rasterizer_scene_rd.cpp 153 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174
  1. /*************************************************************************/
  2. /* rasterizer_scene_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_rd.h"
  31. #include "core/os/os.h"
  32. #include "core/project_settings.h"
  33. #include "servers/rendering/rendering_server_raster.h"
  34. uint64_t RasterizerSceneRD::auto_exposure_counter = 2;
  35. void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) {
  36. rd.layers.clear();
  37. rd.radiance_base_cubemap = RID();
  38. if (rd.downsampled_radiance_cubemap.is_valid()) {
  39. RD::get_singleton()->free(rd.downsampled_radiance_cubemap);
  40. }
  41. rd.downsampled_radiance_cubemap = RID();
  42. rd.downsampled_layer.mipmaps.clear();
  43. rd.coefficient_buffer = RID();
  44. }
  45. void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) {
  46. //recreate radiance and all data
  47. int mipmaps = p_mipmaps;
  48. uint32_t w = p_size, h = p_size;
  49. if (p_use_array) {
  50. int layers = p_low_quality ? 8 : roughness_layers;
  51. for (int i = 0; i < layers; i++) {
  52. ReflectionData::Layer layer;
  53. uint32_t mmw = w;
  54. uint32_t mmh = h;
  55. layer.mipmaps.resize(mipmaps);
  56. layer.views.resize(mipmaps);
  57. for (int j = 0; j < mipmaps; j++) {
  58. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  59. mm.size.width = mmw;
  60. mm.size.height = mmh;
  61. for (int k = 0; k < 6; k++) {
  62. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
  63. Vector<RID> fbtex;
  64. fbtex.push_back(mm.views[k]);
  65. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  66. }
  67. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP);
  68. mmw = MAX(1, mmw >> 1);
  69. mmh = MAX(1, mmh >> 1);
  70. }
  71. rd.layers.push_back(layer);
  72. }
  73. } else {
  74. mipmaps = p_low_quality ? 8 : mipmaps;
  75. //regular cubemap, lower quality (aliasing, less memory)
  76. ReflectionData::Layer layer;
  77. uint32_t mmw = w;
  78. uint32_t mmh = h;
  79. layer.mipmaps.resize(mipmaps);
  80. layer.views.resize(mipmaps);
  81. for (int j = 0; j < mipmaps; j++) {
  82. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  83. mm.size.width = mmw;
  84. mm.size.height = mmh;
  85. for (int k = 0; k < 6; k++) {
  86. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
  87. Vector<RID> fbtex;
  88. fbtex.push_back(mm.views[k]);
  89. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  90. }
  91. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP);
  92. mmw = MAX(1, mmw >> 1);
  93. mmh = MAX(1, mmh >> 1);
  94. }
  95. rd.layers.push_back(layer);
  96. }
  97. rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
  98. RD::TextureFormat tf;
  99. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  100. tf.width = 64; // Always 64x64
  101. tf.height = 64;
  102. tf.type = RD::TEXTURE_TYPE_CUBE;
  103. tf.array_layers = 6;
  104. tf.mipmaps = 7;
  105. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  106. rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  107. {
  108. uint32_t mmw = 64;
  109. uint32_t mmh = 64;
  110. rd.downsampled_layer.mipmaps.resize(7);
  111. for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) {
  112. ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j];
  113. mm.size.width = mmw;
  114. mm.size.height = mmh;
  115. mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP);
  116. mmw = MAX(1, mmw >> 1);
  117. mmh = MAX(1, mmh >> 1);
  118. }
  119. }
  120. }
  121. void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) {
  122. storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size);
  123. for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) {
  124. storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size);
  125. }
  126. Vector<RID> views;
  127. if (p_use_arrays) {
  128. for (int i = 1; i < rd.layers.size(); i++) {
  129. views.push_back(rd.layers[i].views[0]);
  130. }
  131. } else {
  132. for (int i = 1; i < rd.layers[0].views.size(); i++) {
  133. views.push_back(rd.layers[0].views[i]);
  134. }
  135. }
  136. storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays);
  137. }
  138. void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) {
  139. if (p_use_arrays) {
  140. //render directly to the layers
  141. storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x);
  142. } else {
  143. storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x);
  144. }
  145. }
  146. void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd) {
  147. if (sky_use_cubemap_array) {
  148. for (int i = 0; i < rd.layers.size(); i++) {
  149. for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) {
  150. for (int k = 0; k < 6; k++) {
  151. RID view = rd.layers[i].mipmaps[j].views[k];
  152. RID texture = rd.layers[i].mipmaps[j + 1].views[k];
  153. Size2i size = rd.layers[i].mipmaps[j + 1].size;
  154. storage->get_effects()->make_mipmap(view, texture, size);
  155. }
  156. }
  157. }
  158. }
  159. }
  160. RID RasterizerSceneRD::sky_create() {
  161. return sky_owner.make_rid(Sky());
  162. }
  163. void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) {
  164. if (!p_sky->dirty) {
  165. p_sky->dirty = true;
  166. p_sky->dirty_list = dirty_sky_list;
  167. dirty_sky_list = p_sky;
  168. }
  169. }
  170. void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  171. Sky *sky = sky_owner.getornull(p_sky);
  172. ERR_FAIL_COND(!sky);
  173. ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
  174. if (sky->radiance_size == p_radiance_size) {
  175. return;
  176. }
  177. sky->radiance_size = p_radiance_size;
  178. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  179. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  180. sky->radiance_size = 256;
  181. }
  182. _sky_invalidate(sky);
  183. if (sky->radiance.is_valid()) {
  184. RD::get_singleton()->free(sky->radiance);
  185. sky->radiance = RID();
  186. }
  187. _clear_reflection_data(sky->reflection);
  188. }
  189. void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  190. Sky *sky = sky_owner.getornull(p_sky);
  191. ERR_FAIL_COND(!sky);
  192. if (sky->mode == p_mode) {
  193. return;
  194. }
  195. sky->mode = p_mode;
  196. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  197. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  198. sky_set_radiance_size(p_sky, 256);
  199. }
  200. _sky_invalidate(sky);
  201. if (sky->radiance.is_valid()) {
  202. RD::get_singleton()->free(sky->radiance);
  203. sky->radiance = RID();
  204. }
  205. _clear_reflection_data(sky->reflection);
  206. }
  207. void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) {
  208. Sky *sky = sky_owner.getornull(p_sky);
  209. ERR_FAIL_COND(!sky);
  210. sky->material = p_material;
  211. }
  212. void RasterizerSceneRD::_update_dirty_skys() {
  213. Sky *sky = dirty_sky_list;
  214. while (sky) {
  215. bool texture_set_dirty = false;
  216. //update sky configuration if texture is missing
  217. if (sky->radiance.is_null()) {
  218. int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
  219. uint32_t w = sky->radiance_size, h = sky->radiance_size;
  220. int layers = roughness_layers;
  221. if (sky->mode == RS::SKY_MODE_REALTIME) {
  222. layers = 8;
  223. if (roughness_layers != 8) {
  224. WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections");
  225. }
  226. }
  227. if (sky_use_cubemap_array) {
  228. //array (higher quality, 6 times more memory)
  229. RD::TextureFormat tf;
  230. tf.array_layers = layers * 6;
  231. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  232. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  233. tf.mipmaps = mipmaps;
  234. tf.width = w;
  235. tf.height = h;
  236. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  237. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  238. _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  239. } else {
  240. //regular cubemap, lower quality (aliasing, less memory)
  241. RD::TextureFormat tf;
  242. tf.array_layers = 6;
  243. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  244. tf.type = RD::TEXTURE_TYPE_CUBE;
  245. tf.mipmaps = MIN(mipmaps, layers);
  246. tf.width = w;
  247. tf.height = h;
  248. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  249. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  250. _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  251. }
  252. texture_set_dirty = true;
  253. }
  254. // Create subpass buffers if they havent been created already
  255. if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  256. RD::TextureFormat tformat;
  257. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  258. tformat.width = sky->screen_size.x / 2;
  259. tformat.height = sky->screen_size.y / 2;
  260. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  261. tformat.type = RD::TEXTURE_TYPE_2D;
  262. sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  263. Vector<RID> texs;
  264. texs.push_back(sky->half_res_pass);
  265. sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  266. texture_set_dirty = true;
  267. }
  268. if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  269. RD::TextureFormat tformat;
  270. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  271. tformat.width = sky->screen_size.x / 4;
  272. tformat.height = sky->screen_size.y / 4;
  273. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  274. tformat.type = RD::TEXTURE_TYPE_2D;
  275. sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  276. Vector<RID> texs;
  277. texs.push_back(sky->quarter_res_pass);
  278. sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  279. texture_set_dirty = true;
  280. }
  281. if (texture_set_dirty) {
  282. for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) {
  283. if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) {
  284. RD::get_singleton()->free(sky->texture_uniform_sets[i]);
  285. sky->texture_uniform_sets[i] = RID();
  286. }
  287. }
  288. }
  289. sky->reflection.dirty = true;
  290. Sky *next = sky->dirty_list;
  291. sky->dirty_list = nullptr;
  292. sky->dirty = false;
  293. sky = next;
  294. }
  295. dirty_sky_list = nullptr;
  296. }
  297. RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const {
  298. Sky *sky = sky_owner.getornull(p_sky);
  299. ERR_FAIL_COND_V(!sky, RID());
  300. return sky->radiance;
  301. }
  302. RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const {
  303. Sky *sky = sky_owner.getornull(p_sky);
  304. ERR_FAIL_COND_V(!sky, RID());
  305. if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) {
  306. sky->uniform_set = RID();
  307. if (sky->radiance.is_valid()) {
  308. Vector<RD::Uniform> uniforms;
  309. {
  310. RD::Uniform u;
  311. u.type = RD::UNIFORM_TYPE_TEXTURE;
  312. u.binding = 0;
  313. u.ids.push_back(sky->radiance);
  314. uniforms.push_back(u);
  315. }
  316. sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
  317. }
  318. }
  319. return sky->uniform_set;
  320. }
  321. RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) {
  322. if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) {
  323. return p_sky->texture_uniform_sets[p_version];
  324. }
  325. Vector<RD::Uniform> uniforms;
  326. {
  327. RD::Uniform u;
  328. u.type = RD::UNIFORM_TYPE_TEXTURE;
  329. u.binding = 0;
  330. if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
  331. u.ids.push_back(p_sky->radiance);
  332. } else {
  333. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  334. }
  335. uniforms.push_back(u);
  336. }
  337. {
  338. RD::Uniform u;
  339. u.type = RD::UNIFORM_TYPE_TEXTURE;
  340. u.binding = 1; // half res
  341. if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
  342. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  343. u.ids.push_back(p_sky->reflection.layers[0].views[1]);
  344. } else {
  345. u.ids.push_back(p_sky->half_res_pass);
  346. }
  347. } else {
  348. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  349. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  350. } else {
  351. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  352. }
  353. }
  354. uniforms.push_back(u);
  355. }
  356. {
  357. RD::Uniform u;
  358. u.type = RD::UNIFORM_TYPE_TEXTURE;
  359. u.binding = 2; // quarter res
  360. if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
  361. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  362. u.ids.push_back(p_sky->reflection.layers[0].views[2]);
  363. } else {
  364. u.ids.push_back(p_sky->quarter_res_pass);
  365. }
  366. } else {
  367. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  368. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  369. } else {
  370. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  371. }
  372. }
  373. uniforms.push_back(u);
  374. }
  375. p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  376. return p_sky->texture_uniform_sets[p_version];
  377. }
  378. RID RasterizerSceneRD::sky_get_material(RID p_sky) const {
  379. Sky *sky = sky_owner.getornull(p_sky);
  380. ERR_FAIL_COND_V(!sky, RID());
  381. return sky->material;
  382. }
  383. void RasterizerSceneRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  384. ERR_FAIL_COND(!is_environment(p_environment));
