<Plane> &p_planes) {
- MeshData mesh;
- #define SUBPLANE_SIZE 1024.0
- real_t subplane_size = 1024.0; // Should compute this from the actual plane.
- for (int i = 0; i < p_planes.size(); i++) {
- Plane p = p_planes[i];
- Vector3 ref = Vector3(0.0, 1.0, 0.0);
- if (ABS(p.normal.dot(ref)) > 0.95) {
- ref = Vector3(0.0, 0.0, 1.0); // Change axis.
- }
- Vector3 right = p.normal.cross(ref).normalized();
- Vector3 up = p.normal.cross(right).normalized();
- Vector<Vector3> vertices;
- Vector3 center = p.get_any_point();
- // make a quad clockwise
- vertices.push_back(center - up * subplane_size + right * subplane_size);
- vertices.push_back(center - up * subplane_size - right * subplane_size);
- vertices.push_back(center + up * subplane_size - right * subplane_size);
- vertices.push_back(center + up * subplane_size + right * subplane_size);
- for (int j = 0; j < p_planes.size(); j++) {
- if (j == i) {
- continue;
- }
- Vector<Vector3> new_vertices;
- Plane clip = p_planes[j];
- if (clip.normal.dot(p.normal) > 0.95) {
- continue;
- }
- if (vertices.size() < 3) {
- break;
- }
- for (int k = 0; k < vertices.size(); k++) {
- int k_n = (k + 1) % vertices.size();
- Vector3 edge0_A = vertices[k];
- Vector3 edge1_A = vertices[k_n];
- real_t dist0 = clip.distance_to(edge0_A);
- real_t dist1 = clip.distance_to(edge1_A);
- if (dist0 <= 0) { // Behind plane.
- new_vertices.push_back(vertices[k]);
- }
- // Check for different sides and non coplanar.
- if ((dist0 * dist1) < 0) {
- // Calculate intersection.
- Vector3 rel = edge1_A - edge0_A;
- real_t den = clip.normal.dot(rel);
- if (Math::is_zero_approx(den)) {
- continue; // Point too short.
- }
- real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
- Vector3 inters = edge0_A + rel * dist;
- new_vertices.push_back(inters);
- }
- }
- vertices = new_vertices;
- }
- if (vertices.size() < 3) {
- continue;
- }
- // Result is a clockwise face.
- MeshData::Face face;
- // Add face indices.
- for (int j = 0; j < vertices.size(); j++) {
- int idx = -1;
- for (int k = 0; k < mesh.vertices.size(); k++) {
- if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) {
- idx = k;
- break;
- }
- }
- if (idx == -1) {
- idx = mesh.vertices.size();
- mesh.vertices.push_back(vertices[j]);
- }
- face.indices.push_back(idx);
- }
- face.plane = p;
- mesh.faces.push_back(face);
- // Add edge.
- for (int j = 0; j < face.indices.size(); j++) {
- int a = face.indices[j];
- int b = face.indices[(j + 1) % face.indices.size()];
- bool found = false;
- for (int k = 0; k < mesh.edges.size(); k++) {
- if (mesh.edges[k].a == a && mesh.edges[k].b == b) {
- found = true;
- break;
- }
- if (mesh.edges[k].b == a && mesh.edges[k].a == b) {
- found = true;
- break;
- }
- }
- if (found) {
- continue;
- }
- MeshData::Edge edge;
- edge.a = a;
- edge.b = b;
- mesh.edges.push_back(edge);
- }
- }
- return mesh;
- }
- Vector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) {
- Vector<Plane> planes;
- planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x));
- planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x));
- planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y));
- planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y));
- planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z));
- planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z));
- return planes;
- }
- Vector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
- Vector<Plane> planes;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
- planes.push_back(Plane(normal, p_radius));
- }
- Vector3 axis;
- axis[p_axis] = 1.0;
- planes.push_back(Plane(axis, p_height * 0.5));
- planes.push_back(Plane(-axis, p_height * 0.5));
- return planes;
- }
- Vector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
- Vector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- for (int i = 0; i < p_lons; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- // FIXME: This is stupid.
- Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
- Vector3 pos = angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
- }
- }
- return planes;
- }
- Vector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
- Vector<Plane> planes;
- Vector3 axis;
- axis[p_axis] = 1.0;
- Vector3 axis_neg;
- axis_neg[(p_axis + 1) % 3] = 1.0;
- axis_neg[(p_axis + 2) % 3] = 1.0;
- axis_neg[p_axis] = -1.0;
- for (int i = 0; i < p_sides; i++) {
- Vector3 normal;
- normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
- normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
- planes.push_back(Plane(normal, p_radius));
- for (int j = 1; j <= p_lats; j++) {
- Vector3 angle = normal.lerp(axis, j / (real_t)p_lats).normalized();
- Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
- planes.push_back(Plane(pos, angle));
- planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
- }
- }
- return planes;
- }
- struct _AtlasWorkRect {
- Size2i s;
- Point2i p;
- int idx;
- _FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
- };
- struct _AtlasWorkRectResult {
- Vector<_AtlasWorkRect> result;
- int max_w;
- int max_h;
- };
- void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
- // Super simple, almost brute force scanline stacking fitter.
- // It's pretty basic for now, but it tries to make sure that the aspect ratio of the
- // resulting atlas is somehow square. This is necessary because video cards have limits.
- // On texture size (usually 2048 or 4096), so the more square a texture, the more chances.
- // It will work in every hardware.
- // For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
- // 256x8192 atlas (won't work anywhere).
- ERR_FAIL_COND(p_rects.size() == 0);
- Vector<_AtlasWorkRect> wrects;
- wrects.resize(p_rects.size());
- for (int i = 0; i < p_rects.size(); i++) {
- wrects.write[i].s = p_rects[i];
- wrects.write[i].idx = i;
- }
- wrects.sort();
- int widest = wrects[0].s.width;
- Vector<_AtlasWorkRectResult> results;
- for (int i = 0; i <= 12; i++) {
- int w = 1 << i;
- int max_h = 0;
- int max_w = 0;
- if (w < widest) {
- continue;
- }
- Vector<int> hmax;
- hmax.resize(w);
- for (int j = 0; j < w; j++) {
- hmax.write[j] = 0;
- }
- // Place them.
- int ofs = 0;
- int limit_h = 0;
- for (int j = 0; j < wrects.size(); j++) {
- if (ofs + wrects[j].s.width > w) {
- ofs = 0;
- }
- int from_y = 0;
- for (int k = 0; k < wrects[j].s.width; k++) {
- if (hmax[ofs + k] > from_y) {
- from_y = hmax[ofs + k];
- }
- }
- wrects.write[j].p.x = ofs;
- wrects.write[j].p.y = from_y;
- int end_h = from_y + wrects[j].s.height;
- int end_w = ofs + wrects[j].s.width;
- if (ofs == 0) {
- limit_h = end_h;
- }
- for (int k = 0; k < wrects[j].s.width; k++) {
- hmax.write[ofs + k] = end_h;
- }
- if (end_h > max_h) {
- max_h = end_h;
- }
- if (end_w > max_w) {
- max_w = end_w;
- }
- if (ofs == 0 || end_h > limit_h) { // While h limit not reached, keep stacking.
- ofs += wrects[j].s.width;
- }
- }
- _AtlasWorkRectResult result;
- result.result = wrects;
- result.max_h = max_h;
- result.max_w = max_w;
- results.push_back(result);
- }
- // Find the result with the best aspect ratio.
- int best = -1;
- real_t best_aspect = 1e20;
- for (int i = 0; i < results.size(); i++) {
- real_t h = next_power_of_2(results[i].max_h);
- real_t w = next_power_of_2(results[i].max_w);
- real_t aspect = h > w ? h / w : w / h;
- if (aspect < best_aspect) {
- best = i;
- best_aspect = aspect;
- }
- }
- r_result.resize(p_rects.size());
- for (int i = 0; i < p_rects.size(); i++) {
- r_result.write[results[best].result[i].idx] = results[best].result[i].p;
- }
- r_size = Size2(results[best].max_w, results[best].max_h);
- }
- Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
- using namespace ClipperLib;
- ClipType op = ctUnion;
- switch (p_op) {
- case OPERATION_UNION:
- op = ctUnion;
- break;
- case OPERATION_DIFFERENCE:
- op = ctDifference;
- break;
- case OPERATION_INTERSECTION:
- op = ctIntersection;
- break;
- case OPERATION_XOR:
- op = ctXor;
- break;
- }
- Path path_a, path_b;
- // Need to scale points (Clipper's requirement for robust computation).