  385. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  386. ERR_FAIL_COND(!sky);
  387. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  388. SkyMaterialData *material = nullptr;
  389. if (sky_material.is_valid()) {
  390. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  391. if (!material || !material->shader_data->valid) {
  392. material = nullptr;
  393. }
  394. }
  395. if (!material) {
  396. sky_material = sky_shader.default_material;
  397. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  398. }
  399. ERR_FAIL_COND(!material);
  400. SkyShaderData *shader_data = material->shader_data;
  401. ERR_FAIL_COND(!shader_data);
  402. Basis sky_transform = environment_get_sky_orientation(p_environment);
  403. sky_transform.invert();
  404. float multiplier = environment_get_bg_energy(p_environment);
  405. float custom_fov = environment_get_sky_custom_fov(p_environment);
  406. // Camera
  407. CameraMatrix camera;
  408. if (custom_fov) {
  409. float near_plane = p_projection.get_z_near();
  410. float far_plane = p_projection.get_z_far();
  411. float aspect = p_projection.get_aspect();
  412. camera.set_perspective(custom_fov, aspect, near_plane, far_plane);
  413. } else {
  414. camera = p_projection;
  415. }
  416. sky_transform = p_transform.basis * sky_transform;
  417. if (shader_data->uses_quarter_res) {
  418. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES];
  419. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES);
  420. Vector<Color> clear_colors;
  421. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  422. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  423. storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  424. RD::get_singleton()->draw_list_end();
  425. }
  426. if (shader_data->uses_half_res) {
  427. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES];
  428. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES);
  429. Vector<Color> clear_colors;
  430. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  431. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  432. storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  433. RD::get_singleton()->draw_list_end();
  434. }
  435. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND];
  436. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND);
  437. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  438. storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  439. RD::get_singleton()->draw_list_end();
  440. }
  441. void RasterizerSceneRD::_setup_sky(RID p_environment, const Vector3 &p_position, const Size2i p_screen_size) {
  442. ERR_FAIL_COND(!is_environment(p_environment));
  443. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  444. ERR_FAIL_COND(!sky);
  445. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  446. SkyMaterialData *material = nullptr;
  447. if (sky_material.is_valid()) {
  448. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  449. if (!material || !material->shader_data->valid) {
  450. material = nullptr;
  451. }
  452. }
  453. if (!material) {
  454. sky_material = sky_shader.default_material;
  455. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  456. }
  457. ERR_FAIL_COND(!material);
  458. SkyShaderData *shader_data = material->shader_data;
  459. ERR_FAIL_COND(!shader_data);
  460. // Invalidate supbass buffers if screen size changes
  461. if (sky->screen_size != p_screen_size) {
  462. sky->screen_size = p_screen_size;
  463. sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x;
  464. sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y;
  465. if (shader_data->uses_half_res) {
  466. if (sky->half_res_pass.is_valid()) {
  467. RD::get_singleton()->free(sky->half_res_pass);
  468. sky->half_res_pass = RID();
  469. }
  470. _sky_invalidate(sky);
  471. }
  472. if (shader_data->uses_quarter_res) {
  473. if (sky->quarter_res_pass.is_valid()) {
  474. RD::get_singleton()->free(sky->quarter_res_pass);
  475. sky->quarter_res_pass = RID();
  476. }
  477. _sky_invalidate(sky);
  478. }
  479. }
  480. // Create new subpass buffers if necessary
  481. if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) ||
  482. (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) ||
  483. sky->radiance.is_null()) {
  484. _sky_invalidate(sky);
  485. _update_dirty_skys();
  486. }
  487. if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
  488. sky->prev_time = time;
  489. sky->reflection.dirty = true;
  490. RenderingServerRaster::redraw_request();
  491. }
  492. if (material != sky->prev_material) {
  493. sky->prev_material = material;
  494. sky->reflection.dirty = true;
  495. }
  496. if (material->uniform_set_updated) {
  497. material->uniform_set_updated = false;
  498. sky->reflection.dirty = true;
  499. }
  500. if (!p_position.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
  501. sky->prev_position = p_position;
  502. sky->reflection.dirty = true;
  503. }
  504. if (shader_data->uses_light || sky_scene_state.light_uniform_set.is_null()) {
  505. // Check whether the directional_light_buffer changes
  506. bool light_data_dirty = false;
  507. if (sky_scene_state.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
  508. light_data_dirty = true;
  509. for (uint32_t i = sky_scene_state.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
  510. sky_scene_state.directional_lights[i].enabled = false;
  511. }
  512. }
  513. if (!light_data_dirty) {
  514. for (uint32_t i = 0; i < sky_scene_state.directional_light_count; i++) {
  515. if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
  516. sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
  517. sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
  518. sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
  519. sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
  520. sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
  521. sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
  522. sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled) {
  523. light_data_dirty = true;
  524. break;
  525. }
  526. }
  527. }
  528. if (light_data_dirty || sky_scene_state.light_uniform_set.is_null()) {
  529. RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true);
  530. if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) {
  531. RD::get_singleton()->free(sky_scene_state.light_uniform_set);
  532. }
  533. Vector<RD::Uniform> uniforms;
  534. {
  535. RD::Uniform u;
  536. u.binding = 0;
  537. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  538. u.ids.push_back(sky_scene_state.directional_light_buffer);
  539. uniforms.push_back(u);
  540. }
  541. sky_scene_state.light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_LIGHTS);
  542. RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
  543. sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
  544. sky_scene_state.directional_lights = temp;
  545. sky_scene_state.last_frame_directional_light_count = sky_scene_state.directional_light_count;
  546. sky->reflection.dirty = true;
  547. }
  548. }
  549. }
  550. void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  551. ERR_FAIL_COND(!is_environment(p_environment));
  552. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  553. ERR_FAIL_COND(!sky);
  554. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  555. SkyMaterialData *material = nullptr;
  556. if (sky_material.is_valid()) {
  557. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  558. if (!material || !material->shader_data->valid) {
  559. material = nullptr;
  560. }
  561. }
  562. if (!material) {
  563. sky_material = sky_shader.default_material;
  564. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  565. }
  566. ERR_FAIL_COND(!material);
  567. SkyShaderData *shader_data = material->shader_data;
  568. ERR_FAIL_COND(!shader_data);
  569. float multiplier = environment_get_bg_energy(p_environment);
  570. // Update radiance cubemap
  571. if (sky->reflection.dirty) {
  572. static const Vector3 view_normals[6] = {
  573. Vector3(+1, 0, 0),
  574. Vector3(-1, 0, 0),
  575. Vector3(0, +1, 0),
  576. Vector3(0, -1, 0),
  577. Vector3(0, 0, +1),
  578. Vector3(0, 0, -1)
  579. };
  580. static const Vector3 view_up[6] = {
  581. Vector3(0, -1, 0),
  582. Vector3(0, -1, 0),
  583. Vector3(0, 0, +1),
  584. Vector3(0, 0, -1),
  585. Vector3(0, -1, 0),
  586. Vector3(0, -1, 0)
  587. };
  588. CameraMatrix cm;
  589. cm.set_perspective(90, 1, 0.01, 10.0);
  590. CameraMatrix correction;
  591. correction.set_depth_correction(true);
  592. cm = correction * cm;
  593. if (shader_data->uses_quarter_res) {
  594. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
  595. Vector<Color> clear_colors;
  596. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  597. RD::DrawListID cubemap_draw_list;
  598. for (int i = 0; i < 6; i++) {
  599. Transform local_view;
  600. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  601. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES);
  602. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  603. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  604. RD::get_singleton()->draw_list_end();
  605. }
  606. }
  607. if (shader_data->uses_half_res) {
  608. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
  609. Vector<Color> clear_colors;
  610. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  611. RD::DrawListID cubemap_draw_list;
  612. for (int i = 0; i < 6; i++) {
  613. Transform local_view;
  614. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  615. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES);
  616. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  617. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  618. RD::get_singleton()->draw_list_end();
  619. }
  620. }
  621. RD::DrawListID cubemap_draw_list;
  622. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
  623. for (int i = 0; i < 6; i++) {
  624. Transform local_view;
  625. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  626. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP);
  627. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  628. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  629. RD::get_singleton()->draw_list_end();
  630. }
  631. if (sky_use_cubemap_array) {
  632. if (sky->mode == RS::SKY_MODE_QUALITY) {
  633. for (int i = 1; i < sky->reflection.layers.size(); i++) {
  634. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  635. }
  636. } else {
  637. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  638. }
  639. _update_reflection_mipmaps(sky->reflection);
  640. } else {
  641. if (sky->mode == RS::SKY_MODE_QUALITY) {
  642. for (int i = 1; i < sky->reflection.layers[0].mipmaps.size(); i++) {
  643. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  644. }
  645. } else {
  646. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  647. }
  648. }
  649. sky->reflection.dirty = false;
  650. }
  651. }
  652. /* SKY SHADER */
  653. void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) {
  654. //compile
  655. code = p_code;
  656. valid = false;
  657. ubo_size = 0;
  658. uniforms.clear();
  659. if (code == String()) {
  660. return; //just invalid, but no error
  661. }
  662. ShaderCompilerRD::GeneratedCode gen_code;
  663. ShaderCompilerRD::IdentifierActions actions;
  664. uses_time = false;
  665. uses_half_res = false;
  666. uses_quarter_res = false;
  667. uses_position = false;
  668. uses_light = false;
  669. actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
  670. actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
  671. actions.usage_flag_pointers["TIME"] = &uses_time;
  672. actions.usage_flag_pointers["POSITION"] = &uses_position;
  673. actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
  674. actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
  675. actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
  676. actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
  677. actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
  678. actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
  679. actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
  680. actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
  681. actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
  682. actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
  683. actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
  684. actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
  685. actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
  686. actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
  687. actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
  688. actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
  689. actions.uniforms = &uniforms;
  690. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  691. Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
  692. ERR_FAIL_COND(err != OK);
  693. if (version.is_null()) {
  694. version = scene_singleton->sky_shader.shader.version_create();
  695. }
  696. #if 0
  697. print_line("**compiling shader:");
  698. print_line("**defines:\n");
  699. for (int i = 0; i < gen_code.defines.size(); i++) {
  700. print_line(gen_code.defines[i]);
  701. }
  702. print_line("\n**uniforms:\n" + gen_code.uniforms);
  703. // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
  704. // print_line("\n**vertex_code:\n" + gen_code.vertex);
  705. print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
  706. print_line("\n**fragment_code:\n" + gen_code.fragment);
  707. print_line("\n**light_code:\n" + gen_code.light);
  708. #endif
  709. scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
  710. ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version));
  711. ubo_size = gen_code.uniform_total_size;
  712. ubo_offsets = gen_code.uniform_offsets;
  713. texture_uniforms = gen_code.texture_uniforms;
  714. //update pipelines
  715. for (int i = 0; i < SKY_VERSION_MAX; i++) {
  716. RD::PipelineDepthStencilState depth_stencil_state;
  717. depth_stencil_state.enable_depth_test = true;
  718. depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  719. RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i);
  720. pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
  721. }
  722. valid = true;
  723. }
  724. void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
  725. if (!p_texture.is_valid()) {
  726. default_texture_params.erase(p_name);
  727. } else {
  728. default_texture_params[p_name] = p_texture;
  729. }
  730. }
  731. void RasterizerSceneRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
  732. Map<int, StringName> order;
  733. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  734. if (E->get().texture_order >= 0) {
  735. order[E->get().texture_order + 100000] = E->key();
  736. } else {
  737. order[E->get().order] = E->key();
  738. }
  739. }
  740. for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
  741. PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
  742. pi.name = E->get();
  743. p_param_list->push_back(pi);
  744. }
  745. }
  746. bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const {
  747. if (!uniforms.has(p_param)) {
  748. return false;
  749. }
  750. return uniforms[p_param].texture_order >= 0;
  751. }
  752. bool RasterizerSceneRD::SkyShaderData::is_animated() const {
  753. return false;
  754. }
  755. bool RasterizerSceneRD::SkyShaderData::casts_shadows() const {
  756. return false;
  757. }
  758. Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
  759. if (uniforms.has(p_parameter)) {
  760. ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
  761. Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
  762. return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
  763. }
  764. return Variant();
  765. }
  766. RasterizerSceneRD::SkyShaderData::SkyShaderData() {
  767. valid = false;
  768. }
  769. RasterizerSceneRD::SkyShaderData::~SkyShaderData() {
  770. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  771. ERR_FAIL_COND(!scene_singleton);
  772. //pipeline variants will clear themselves if shader is gone
  773. if (version.is_valid()) {
  774. scene_singleton->sky_shader.shader.version_free(version);
  775. }
  776. }
  777. RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() {
  778. SkyShaderData *shader_data = memnew(SkyShaderData);
  779. return shader_data;
  780. }
  781. void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  782. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  783. uniform_set_updated = true;
  784. if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
  785. p_uniform_dirty = true;
  786. if (uniform_buffer.is_valid()) {
  787. RD::get_singleton()->free(uniform_buffer);
  788. uniform_buffer = RID();
  789. }
  790. ubo_data.resize(shader_data->ubo_size);
  791. if (ubo_data.size()) {
  792. uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
  793. memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
  794. }
  795. //clear previous uniform set
  796. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  797. RD::get_singleton()->free(uniform_set);
  798. uniform_set = RID();
  799. }
  800. }
  801. //check whether buffer changed
  802. if (p_uniform_dirty && ubo_data.size()) {
  803. update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
  804. RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
  805. }
  806. uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
  807. if ((uint32_t)texture_cache.size() != tex_uniform_count) {
  808. texture_cache.resize(tex_uniform_count);
  809. p_textures_dirty = true;
  810. //clear previous uniform set
  811. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  812. RD::get_singleton()->free(uniform_set);
  813. uniform_set = RID();
  814. }
  815. }
  816. if (p_textures_dirty && tex_uniform_count) {
  817. update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
  818. }
  819. if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
  820. // This material does not require an uniform set, so don't create it.
  821. return;
  822. }
  823. if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  824. //no reason to update uniform set, only UBO (or nothing) was needed to update
  825. return;
  826. }
  827. Vector<RD::Uniform> uniforms;
  828. {
  829. if (shader_data->ubo_size) {
  830. RD::Uniform u;
  831. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  832. u.binding = 0;
  833. u.ids.push_back(uniform_buffer);
  834. uniforms.push_back(u);
  835. }
  836. const RID *textures = texture_cache.ptrw();
  837. for (uint32_t i = 0; i < tex_uniform_count; i++) {
  838. RD::Uniform u;
  839. u.type = RD::UNIFORM_TYPE_TEXTURE;
  840. u.binding = 1 + i;
  841. u.ids.push_back(textures[i]);
  842. uniforms.push_back(u);
  843. }
  844. }
  845. uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL);
  846. }
  847. RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() {
  848. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  849. RD::get_singleton()->free(uniform_set);
  850. }
  851. if (uniform_buffer.is_valid()) {
  852. RD::get_singleton()->free(uniform_buffer);
  853. }
  854. }
  855. RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) {
  856. SkyMaterialData *material_data = memnew(SkyMaterialData);
  857. material_data->shader_data = p_shader;
  858. material_data->last_frame = false;
  859. //update will happen later anyway so do nothing.
  860. return material_data;
  861. }
  862. RID RasterizerSceneRD::environment_create() {
  863. return environment_owner.make_rid(Environent());
  864. }
  865. void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  866. Environent *env = environment_owner.getornull(p_env);
  867. ERR_FAIL_COND(!env);
  868. env->background = p_bg;
  869. }
  870. void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) {
  871. Environent *env = environment_owner.getornull(p_env);
  872. ERR_FAIL_COND(!env);
  873. env->sky = p_sky;
  874. }
  875. void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  876. Environent *env = environment_owner.getornull(p_env);
  877. ERR_FAIL_COND(!env);
  878. env->sky_custom_fov = p_scale;
  879. }
  880. void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  881. Environent *env = environment_owner.getornull(p_env);
  882. ERR_FAIL_COND(!env);
  883. env->sky_orientation = p_orientation;
  884. }
  885. void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  886. Environent *env = environment_owner.getornull(p_env);
  887. ERR_FAIL_COND(!env);
  888. env->bg_color = p_color;
  889. }
  890. void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) {
  891. Environent *env = environment_owner.getornull(p_env);
  892. ERR_FAIL_COND(!env);
  893. env->bg_energy = p_energy;
  894. }
  895. void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  896. Environent *env = environment_owner.getornull(p_env);
  897. ERR_FAIL_COND(!env);
  898. env->canvas_max_layer = p_max_layer;
  899. }
  900. void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  901. Environent *env = environment_owner.getornull(p_env);
  902. ERR_FAIL_COND(!env);
  903. env->ambient_light = p_color;
  904. env->ambient_source = p_ambient;
  905. env->ambient_light_energy = p_energy;
  906. env->ambient_sky_contribution = p_sky_contribution;
  907. env->reflection_source = p_reflection_source;
  908. env->ao_color = p_ao_color;
  909. }
  910. RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const {
  911. Environent *env = environment_owner.getornull(p_env);
  912. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  913. return env->background;
  914. }
  915. RID RasterizerSceneRD::environment_get_sky(RID p_env) const {
  916. Environent *env = environment_owner.getornull(p_env);
  917. ERR_FAIL_COND_V(!env, RID());
  918. return env->sky;
  919. }
  920. float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const {
  921. Environent *env = environment_owner.getornull(p_env);
  922. ERR_FAIL_COND_V(!env, 0);
  923. return env->sky_custom_fov;
  924. }
  925. Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const {
  926. Environent *env = environment_owner.getornull(p_env);
  927. ERR_FAIL_COND_V(!env, Basis());
  928. return env->sky_orientation;
  929. }
  930. Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const {
  931. Environent *env = environment_owner.getornull(p_env);
  932. ERR_FAIL_COND_V(!env, Color());
  933. return env->bg_color;
  934. }
  935. float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const {
  936. Environent *env = environment_owner.getornull(p_env);
  937. ERR_FAIL_COND_V(!env, 0);
  938. return env->bg_energy;
  939. }
  940. int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const {
  941. Environent *env = environment_owner.getornull(p_env);
  942. ERR_FAIL_COND_V(!env, 0);
  943. return env->canvas_max_layer;
  944. }
  945. Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const {
  946. Environent *env = environment_owner.getornull(p_env);
  947. ERR_FAIL_COND_V(!env, Color());
  948. return env->ambient_light;
  949. }
  950. RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const {
  951. Environent *env = environment_owner.getornull(p_env);
  952. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  953. return env->ambient_source;
  954. }
  955. float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const {
  956. Environent *env = environment_owner.getornull(p_env);
  957. ERR_FAIL_COND_V(!env, 0);
  958. return env->ambient_light_energy;
  959. }
  960. float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const {
  961. Environent *env = environment_owner.getornull(p_env);
  962. ERR_FAIL_COND_V(!env, 0);
  963. return env->ambient_sky_contribution;
  964. }
  965. RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const {
  966. Environent *env = environment_owner.getornull(p_env);
  967. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  968. return env->reflection_source;
  969. }
  970. Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const {
  971. Environent *env = environment_owner.getornull(p_env);
  972. ERR_FAIL_COND_V(!env, Color());
  973. return env->ao_color;
  974. }
  975. void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  976. Environent *env = environment_owner.getornull(p_env);
  977. ERR_FAIL_COND(!env);
  978. env->exposure = p_exposure;
  979. env->tone_mapper = p_tone_mapper;
  980. if (!env->auto_exposure && p_auto_exposure) {
  981. env->auto_exposure_version = ++auto_exposure_counter;
  982. }
  983. env->auto_exposure = p_auto_exposure;
  984. env->white = p_white;
  985. env->min_luminance = p_min_luminance;
  986. env->max_luminance = p_max_luminance;
  987. env->auto_exp_speed = p_auto_exp_speed;
  988. env->auto_exp_scale = p_auto_exp_scale;
  989. }
  990. void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  991. Environent *env = environment_owner.getornull(p_env);
  992. ERR_FAIL_COND(!env);
  993. env->glow_enabled = p_enable;
  994. env->glow_levels = p_level_flags;
  995. env->glow_intensity = p_intensity;
  996. env->glow_strength = p_strength;
  997. env->glow_mix = p_mix;
  998. env->glow_bloom = p_bloom_threshold;
  999. env->glow_blend_mode = p_blend_mode;
  1000. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  1001. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  1002. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  1003. }
  1004. void RasterizerSceneRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  1005. glow_bicubic_upscale = p_enable;
  1006. }
  1007. void RasterizerSceneRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  1008. Environent *env = environment_owner.getornull(p_env);
  1009. ERR_FAIL_COND(!env);
  1010. env->ssr_enabled = p_enable;
  1011. env->ssr_max_steps = p_max_steps;
  1012. env->ssr_fade_in = p_fade_int;
  1013. env->ssr_fade_out = p_fade_out;
  1014. env->ssr_depth_tolerance = p_depth_tolerance;
  1015. }
  1016. void RasterizerSceneRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  1017. ssr_roughness_quality = p_quality;
  1018. }
  1019. RS::EnvironmentSSRRoughnessQuality RasterizerSceneRD::environment_get_ssr_roughness_quality() const {
  1020. return ssr_roughness_quality;
  1021. }
  1022. void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  1023. Environent *env = environment_owner.getornull(p_env);