- for (int i = 0; i != p_polypath_a.size(); ++i) {
- path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
- }
- for (int i = 0; i != p_polypath_b.size(); ++i) {
- path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
- }
- Clipper clp;
- clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
- clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip.
- Paths paths;
- if (is_a_open) {
- PolyTree tree; // Needed to populate polylines.
- clp.Execute(op, tree);
- OpenPathsFromPolyTree(tree, paths);
- } else {
- clp.Execute(op, paths); // Works on closed polygons only.
- }
- // Have to scale points down now.
- Vector<Vector<Point2>> polypaths;
- for (Paths::size_type i = 0; i < paths.size(); ++i) {
- Vector<Vector2> polypath;
- const Path &scaled_path = paths[i];
- for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
- polypath.push_back(Point2(
- static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
- static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
- }
- polypaths.push_back(polypath);
- }
- return polypaths;
- }
- Vector<Vector<Point2>> Geometry::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
- using namespace ClipperLib;
- JoinType jt = jtSquare;
- switch (p_join_type) {
- case JOIN_SQUARE:
- jt = jtSquare;
- break;
- case JOIN_ROUND:
- jt = jtRound;
- break;
- case JOIN_MITER:
- jt = jtMiter;
- break;
- }
- EndType et = etClosedPolygon;
- switch (p_end_type) {
- case END_POLYGON:
- et = etClosedPolygon;
- break;
- case END_JOINED:
- et = etClosedLine;
- break;
- case END_BUTT:
- et = etOpenButt;
- break;
- case END_SQUARE:
- et = etOpenSquare;
- break;
- case END_ROUND:
- et = etOpenRound;
- break;
- }
- ClipperOffset co(2.0, 0.25 * SCALE_FACTOR); // Defaults from ClipperOffset.
- Path path;
- // Need to scale points (Clipper's requirement for robust computation).
- for (int i = 0; i != p_polypath.size(); ++i) {
- path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
- }
- co.AddPath(path, jt, et);
- Paths paths;
- co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
- // Have to scale points down now.
- Vector<Vector<Point2>> polypaths;
- for (Paths::size_type i = 0; i < paths.size(); ++i) {
- Vector<Vector2> polypath;
- const Path &scaled_path = paths[i];
- for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
- polypath.push_back(Point2(
- static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
- static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
- }
- polypaths.push_back(polypath);
- }
- return polypaths;
- }
- Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
- Vector<Vector3> points;
- // Iterate through every unique combination of any three planes.
- for (int i = p_plane_count - 1; i >= 0; i--) {
- for (int j = i - 1; j >= 0; j--) {
- for (int k = j - 1; k >= 0; k--) {
- // Find the point where these planes all cross over (if they
- // do at all).
- Vector3 convex_shape_point;
- if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
- // See if any *other* plane excludes this point because it's
- // on the wrong side.
- bool excluded = false;
- for (int n = 0; n < p_plane_count; n++) {
- if (n != i && n != j && n != k) {
- real_t dp = p_planes[n].normal.dot(convex_shape_point);
- if (dp - p_planes[n].d > CMP_EPSILON) {
- excluded = true;
- break;
- }
- }
- }
- // Only add the point if it passed all tests.