  1024. ERR_FAIL_COND(!env);
  1025. env->ssao_enabled = p_enable;
  1026. env->ssao_radius = p_radius;
  1027. env->ssao_intensity = p_intensity;
  1028. env->ssao_bias = p_bias;
  1029. env->ssao_direct_light_affect = p_light_affect;
  1030. env->ssao_ao_channel_affect = p_ao_channel_affect;
  1031. env->ssao_blur = p_blur;
  1032. }
  1033. void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) {
  1034. ssao_quality = p_quality;
  1035. ssao_half_size = p_half_size;
  1036. }
  1037. bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const {
  1038. Environent *env = environment_owner.getornull(p_env);
  1039. ERR_FAIL_COND_V(!env, false);
  1040. return env->ssao_enabled;
  1041. }
  1042. float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const {
  1043. Environent *env = environment_owner.getornull(p_env);
  1044. ERR_FAIL_COND_V(!env, false);
  1045. return env->ssao_ao_channel_affect;
  1046. }
  1047. float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const {
  1048. Environent *env = environment_owner.getornull(p_env);
  1049. ERR_FAIL_COND_V(!env, false);
  1050. return env->ssao_direct_light_affect;
  1051. }
  1052. bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const {
  1053. Environent *env = environment_owner.getornull(p_env);
  1054. ERR_FAIL_COND_V(!env, false);
  1055. return env->ssr_enabled;
  1056. }
  1057. bool RasterizerSceneRD::is_environment(RID p_env) const {
  1058. return environment_owner.owns(p_env);
  1059. }
  1060. ////////////////////////////////////////////////////////////
  1061. RID RasterizerSceneRD::reflection_atlas_create() {
  1062. ReflectionAtlas ra;
  1063. ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
  1064. ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
  1065. return reflection_atlas_owner.make_rid(ra);
  1066. }
  1067. void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  1068. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  1069. ERR_FAIL_COND(!ra);
  1070. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  1071. return; //no changes
  1072. }
  1073. ra->size = p_reflection_size;
  1074. ra->count = p_reflection_count;
  1075. if (ra->reflection.is_valid()) {
  1076. //clear and invalidate everything
  1077. RD::get_singleton()->free(ra->reflection);
  1078. ra->reflection = RID();
  1079. RD::get_singleton()->free(ra->depth_buffer);
  1080. ra->depth_buffer = RID();
  1081. for (int i = 0; i < ra->reflections.size(); i++) {
  1082. _clear_reflection_data(ra->reflections.write[i].data);
  1083. if (ra->reflections[i].owner.is_null()) {
  1084. continue;
  1085. }
  1086. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  1087. //rp->atlasindex clear
  1088. }
  1089. ra->reflections.clear();
  1090. }
  1091. }
  1092. ////////////////////////
  1093. RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) {
  1094. ReflectionProbeInstance rpi;
  1095. rpi.probe = p_probe;
  1096. return reflection_probe_instance_owner.make_rid(rpi);
  1097. }
  1098. void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  1099. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1100. ERR_FAIL_COND(!rpi);
  1101. rpi->transform = p_transform;
  1102. rpi->dirty = true;
  1103. }
  1104. void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) {
  1105. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1106. ERR_FAIL_COND(!rpi);
  1107. if (rpi->atlas.is_null()) {
  1108. return; //nothing to release
  1109. }
  1110. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1111. ERR_FAIL_COND(!atlas);
  1112. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  1113. atlas->reflections.write[rpi->atlas_index].owner = RID();
  1114. rpi->atlas_index = -1;
  1115. rpi->atlas = RID();
  1116. }
  1117. bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  1118. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1119. ERR_FAIL_COND_V(!rpi, false);
  1120. if (rpi->rendering) {
  1121. return false;
  1122. }
  1123. if (rpi->dirty) {
  1124. return true;
  1125. }
  1126. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  1127. return true;
  1128. }
  1129. return rpi->atlas_index == -1;
  1130. }
  1131. bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) {
  1132. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1133. ERR_FAIL_COND_V(!rpi, false);
  1134. return rpi->atlas.is_valid();
  1135. }
  1136. bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  1137. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  1138. ERR_FAIL_COND_V(!atlas, false);
  1139. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1140. ERR_FAIL_COND_V(!rpi, false);
  1141. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  1142. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  1143. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  1144. }
  1145. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  1146. // Invalidate reflection atlas, need to regenerate
  1147. RD::get_singleton()->free(atlas->reflection);
  1148. atlas->reflection = RID();
  1149. for (int i = 0; i < atlas->reflections.size(); i++) {
  1150. if (atlas->reflections[i].owner.is_null()) {
  1151. continue;
  1152. }
  1153. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  1154. }
  1155. atlas->reflections.clear();
  1156. }
  1157. if (atlas->reflection.is_null()) {
  1158. int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  1159. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  1160. {
  1161. //reflection atlas was unused, create:
  1162. RD::TextureFormat tf;
  1163. tf.array_layers = 6 * atlas->count;
  1164. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1165. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  1166. tf.mipmaps = mipmaps;
  1167. tf.width = atlas->size;
  1168. tf.height = atlas->size;
  1169. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1170. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1171. }
  1172. {
  1173. RD::TextureFormat tf;
  1174. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1175. tf.width = atlas->size;
  1176. tf.height = atlas->size;
  1177. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1178. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1179. }
  1180. atlas->reflections.resize(atlas->count);
  1181. for (int i = 0; i < atlas->count; i++) {
  1182. _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS);
  1183. for (int j = 0; j < 6; j++) {
  1184. Vector<RID> fb;
  1185. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  1186. fb.push_back(atlas->depth_buffer);
  1187. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  1188. }
  1189. }
  1190. Vector<RID> fb;
  1191. fb.push_back(atlas->depth_buffer);
  1192. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  1193. }
  1194. if (rpi->atlas_index == -1) {
  1195. for (int i = 0; i < atlas->reflections.size(); i++) {
  1196. if (atlas->reflections[i].owner.is_null()) {
  1197. rpi->atlas_index = i;
  1198. break;
  1199. }
  1200. }
  1201. //find the one used last
  1202. if (rpi->atlas_index == -1) {
  1203. //everything is in use, find the one least used via LRU
  1204. uint64_t pass_min = 0;
  1205. for (int i = 0; i < atlas->reflections.size(); i++) {
  1206. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  1207. if (rpi2->last_pass < pass_min) {
  1208. pass_min = rpi2->last_pass;
  1209. rpi->atlas_index = i;
  1210. }
  1211. }
  1212. }
  1213. }
  1214. rpi->atlas = p_reflection_atlas;
  1215. rpi->rendering = true;
  1216. rpi->dirty = false;
  1217. rpi->processing_layer = 1;
  1218. rpi->processing_side = 0;
  1219. return true;
  1220. }
  1221. bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  1222. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1223. ERR_FAIL_COND_V(!rpi, false);
  1224. ERR_FAIL_COND_V(!rpi->rendering, false);
  1225. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  1226. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1227. if (!atlas || rpi->atlas_index == -1) {
  1228. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  1229. rpi->rendering = false;
  1230. return false;
  1231. }
  1232. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  1233. // Using real time reflections, all roughness is done in one step
  1234. _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false);
  1235. rpi->rendering = false;
  1236. rpi->processing_side = 0;
  1237. rpi->processing_layer = 1;
  1238. return true;
  1239. }
  1240. if (rpi->processing_layer > 1) {
  1241. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer);
  1242. rpi->processing_layer++;
  1243. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  1244. rpi->rendering = false;
  1245. rpi->processing_side = 0;
  1246. rpi->processing_layer = 1;
  1247. return true;
  1248. }
  1249. return false;
  1250. } else {
  1251. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer);
  1252. }
  1253. rpi->processing_side++;
  1254. if (rpi->processing_side == 6) {
  1255. rpi->processing_side = 0;
  1256. rpi->processing_layer++;
  1257. }
  1258. return false;
  1259. }
  1260. uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) {
  1261. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1262. ERR_FAIL_COND_V(!rpi, 0);
  1263. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1264. ERR_FAIL_COND_V(!atlas, 0);
  1265. return atlas->size;
  1266. }
  1267. RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  1268. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1269. ERR_FAIL_COND_V(!rpi, RID());
  1270. ERR_FAIL_INDEX_V(p_index, 6, RID());
  1271. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1272. ERR_FAIL_COND_V(!atlas, RID());
  1273. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  1274. }
  1275. RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  1276. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1277. ERR_FAIL_COND_V(!rpi, RID());
  1278. ERR_FAIL_INDEX_V(p_index, 6, RID());
  1279. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1280. ERR_FAIL_COND_V(!atlas, RID());
  1281. return atlas->depth_fb;
  1282. }
  1283. ///////////////////////////////////////////////////////////
  1284. RID RasterizerSceneRD::shadow_atlas_create() {
  1285. return shadow_atlas_owner.make_rid(ShadowAtlas());
  1286. }
  1287. void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
  1288. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1289. ERR_FAIL_COND(!shadow_atlas);
  1290. ERR_FAIL_COND(p_size < 0);
  1291. p_size = next_power_of_2(p_size);
  1292. if (p_size == shadow_atlas->size)
  1293. return;
  1294. // erasing atlas
  1295. if (shadow_atlas->depth.is_valid()) {
  1296. RD::get_singleton()->free(shadow_atlas->depth);
  1297. shadow_atlas->depth = RID();
  1298. }
  1299. for (int i = 0; i < 4; i++) {
  1300. //clear subdivisions
  1301. shadow_atlas->quadrants[i].shadows.resize(0);
  1302. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  1303. }
  1304. //erase shadow atlas reference from lights
  1305. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  1306. LightInstance *li = light_instance_owner.getornull(E->key());
  1307. ERR_CONTINUE(!li);
  1308. li->shadow_atlases.erase(p_atlas);
  1309. }
  1310. //clear owners
  1311. shadow_atlas->shadow_owners.clear();
  1312. shadow_atlas->size = p_size;
  1313. if (shadow_atlas->size) {
  1314. RD::TextureFormat tf;
  1315. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1316. tf.width = shadow_atlas->size;
  1317. tf.height = shadow_atlas->size;
  1318. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1319. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1320. }
  1321. }
  1322. void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  1323. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1324. ERR_FAIL_COND(!shadow_atlas);
  1325. ERR_FAIL_INDEX(p_quadrant, 4);
  1326. ERR_FAIL_INDEX(p_subdivision, 16384);
  1327. uint32_t subdiv = next_power_of_2(p_subdivision);
  1328. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  1329. subdiv <<= 1;
  1330. }
  1331. subdiv = int(Math::sqrt((float)subdiv));
  1332. //obtain the number that will be x*x
  1333. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv)
  1334. return;
  1335. //erase all data from quadrant
  1336. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  1337. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  1338. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  1339. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  1340. ERR_CONTINUE(!li);
  1341. li->shadow_atlases.erase(p_atlas);
  1342. }
  1343. }
  1344. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  1345. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  1346. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  1347. //cache the smallest subdiv (for faster allocation in light update)
  1348. shadow_atlas->smallest_subdiv = 1 << 30;
  1349. for (int i = 0; i < 4; i++) {
  1350. if (shadow_atlas->quadrants[i].subdivision) {
  1351. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  1352. }
  1353. }
  1354. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  1355. shadow_atlas->smallest_subdiv = 0;
  1356. }
  1357. //resort the size orders, simple bublesort for 4 elements..