- if (!excluded) {
- points.push_back(convex_shape_point);
- }
- }
- }
- }
- }
- return points;
- }
- Vector<Point2i> Geometry::pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size) {
- Vector<stbrp_node> nodes;
- nodes.resize(p_atlas_size.width);
- stbrp_context context;
- stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
- Vector<stbrp_rect> rects;
- rects.resize(p_sizes.size());
- for (int i = 0; i < p_sizes.size(); i++) {
- rects.write[i].id = 0;
- rects.write[i].w = p_sizes[i].width;
- rects.write[i].h = p_sizes[i].height;
- rects.write[i].x = 0;
- rects.write[i].y = 0;
- rects.write[i].was_packed = 0;
- }
- int res = stbrp_pack_rects(&context, rects.ptrw(), rects.size());
- if (res == 0) { //pack failed
- return Vector<Point2i>();
- }
- Vector<Point2i> ret;
- ret.resize(p_sizes.size());
- for (int i = 0; i < p_sizes.size(); i++) {
- Point2i r(rects[i].x, rects[i].y);
- ret.write[i] = r;
- }
- return ret;
- }
- Vector<Vector3i> Geometry::partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
- Vector<stbrp_node> nodes;
- nodes.resize(p_atlas_size.width);
- zeromem(nodes.ptrw(), sizeof(stbrp_node) * nodes.size());
- stbrp_context context;
- stbrp_init_target(&context, p_atlas_size.width, p_atlas_size.height, nodes.ptrw(), p_atlas_size.width);
- Vector<stbrp_rect> rects;
- rects.resize(p_sizes.size());
- for (int i = 0; i < p_sizes.size(); i++) {
- rects.write[i].id = i;
- rects.write[i].w = p_sizes[i].width;
- rects.write[i].h = p_sizes[i].height;
- rects.write[i].x = 0;
- rects.write[i].y = 0;
- rects.write[i].was_packed = 0;
- }
- stbrp_pack_rects(&context, rects.ptrw(), rects.size());
- Vector<Vector3i> ret;
- ret.resize(p_sizes.size());
- for (int i = 0; i < p_sizes.size(); i++) {
- ret.write[rects[i].id] = Vector3i(rects[i].x, rects[i].y, rects[i].was_packed != 0 ? 1 : 0);
- }
- return ret;
- }
- #define square(m_s) ((m_s) * (m_s))
- #define INF 1e20
- /* dt of 1d function using squared distance */
- static void edt(float *f, int stride, int n) {
- float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
- int *v = (int *)&(d[n]);
- float *z = (float *)&v[n];
- int k = 0;
- v[0] = 0;
- z[0] = -INF;
- z[1] = +INF;
- for (int q = 1; q <= n - 1; q++) {
- float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- while (s <= z[k]) {
- k--;
- s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- }
- k++;
- v[k] = q;
- z[k] = s;
- z[k + 1] = +INF;
- }
- k = 0;
- for (int q = 0; q <= n - 1; q++) {
- while (z[k + 1] < q) {
- k++;
- }
- d[q] = square(q - v[k]) + f[v[k] * stride];
- }
- for (int i = 0; i < n; i++) {
- f[i * stride] = d[i];
- }
- }
- #undef square
- Vector<uint32_t> Geometry::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) {
- uint32_t float_count = p_size.x * p_size.y * p_size.z;
- ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>());
- float *work_memory = memnew_arr(float, float_count);
- for (uint32_t i = 0; i < float_count; i++) {
- work_memory[i] = INF;
- }
- uint32_t y_mult = p_size.x;
- uint32_t z_mult = y_mult * p_size.y;
- //plot solid cells
- {
- const bool *voxr = p_voxels.ptr();
- for (uint32_t i = 0; i < float_count; i++) {
- bool plot = voxr[i];
- if (p_negative) {
- plot = !plot;
- }
- if (plot) {
- work_memory[i] = 0;
- }
- }
- }
- //process in each direction
- //xy->z
- for (int i = 0; i < p_size.x; i++) {
- for (int j = 0; j < p_size.y; j++) {
- edt(&work_memory[i + j * y_mult], z_mult, p_size.z);
- }
- }
- //xz->y
- for (int i = 0; i < p_size.x; i++) {
- for (int j = 0; j < p_size.z; j++) {
- edt(&work_memory[i + j * z_mult], y_mult, p_size.y);
- }
- }
- //yz->x
- for (int i = 0; i < p_size.y; i++) {
- for (int j = 0; j < p_size.z; j++) {
- edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x);
- }
- }
- Vector<uint32_t> ret;
- ret.resize(float_count);
- {
- uint32_t *w = ret.ptrw();
- for (uint32_t i = 0; i < float_count; i++) {
- w[i] = uint32_t(Math::sqrt(work_memory[i]));
- }
- }
- return ret;
- }
- Vector<int8_t> Geometry::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) {
- ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>());
- Vector<int8_t> sdf8;
- int s = p_positive.size();
- sdf8.resize(s);
- const uint32_t *rpos = p_positive.ptr();
- const uint32_t *rneg = p_negative.ptr();
- int8_t *wsdf = sdf8.ptrw();
- for (int i = 0; i < s; i++) {
- int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]);
- wsdf[i] = CLAMP(diff, -128, 127);
- }
- return sdf8;
- }
|