  1358. int swaps = 0;
  1359. do {
  1360. swaps = 0;
  1361. for (int i = 0; i < 3; i++) {
  1362. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  1363. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  1364. swaps++;
  1365. }
  1366. }
  1367. } while (swaps > 0);
  1368. }
  1369. bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  1370. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  1371. int qidx = p_in_quadrants[i];
  1372. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  1373. return false;
  1374. }
  1375. //look for an empty space
  1376. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  1377. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  1378. int found_free_idx = -1; //found a free one
  1379. int found_used_idx = -1; //found existing one, must steal it
  1380. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  1381. for (int j = 0; j < sc; j++) {
  1382. if (!sarr[j].owner.is_valid()) {
  1383. found_free_idx = j;
  1384. break;
  1385. }
  1386. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  1387. ERR_CONTINUE(!sli);
  1388. if (sli->last_scene_pass != scene_pass) {
  1389. //was just allocated, don't kill it so soon, wait a bit..
  1390. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
  1391. continue;
  1392. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  1393. found_used_idx = j;
  1394. min_pass = sli->last_scene_pass;
  1395. }
  1396. }
  1397. }
  1398. if (found_free_idx == -1 && found_used_idx == -1)
  1399. continue; //nothing found
  1400. if (found_free_idx == -1 && found_used_idx != -1) {
  1401. found_free_idx = found_used_idx;
  1402. }
  1403. r_quadrant = qidx;
  1404. r_shadow = found_free_idx;
  1405. return true;
  1406. }
  1407. return false;
  1408. }
  1409. bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  1410. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1411. ERR_FAIL_COND_V(!shadow_atlas, false);
  1412. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  1413. ERR_FAIL_COND_V(!li, false);
  1414. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  1415. return false;
  1416. }
  1417. uint32_t quad_size = shadow_atlas->size >> 1;
  1418. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  1419. int valid_quadrants[4];
  1420. int valid_quadrant_count = 0;
  1421. int best_size = -1; //best size found
  1422. int best_subdiv = -1; //subdiv for the best size
  1423. //find the quadrants this fits into, and the best possible size it can fit into
  1424. for (int i = 0; i < 4; i++) {
  1425. int q = shadow_atlas->size_order[i];
  1426. int sd = shadow_atlas->quadrants[q].subdivision;
  1427. if (sd == 0)
  1428. continue; //unused
  1429. int max_fit = quad_size / sd;
  1430. if (best_size != -1 && max_fit > best_size)
  1431. break; //too large
  1432. valid_quadrants[valid_quadrant_count++] = q;
  1433. best_subdiv = sd;
  1434. if (max_fit >= desired_fit) {
  1435. best_size = max_fit;
  1436. }
  1437. }
  1438. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  1439. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  1440. //see if it already exists
  1441. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  1442. //it does!
  1443. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  1444. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  1445. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1446. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  1447. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  1448. if (!should_realloc) {
  1449. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  1450. //already existing, see if it should redraw or it's just OK
  1451. return should_redraw;
  1452. }
  1453. int new_quadrant, new_shadow;
  1454. //find a better place
  1455. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  1456. //found a better place!
  1457. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  1458. if (sh->owner.is_valid()) {
  1459. //is taken, but is invalid, erasing it
  1460. shadow_atlas->shadow_owners.erase(sh->owner);
  1461. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  1462. sli->shadow_atlases.erase(p_atlas);
  1463. }
  1464. //erase previous
  1465. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  1466. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  1467. sh->owner = p_light_intance;
  1468. sh->alloc_tick = tick;
  1469. sh->version = p_light_version;
  1470. li->shadow_atlases.insert(p_atlas);
  1471. //make new key
  1472. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  1473. key |= new_shadow;
  1474. //update it in map
  1475. shadow_atlas->shadow_owners[p_light_intance] = key;
  1476. //make it dirty, as it should redraw anyway
  1477. return true;
  1478. }
  1479. //no better place for this shadow found, keep current
  1480. //already existing, see if it should redraw or it's just OK
  1481. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  1482. return should_redraw;
  1483. }
  1484. int new_quadrant, new_shadow;
  1485. //find a better place
  1486. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  1487. //found a better place!
  1488. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  1489. if (sh->owner.is_valid()) {
  1490. //is taken, but is invalid, erasing it
  1491. shadow_atlas->shadow_owners.erase(sh->owner);
  1492. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  1493. sli->shadow_atlases.erase(p_atlas);
  1494. }
  1495. sh->owner = p_light_intance;
  1496. sh->alloc_tick = tick;
  1497. sh->version = p_light_version;
  1498. li->shadow_atlases.insert(p_atlas);
  1499. //make new key
  1500. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  1501. key |= new_shadow;
  1502. //update it in map
  1503. shadow_atlas->shadow_owners[p_light_intance] = key;
  1504. //make it dirty, as it should redraw anyway
  1505. return true;
  1506. }
  1507. //no place to allocate this light, apologies
  1508. return false;
  1509. }
  1510. void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) {
  1511. p_size = nearest_power_of_2_templated(p_size);
  1512. if (directional_shadow.size == p_size) {
  1513. return;
  1514. }
  1515. directional_shadow.size = p_size;
  1516. if (directional_shadow.depth.is_valid()) {
  1517. RD::get_singleton()->free(directional_shadow.depth);
  1518. directional_shadow.depth = RID();
  1519. }
  1520. if (p_size > 0) {
  1521. RD::TextureFormat tf;
  1522. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1523. tf.width = p_size;
  1524. tf.height = p_size;
  1525. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1526. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1527. }
  1528. _base_uniforms_changed();
  1529. }
  1530. void RasterizerSceneRD::set_directional_shadow_count(int p_count) {
  1531. directional_shadow.light_count = p_count;
  1532. directional_shadow.current_light = 0;
  1533. }
  1534. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  1535. int split_h = 1;
  1536. int split_v = 1;
  1537. while (split_h * split_v < p_shadow_count) {
  1538. if (split_h == split_v) {
  1539. split_h <<= 1;
  1540. } else {
  1541. split_v <<= 1;
  1542. }
  1543. }
  1544. Rect2i rect(0, 0, p_size, p_size);
  1545. rect.size.width /= split_h;
  1546. rect.size.height /= split_v;
  1547. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  1548. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  1549. return rect;
  1550. }
  1551. int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) {
  1552. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  1553. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  1554. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  1555. ERR_FAIL_COND_V(!light_instance, 0);
  1556. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  1557. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  1558. break; //none
  1559. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break;
  1560. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break;
  1561. }
  1562. return MAX(r.size.width, r.size.height);
  1563. }
  1564. //////////////////////////////////////////////////
  1565. RID RasterizerSceneRD::camera_effects_create() {
  1566. return camera_effects_owner.make_rid(CameraEffects());
  1567. }
  1568. void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  1569. dof_blur_quality = p_quality;
  1570. dof_blur_use_jitter = p_use_jitter;
  1571. }
  1572. void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  1573. dof_blur_bokeh_shape = p_shape;
  1574. }
  1575. void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  1576. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  1577. ERR_FAIL_COND(!camfx);
  1578. camfx->dof_blur_far_enabled = p_far_enable;
  1579. camfx->dof_blur_far_distance = p_far_distance;
  1580. camfx->dof_blur_far_transition = p_far_transition;
  1581. camfx->dof_blur_near_enabled = p_near_enable;
  1582. camfx->dof_blur_near_distance = p_near_distance;
  1583. camfx->dof_blur_near_transition = p_near_transition;
  1584. camfx->dof_blur_amount = p_amount;
  1585. }
  1586. void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  1587. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  1588. ERR_FAIL_COND(!camfx);
  1589. camfx->override_exposure_enabled = p_enable;
  1590. camfx->override_exposure = p_exposure;
  1591. }
  1592. RID RasterizerSceneRD::light_instance_create(RID p_light) {
  1593. RID li = light_instance_owner.make_rid(LightInstance());
  1594. LightInstance *light_instance = light_instance_owner.getornull(li);
  1595. light_instance->self = li;
  1596. light_instance->light = p_light;
  1597. light_instance->light_type = storage->light_get_type(p_light);
  1598. return li;
  1599. }
  1600. void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  1601. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1602. ERR_FAIL_COND(!light_instance);
  1603. light_instance->transform = p_transform;
  1604. }
  1605. void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  1606. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1607. ERR_FAIL_COND(!light_instance);
  1608. if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) {
  1609. p_pass = 0;
  1610. }
  1611. ERR_FAIL_INDEX(p_pass, 4);
  1612. light_instance->shadow_transform[p_pass].camera = p_projection;
  1613. light_instance->shadow_transform[p_pass].transform = p_transform;
  1614. light_instance->shadow_transform[p_pass].farplane = p_far;
  1615. light_instance->shadow_transform[p_pass].split = p_split;
  1616. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  1617. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  1618. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  1619. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  1620. }
  1621. void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) {
  1622. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1623. ERR_FAIL_COND(!light_instance);
  1624. light_instance->last_scene_pass = scene_pass;
  1625. }
  1626. RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) {
  1627. if (!shadow_cubemaps.has(p_size)) {
  1628. ShadowCubemap sc;
  1629. {
  1630. RD::TextureFormat tf;
  1631. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1632. tf.width = p_size;
  1633. tf.height = p_size;
  1634. tf.type = RD::TEXTURE_TYPE_CUBE;
  1635. tf.array_layers = 6;
  1636. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1637. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1638. }
  1639. for (int i = 0; i < 6; i++) {
  1640. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  1641. Vector<RID> fbtex;
  1642. fbtex.push_back(side_texture);
  1643. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  1644. }
  1645. shadow_cubemaps[p_size] = sc;
  1646. }
  1647. return &shadow_cubemaps[p_size];
  1648. }
  1649. RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) {
  1650. if (!shadow_maps.has(p_size)) {
  1651. ShadowMap sm;
  1652. {
  1653. RD::TextureFormat tf;
  1654. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1655. tf.width = p_size.width;
  1656. tf.height = p_size.height;
  1657. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1658. sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1659. }
  1660. Vector<RID> fbtex;
  1661. fbtex.push_back(sm.depth);
  1662. sm.fb = RD::get_singleton()->framebuffer_create(fbtex);
  1663. shadow_maps[p_size] = sm;
  1664. }
  1665. return &shadow_maps[p_size];
  1666. }
  1667. /////////////////////////////////
  1668. RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) {
  1669. //find a free slot
  1670. int index = -1;
  1671. for (int i = 0; i < gi_probe_slots.size(); i++) {
  1672. if (gi_probe_slots[i] == RID()) {
  1673. index = i;
  1674. break;
  1675. }
  1676. }
  1677. ERR_FAIL_COND_V(index == -1, RID());
  1678. GIProbeInstance gi_probe;
  1679. gi_probe.slot = index;
  1680. gi_probe.probe = p_base;
  1681. RID rid = gi_probe_instance_owner.make_rid(gi_probe);
  1682. gi_probe_slots.write[index] = rid;
  1683. return rid;
  1684. }
  1685. void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  1686. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1687. ERR_FAIL_COND(!gi_probe);
  1688. gi_probe->transform = p_xform;
  1689. }
  1690. bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const {
  1691. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1692. ERR_FAIL_COND_V(!gi_probe, false);
  1693. //return true;
  1694. return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
  1695. }
  1696. void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {
  1697. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1698. ERR_FAIL_COND(!gi_probe);
  1699. uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
  1700. // (RE)CREATE IF NEEDED
  1701. if (gi_probe->last_probe_data_version != data_version) {
  1702. //need to re-create everything
  1703. if (gi_probe->texture.is_valid()) {
  1704. RD::get_singleton()->free(gi_probe->texture);
  1705. if (gi_probe_use_anisotropy) {
  1706. RD::get_singleton()->free(gi_probe->anisotropy_r16[0]);
  1707. RD::get_singleton()->free(gi_probe->anisotropy_r16[1]);
  1708. }
  1709. RD::get_singleton()->free(gi_probe->write_buffer);
  1710. gi_probe->mipmaps.clear();
  1711. }
  1712. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  1713. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  1714. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  1715. }
  1716. gi_probe->dynamic_maps.clear();
  1717. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  1718. if (octree_size != Vector3i()) {
  1719. //can create a 3D texture
  1720. Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
  1721. RD::TextureFormat tf;
  1722. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1723. tf.width = octree_size.x;
  1724. tf.height = octree_size.y;
  1725. tf.depth = octree_size.z;
  1726. tf.type = RD::TEXTURE_TYPE_3D;
  1727. tf.mipmaps = levels.size();
  1728. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  1729. gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1730. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1731. if (gi_probe_use_anisotropy) {
  1732. tf.format = RD::DATA_FORMAT_R16_UINT;
  1733. tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  1734. tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16);
  1735. //need to create R16 first, else driver does not like the storage bit for compute..
  1736. gi_probe->anisotropy_r16[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1737. gi_probe->anisotropy_r16[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1738. RD::TextureView tv;
  1739. tv.format_override = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16;
  1740. gi_probe->anisotropy[0] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[0]);
  1741. gi_probe->anisotropy[1] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[1]);
  1742. RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1743. RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1744. }
  1745. {
  1746. int total_elements = 0;
  1747. for (int i = 0; i < levels.size(); i++) {
  1748. total_elements += levels[i];
  1749. }
  1750. if (gi_probe_use_anisotropy) {
  1751. total_elements *= 6;
  1752. }
  1753. gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  1754. }
  1755. for (int i = 0; i < levels.size(); i++) {
  1756. GIProbeInstance::Mipmap mipmap;
  1757. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
  1758. if (gi_probe_use_anisotropy) {
  1759. RD::TextureView tv;
  1760. tv.format_override = RD::DATA_FORMAT_R16_UINT;
  1761. mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D);
  1762. mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D);
  1763. }
  1764. mipmap.level = levels.size() - i - 1;
  1765. mipmap.cell_offset = 0;
  1766. for (uint32_t j = 0; j < mipmap.level; j++) {
  1767. mipmap.cell_offset += levels[j];
  1768. }
  1769. mipmap.cell_count = levels[mipmap.level];
  1770. Vector<RD::Uniform> uniforms;
  1771. {
  1772. RD::Uniform u;
  1773. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1774. u.binding = 1;
  1775. u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
  1776. uniforms.push_back(u);
  1777. }
  1778. {
  1779. RD::Uniform u;
  1780. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1781. u.binding = 2;
  1782. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  1783. uniforms.push_back(u);
  1784. }
  1785. {
  1786. RD::Uniform u;
  1787. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1788. u.binding = 4;
  1789. u.ids.push_back(gi_probe->write_buffer);
  1790. uniforms.push_back(u);
  1791. }
  1792. {
  1793. RD::Uniform u;
  1794. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1795. u.binding = 9;
  1796. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  1797. uniforms.push_back(u);
  1798. }
  1799. {
  1800. RD::Uniform u;
  1801. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1802. u.binding = 10;
  1803. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1804. uniforms.push_back(u);
  1805. }
  1806. {
  1807. Vector<RD::Uniform> copy_uniforms = uniforms;
  1808. if (i == 0) {
  1809. {
  1810. RD::Uniform u;
  1811. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1812. u.binding = 3;
  1813. u.ids.push_back(gi_probe_lights_uniform);
  1814. copy_uniforms.push_back(u);
  1815. }
  1816. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
  1817. copy_uniforms = uniforms; //restore
  1818. {
  1819. RD::Uniform u;
  1820. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1821. u.binding = 5;
  1822. u.ids.push_back(gi_probe->texture);
  1823. copy_uniforms.push_back(u);
  1824. }
  1825. if (gi_probe_use_anisotropy) {
  1826. {
  1827. RD::Uniform u;
  1828. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1829. u.binding = 7;
  1830. u.ids.push_back(gi_probe->anisotropy[0]);
  1831. copy_uniforms.push_back(u);
  1832. }
  1833. {
  1834. RD::Uniform u;
  1835. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1836. u.binding = 8;
  1837. u.ids.push_back(gi_probe->anisotropy[1]);
  1838. copy_uniforms.push_back(u);
  1839. }
  1840. }
  1841. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  1842. } else {
  1843. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  1844. }
  1845. }
  1846. {
  1847. RD::Uniform u;
  1848. u.type = RD::UNIFORM_TYPE_IMAGE;
  1849. u.binding = 5;
  1850. u.ids.push_back(mipmap.texture);
  1851. uniforms.push_back(u);
  1852. }
  1853. if (gi_probe_use_anisotropy) {
  1854. {
  1855. RD::Uniform u;
  1856. u.type = RD::UNIFORM_TYPE_IMAGE;
  1857. u.binding = 6;
  1858. u.ids.push_back(mipmap.anisotropy[0]);
  1859. uniforms.push_back(u);
  1860. }
  1861. {
  1862. RD::Uniform u;
  1863. u.type = RD::UNIFORM_TYPE_IMAGE;
  1864. u.binding = 7;
  1865. u.ids.push_back(mipmap.anisotropy[1]);
  1866. uniforms.push_back(u);
  1867. }
  1868. }
  1869. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
  1870. gi_probe->mipmaps.push_back(mipmap);
  1871. }
  1872. {
  1873. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  1874. uint32_t oversample = nearest_power_of_2_templated(4);
  1875. int mipmap_index = 0;
  1876. while (mipmap_index < gi_probe->mipmaps.size()) {
  1877. GIProbeInstance::DynamicMap dmap;
  1878. if (oversample > 0) {
  1879. dmap.size = dynamic_map_size * (1 << oversample);
  1880. dmap.mipmap = -1;
  1881. oversample--;
  1882. } else {
  1883. dmap.size = dynamic_map_size >> mipmap_index;
  1884. dmap.mipmap = mipmap_index;
  1885. mipmap_index++;
  1886. }
  1887. RD::TextureFormat dtf;
  1888. dtf.width = dmap.size;
  1889. dtf.height = dmap.size;
  1890. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1891. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1892. if (gi_probe->dynamic_maps.size() == 0) {
  1893. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1894. }
  1895. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1896. if (gi_probe->dynamic_maps.size() == 0) {
  1897. //render depth for first one
  1898. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1899. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  1900. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1901. }
  1902. //just use depth as-is
  1903. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1904. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1905. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1906. if (gi_probe->dynamic_maps.size() == 0) {
  1907. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1908. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1909. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1910. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1911. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1912. Vector<RID> fb;
  1913. fb.push_back(dmap.albedo);
  1914. fb.push_back(dmap.normal);
  1915. fb.push_back(dmap.orm);
  1916. fb.push_back(dmap.texture); //emission
  1917. fb.push_back(dmap.depth);
  1918. fb.push_back(dmap.fb_depth);
  1919. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  1920. {
  1921. Vector<RD::Uniform> uniforms;
  1922. {
  1923. RD::Uniform u;
  1924. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1925. u.binding = 3;
  1926. u.ids.push_back(gi_probe_lights_uniform);
  1927. uniforms.push_back(u);
  1928. }
  1929. {
  1930. RD::Uniform u;
  1931. u.type = RD::UNIFORM_TYPE_IMAGE;
  1932. u.binding = 5;
  1933. u.ids.push_back(dmap.albedo);
  1934. uniforms.push_back(u);
  1935. }
  1936. {
  1937. RD::Uniform u;
  1938. u.type = RD::UNIFORM_TYPE_IMAGE;
  1939. u.binding = 6;
  1940. u.ids.push_back(dmap.normal);
  1941. uniforms.push_back(u);
  1942. }
  1943. {
  1944. RD::Uniform u;
  1945. u.type = RD::UNIFORM_TYPE_IMAGE;
  1946. u.binding = 7;
  1947. u.ids.push_back(dmap.orm);
  1948. uniforms.push_back(u);
  1949. }
  1950. {
  1951. RD::Uniform u;
  1952. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1953. u.binding = 8;
  1954. u.ids.push_back(dmap.fb_depth);
  1955. uniforms.push_back(u);
  1956. }
  1957. {
  1958. RD::Uniform u;
  1959. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1960. u.binding = 9;
  1961. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  1962. uniforms.push_back(u);
  1963. }
  1964. {
  1965. RD::Uniform u;
  1966. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1967. u.binding = 10;
  1968. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1969. uniforms.push_back(u);
  1970. }
  1971. {
  1972. RD::Uniform u;
  1973. u.type = RD::UNIFORM_TYPE_IMAGE;
  1974. u.binding = 11;
  1975. u.ids.push_back(dmap.texture);
  1976. uniforms.push_back(u);
  1977. }
  1978. {
  1979. RD::Uniform u;
  1980. u.type = RD::UNIFORM_TYPE_IMAGE;
  1981. u.binding = 12;
  1982. u.ids.push_back(dmap.depth);
  1983. uniforms.push_back(u);
  1984. }
  1985. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  1986. }
  1987. } else {
  1988. bool plot = dmap.mipmap >= 0;
  1989. bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
  1990. Vector<RD::Uniform> uniforms;
  1991. {
  1992. RD::Uniform u;
  1993. u.type = RD::UNIFORM_TYPE_IMAGE;
  1994. u.binding = 5;
  1995. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
  1996. uniforms.push_back(u);
  1997. }
  1998. {
  1999. RD::Uniform u;
  2000. u.type = RD::UNIFORM_TYPE_IMAGE;
  2001. u.binding = 6;
  2002. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
  2003. uniforms.push_back(u);
  2004. }
  2005. if (write) {
  2006. {
  2007. RD::Uniform u;
  2008. u.type = RD::UNIFORM_TYPE_IMAGE;
  2009. u.binding = 7;
  2010. u.ids.push_back(dmap.texture);
  2011. uniforms.push_back(u);
  2012. }
  2013. {
  2014. RD::Uniform u;
  2015. u.type = RD::UNIFORM_TYPE_IMAGE;
  2016. u.binding = 8;
  2017. u.ids.push_back(dmap.depth);
  2018. uniforms.push_back(u);
  2019. }
  2020. }
  2021. {
  2022. RD::Uniform u;
  2023. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2024. u.binding = 9;
  2025. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  2026. uniforms.push_back(u);
  2027. }
  2028. {
  2029. RD::Uniform u;
  2030. u.type = RD::UNIFORM_TYPE_SAMPLER;
  2031. u.binding = 10;
  2032. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2033. uniforms.push_back(u);
  2034. }
  2035. if (plot) {
  2036. {
  2037. RD::Uniform u;
  2038. u.type = RD::UNIFORM_TYPE_IMAGE;
  2039. u.binding = 11;
  2040. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
  2041. uniforms.push_back(u);
  2042. }
  2043. if (gi_probe_is_anisotropic()) {
  2044. {
  2045. RD::Uniform u;
  2046. u.type = RD::UNIFORM_TYPE_IMAGE;
  2047. u.binding = 12;
  2048. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[0]);
  2049. uniforms.push_back(u);
  2050. }
  2051. {
  2052. RD::Uniform u;
  2053. u.type = RD::UNIFORM_TYPE_IMAGE;
  2054. u.binding = 13;
  2055. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[1]);
  2056. uniforms.push_back(u);
  2057. }
  2058. }
  2059. }
  2060. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0);
  2061. }
  2062. gi_probe->dynamic_maps.push_back(dmap);
  2063. }
  2064. }
  2065. }
  2066. gi_probe->last_probe_data_version = data_version;
  2067. p_update_light_instances = true; //just in case
  2068. _base_uniforms_changed();
  2069. }
  2070. // UDPDATE TIME
  2071. if (gi_probe->has_dynamic_object_data) {
  2072. //if it has dynamic object data, it needs to be cleared
  2073. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2074. if (gi_probe_is_anisotropic()) {
  2075. RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2076. RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2077. }
  2078. }
  2079. uint32_t light_count = 0;
  2080. if (p_update_light_instances || p_dynamic_object_count > 0) {
  2081. light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
  2082. {
  2083. Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  2084. Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
  2085. //update lights
  2086. for (uint32_t i = 0; i < light_count; i++) {
  2087. GIProbeLight &l = gi_probe_lights[i];
  2088. RID light_instance = p_light_instances[i];
  2089. RID light = light_instance_get_base_light(light_instance);
  2090. l.type = storage->light_get_type(light);
  2091. l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2092. l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2093. l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  2094. Color color = storage->light_get_color(light).to_linear();
  2095. l.color[0] = color.r;
  2096. l.color[1] = color.g;
  2097. l.color[2] = color.b;
  2098. l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE));
  2099. l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2100. Transform xform = light_instance_get_base_transform(light_instance);
  2101. Vector3 pos = to_probe_xform.xform(xform.origin);
  2102. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
  2103. l.position[0] = pos.x;
  2104. l.position[1] = pos.y;
  2105. l.position[2] = pos.z;
  2106. l.direction[0] = dir.x;
  2107. l.direction[1] = dir.y;
  2108. l.direction[2] = dir.z;
  2109. l.has_shadow = storage->light_has_shadow(light);
  2110. }
  2111. RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true);
  2112. }
  2113. }
  2114. if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) {
  2115. // PROCESS MIPMAPS
  2116. if (gi_probe->mipmaps.size()) {
  2117. //can update mipmaps
  2118. Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2119. GIProbePushConstant push_constant;
  2120. push_constant.limits[0] = probe_size.x;
  2121. push_constant.limits[1] = probe_size.y;
  2122. push_constant.limits[2] = probe_size.z;
  2123. push_constant.stack_size = gi_probe->mipmaps.size();
  2124. push_constant.emission_scale = 1.0;
  2125. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  2126. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2127. push_constant.light_count = light_count;
  2128. push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe);
  2129. /* print_line("probe update to version " + itos(gi_probe->last_probe_version));
  2130. print_line("propagation " + rtos(push_constant.propagation));
  2131. print_line("dynrange " + rtos(push_constant.dynamic_range));
  2132. */
  2133. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2134. int passes;
  2135. if (p_update_light_instances) {
  2136. passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
  2137. } else {
  2138. passes = 1; //only re-blitting is necessary
  2139. }
  2140. int wg_size = 64;
  2141. int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  2142. for (int pass = 0; pass < passes; pass++) {
  2143. if (p_update_light_instances) {
  2144. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  2145. if (i == 0) {
  2146. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  2147. } else if (i == 1) {
  2148. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
  2149. }
  2150. if (pass == 1 || i > 0) {
  2151. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2152. }
  2153. if (pass == 0 || i > 0) {
  2154. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
  2155. } else {
  2156. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
  2157. }
  2158. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  2159. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  2160. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  2161. while (wg_todo) {
  2162. int wg_count = MIN(wg_todo, wg_limit_x);
  2163. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  2164. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2165. wg_todo -= wg_count;
  2166. push_constant.cell_offset += wg_count * wg_size;
  2167. }
  2168. }
  2169. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2170. }
  2171. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
  2172. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  2173. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
  2174. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  2175. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  2176. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  2177. while (wg_todo) {
  2178. int wg_count = MIN(wg_todo, wg_limit_x);
  2179. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  2180. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2181. wg_todo -= wg_count;
  2182. push_constant.cell_offset += wg_count * wg_size;
  2183. }
  2184. }
  2185. }
  2186. RD::get_singleton()->compute_list_end();
  2187. }
  2188. }
  2189. gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
  2190. if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) {
  2191. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2192. int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2193. Transform oversample_scale;
  2194. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  2195. Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  2196. Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
  2197. Transform to_probe_xform = to_world_xform.affine_inverse();
  2198. AABB probe_aabb(Vector3(), octree_size);
  2199. //this could probably be better parallelized in compute..
  2200. for (int i = 0; i < p_dynamic_object_count; i++) {
  2201. InstanceBase *instance = p_dynamic_objects[i];
  2202. //not used, so clear
  2203. instance->depth_layer = 0;
  2204. instance->depth = 0;
  2205. //transform aabb to giprobe
  2206. AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb);
  2207. //this needs to wrap to grid resolution to avoid jitter
  2208. //also extend margin a bit just in case
  2209. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  2210. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  2211. for (int j = 0; j < 3; j++) {
  2212. if ((end[j] - begin[j]) & 1) {
  2213. end[j]++; //for half extents split, it needs to be even
  2214. }
  2215. begin[j] = MAX(begin[j], 0);
  2216. end[j] = MIN(end[j], octree_size[j] * multiplier);
  2217. }
  2218. //aabb = aabb.intersection(probe_aabb); //intersect
  2219. aabb.position = begin;
  2220. aabb.size = end - begin;
  2221. //print_line("aabb: " + aabb);
  2222. for (int j = 0; j < 6; j++) {
  2223. //if (j != 0 && j != 3) {
  2224. // continue;
  2225. //}
  2226. static const Vector3 render_z[6] = {
  2227. Vector3(1, 0, 0),
  2228. Vector3(0, 1, 0),
  2229. Vector3(0, 0, 1),
  2230. Vector3(-1, 0, 0),
  2231. Vector3(0, -1, 0),
  2232. Vector3(0, 0, -1),
  2233. };
  2234. static const Vector3 render_up[6] = {
  2235. Vector3(0, 1, 0),
  2236. Vector3(0, 0, 1),
  2237. Vector3(0, 1, 0),
  2238. Vector3(0, 1, 0),
  2239. Vector3(0, 0, 1),
  2240. Vector3(0, 1, 0),
  2241. };
  2242. Vector3 render_dir = render_z[j];
  2243. Vector3 up_dir = render_up[j];
  2244. Vector3 center = aabb.position + aabb.size * 0.5;
  2245. Transform xform;
  2246. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  2247. Vector3 x_dir = xform.basis.get_axis(0).abs();
  2248. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  2249. Vector3 y_dir = xform.basis.get_axis(1).abs();
  2250. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  2251. Vector3 z_dir = -xform.basis.get_axis(2);
  2252. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  2253. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  2254. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
  2255. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
  2256. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
  2257. CameraMatrix cm;
  2258. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  2259. _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  2260. GIProbeDynamicPushConstant push_constant;
  2261. zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
  2262. push_constant.limits[0] = octree_size.x;
  2263. push_constant.limits[1] = octree_size.y;
  2264. push_constant.limits[2] = octree_size.z;
  2265. push_constant.light_count = p_light_instances.size();
  2266. push_constant.x_dir[0] = x_dir[0];
  2267. push_constant.x_dir[1] = x_dir[1];
  2268. push_constant.x_dir[2] = x_dir[2];
  2269. push_constant.y_dir[0] = y_dir[0];
  2270. push_constant.y_dir[1] = y_dir[1];
  2271. push_constant.y_dir[2] = y_dir[2];
  2272. push_constant.z_dir[0] = z_dir[0];
  2273. push_constant.z_dir[1] = z_dir[1];
  2274. push_constant.z_dir[2] = z_dir[2];
  2275. push_constant.z_base = xform.origin[z_axis];
  2276. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  2277. push_constant.pos_multiplier = float(1.0) / multiplier;
  2278. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2279. push_constant.flip_x = x_flip;
  2280. push_constant.flip_y = y_flip;
  2281. push_constant.rect_pos[0] = rect.position[0];
  2282. push_constant.rect_pos[1] = rect.position[1];
  2283. push_constant.rect_size[0] = rect.size[0];
  2284. push_constant.rect_size[1] = rect.size[1];
  2285. push_constant.prev_rect_ofs[0] = 0;
  2286. push_constant.prev_rect_ofs[1] = 0;
  2287. push_constant.prev_rect_size[0] = 0;
  2288. push_constant.prev_rect_size[1] = 0;
  2289. push_constant.on_mipmap = false;
  2290. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  2291. push_constant.pad[0] = 0;
  2292. push_constant.pad[1] = 0;
  2293. push_constant.pad[2] = 0;
  2294. //process lighting
  2295. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2296. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  2297. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
  2298. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  2299. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2300. //print_line("rect: " + itos(i) + ": " + rect);
  2301. for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
  2302. // enlarge the rect if needed so all pixels fit when downscaled,
  2303. // this ensures downsampling is smooth and optimal because no pixels are left behind
  2304. //x
  2305. if (rect.position.x & 1) {
  2306. rect.size.x++;
  2307. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  2308. } else {
  2309. push_constant.prev_rect_ofs[0] = 0;
  2310. }
  2311. if (rect.size.x & 1) {
  2312. rect.size.x++;
  2313. }
  2314. rect.position.x >>= 1;
  2315. rect.size.x = MAX(1, rect.size.x >> 1);
  2316. //y
  2317. if (rect.position.y & 1) {
  2318. rect.size.y++;
  2319. push_constant.prev_rect_ofs[1] = 1;
  2320. } else {
  2321. push_constant.prev_rect_ofs[1] = 0;
  2322. }
  2323. if (rect.size.y & 1) {
  2324. rect.size.y++;
  2325. }
  2326. rect.position.y >>= 1;
  2327. rect.size.y = MAX(1, rect.size.y >> 1);
  2328. //shrink limits to ensure plot does not go outside map
  2329. if (gi_probe->dynamic_maps[k].mipmap > 0) {
  2330. for (int l = 0; l < 3; l++) {
  2331. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  2332. }
  2333. }
  2334. //print_line("rect: " + itos(i) + ": " + rect);
  2335. push_constant.rect_pos[0] = rect.position[0];
  2336. push_constant.rect_pos[1] = rect.position[1];
  2337. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  2338. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  2339. push_constant.rect_size[0] = rect.size[0];
  2340. push_constant.rect_size[1] = rect.size[1];
  2341. push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0;
  2342. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2343. if (gi_probe->dynamic_maps[k].mipmap < 0) {
  2344. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  2345. } else if (k < gi_probe->dynamic_maps.size() - 1) {
  2346. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  2347. } else {
  2348. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  2349. }
  2350. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
  2351. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  2352. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2353. }
  2354. RD::get_singleton()->compute_list_end();
  2355. }
  2356. }
  2357. gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
  2358. }
  2359. gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
  2360. }
  2361. void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  2362. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
  2363. ERR_FAIL_COND(!gi_probe);
  2364. if (gi_probe->mipmaps.size() == 0) {
  2365. return;
  2366. }
  2367. CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
  2368. int level = 0;
  2369. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2370. GIProbeDebugPushConstant push_constant;
  2371. push_constant.alpha = p_alpha;
  2372. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2373. push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
  2374. push_constant.level = level;
  2375. push_constant.bounds[0] = octree_size.x >> level;
  2376. push_constant.bounds[1] = octree_size.y >> level;
  2377. push_constant.bounds[2] = octree_size.z >> level;
  2378. push_constant.pad = 0;
  2379. for (int i = 0; i < 4; i++) {
  2380. for (int j = 0; j < 4; j++) {
  2381. push_constant.projection[i * 4 + j] = transform.matrix[i][j];
  2382. }
  2383. }
  2384. if (giprobe_debug_uniform_set.is_valid()) {
  2385. RD::get_singleton()->free(giprobe_debug_uniform_set);
  2386. }
  2387. Vector<RD::Uniform> uniforms;
  2388. {
  2389. RD::Uniform u;
  2390. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2391. u.binding = 1;
  2392. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  2393. uniforms.push_back(u);
  2394. }
  2395. {
  2396. RD::Uniform u;
  2397. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2398. u.binding = 2;
  2399. u.ids.push_back(gi_probe->texture);
  2400. uniforms.push_back(u);
  2401. }
  2402. {
  2403. RD::Uniform u;
  2404. u.type = RD::UNIFORM_TYPE_SAMPLER;
  2405. u.binding = 3;
  2406. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2407. uniforms.push_back(u);
  2408. }
  2409. if (gi_probe_use_anisotropy) {
  2410. {
  2411. RD::Uniform u;
  2412. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2413. u.binding = 4;
  2414. u.ids.push_back(gi_probe->anisotropy[0]);
  2415. uniforms.push_back(u);
  2416. }
  2417. {
  2418. RD::Uniform u;
  2419. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2420. u.binding = 5;
  2421. u.ids.push_back(gi_probe->anisotropy[1]);
  2422. uniforms.push_back(u);
  2423. }
  2424. }
  2425. int cell_count;
  2426. if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
  2427. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  2428. } else {
  2429. cell_count = gi_probe->mipmaps[level].cell_count;
  2430. }
  2431. giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
  2432. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  2433. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
  2434. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
  2435. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  2436. }
  2437. const Vector<RID> &RasterizerSceneRD::gi_probe_get_slots() const {
  2438. return gi_probe_slots;
  2439. }
  2440. RasterizerSceneRD::GIProbeQuality RasterizerSceneRD::gi_probe_get_quality() const {
  2441. return gi_probe_quality;
  2442. }
  2443. ////////////////////////////////
  2444. RID RasterizerSceneRD::render_buffers_create() {
  2445. RenderBuffers rb;
  2446. rb.data = _create_render_buffer_data();
  2447. return render_buffers_owner.make_rid(rb);
  2448. }
  2449. void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) {
  2450. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  2451. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  2452. RD::TextureFormat tf;
  2453. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2454. tf.width = rb->width;
  2455. tf.height = rb->height;
  2456. tf.type = RD::TEXTURE_TYPE_2D;
  2457. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2458. tf.mipmaps = mipmaps_required;
  2459. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2460. //the second one is smaller (only used for separatable part of blur)
  2461. tf.width >>= 1;
  2462. tf.height >>= 1;
  2463. tf.mipmaps--;
  2464. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2465. int base_width = rb->width;
  2466. int base_height = rb->height;
  2467. for (uint32_t i = 0; i < mipmaps_required; i++) {
  2468. RenderBuffers::Blur::Mipmap mm;
  2469. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  2470. mm.width = base_width;
  2471. mm.height = base_height;
  2472. rb->blur[0].mipmaps.push_back(mm);
  2473. if (i > 0) {
  2474. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  2475. rb->blur[1].mipmaps.push_back(mm);
  2476. }
  2477. base_width = MAX(1, base_width >> 1);
  2478. base_height = MAX(1, base_height >> 1);
  2479. }
  2480. }
  2481. void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) {
  2482. ERR_FAIL_COND(!rb->luminance.current.is_null());
  2483. int w = rb->width;
  2484. int h = rb->height;
  2485. while (true) {
  2486. w = MAX(w / 8, 1);
  2487. h = MAX(h / 8, 1);
  2488. RD::TextureFormat tf;
  2489. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2490. tf.width = w;
  2491. tf.height = h;
  2492. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2493. bool final = w == 1 && h == 1;
  2494. if (final) {
  2495. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  2496. }
  2497. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2498. rb->luminance.reduce.push_back(texture);
  2499. if (final) {
  2500. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2501. break;
  2502. }
  2503. }
  2504. }
  2505. void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) {
  2506. if (rb->texture.is_valid()) {
  2507. RD::get_singleton()->free(rb->texture);
  2508. rb->texture = RID();
  2509. }
  2510. if (rb->depth_texture.is_valid()) {
  2511. RD::get_singleton()->free(rb->depth_texture);
  2512. rb->depth_texture = RID();
  2513. }
  2514. for (int i = 0; i < 2; i++) {
  2515. if (rb->blur[i].texture.is_valid()) {
  2516. RD::get_singleton()->free(rb->blur[i].texture);
  2517. rb->blur[i].texture = RID();
  2518. rb->blur[i].mipmaps.clear();
  2519. }
  2520. }
  2521. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  2522. RD::get_singleton()->free(rb->luminance.reduce[i]);
  2523. }
  2524. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  2525. RD::get_singleton()->free(rb->luminance.reduce[i]);
  2526. }
  2527. rb->luminance.reduce.clear();
  2528. if (rb->luminance.current.is_valid()) {
  2529. RD::get_singleton()->free(rb->luminance.current);
  2530. rb->luminance.current = RID();
  2531. }
  2532. if (rb->ssao.ao[0].is_valid()) {
  2533. RD::get_singleton()->free(rb->ssao.depth);
  2534. RD::get_singleton()->free(rb->ssao.ao[0]);
  2535. if (rb->ssao.ao[1].is_valid()) {
  2536. RD::get_singleton()->free(rb->ssao.ao[1]);
  2537. }
  2538. if (rb->ssao.ao_full.is_valid()) {
  2539. RD::get_singleton()->free(rb->ssao.ao_full);
  2540. }
  2541. rb->ssao.depth = RID();
  2542. rb->ssao.ao[0] = RID();
  2543. rb->ssao.ao[1] = RID();
  2544. rb->ssao.ao_full = RID();
  2545. rb->ssao.depth_slices.clear();
  2546. }
  2547. if (rb->ssr.blur_radius[0].is_valid()) {
  2548. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  2549. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  2550. rb->ssr.blur_radius[0] = RID();
  2551. rb->ssr.blur_radius[1] = RID();
  2552. }
  2553. if (rb->ssr.depth_scaled.is_valid()) {
  2554. RD::get_singleton()->free(rb->ssr.depth_scaled);
  2555. rb->ssr.depth_scaled = RID();
  2556. RD::get_singleton()->free(rb->ssr.normal_scaled);
  2557. rb->ssr.normal_scaled = RID();
  2558. }
  2559. }
  2560. void RasterizerSceneRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  2561. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2562. ERR_FAIL_COND(!rb);
  2563. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2564. if (!can_use_effects) {
  2565. //just copy
  2566. return;
  2567. }
  2568. if (rb->blur[0].texture.is_null()) {
  2569. _allocate_blur_textures(rb);
  2570. _render_buffers_uniform_set_changed(p_render_buffers);
  2571. }
  2572. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  2573. }
  2574. void RasterizerSceneRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_roughness_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  2575. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2576. ERR_FAIL_COND(!rb);
  2577. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2578. if (!can_use_effects) {
  2579. //just copy
  2580. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  2581. return;
  2582. }
  2583. Environent *env = environment_owner.getornull(p_environment);
  2584. ERR_FAIL_COND(!env);
  2585. ERR_FAIL_COND(!env->ssr_enabled);
  2586. if (rb->ssr.depth_scaled.is_null()) {
  2587. RD::TextureFormat tf;
  2588. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2589. tf.width = rb->width / 2;
  2590. tf.height = rb->height / 2;
  2591. tf.type = RD::TEXTURE_TYPE_2D;
  2592. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2593. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2594. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2595. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2596. }
  2597. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  2598. RD::TextureFormat tf;
  2599. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2600. tf.width = rb->width / 2;
  2601. tf.height = rb->height / 2;
  2602. tf.type = RD::TEXTURE_TYPE_2D;
  2603. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2604. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2605. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2606. }
  2607. if (rb->blur[0].texture.is_null()) {
  2608. _allocate_blur_textures(rb);
  2609. _render_buffers_uniform_set_changed(p_render_buffers);
  2610. }
  2611. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, p_roughness_buffer, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  2612. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  2613. }
  2614. void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  2615. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2616. ERR_FAIL_COND(!rb);
  2617. Environent *env = environment_owner.getornull(p_environment);
  2618. ERR_FAIL_COND(!env);
  2619. if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) {
  2620. RD::get_singleton()->free(rb->ssao.depth);
  2621. RD::get_singleton()->free(rb->ssao.ao[0]);
  2622. if (rb->ssao.ao[1].is_valid()) {
  2623. RD::get_singleton()->free(rb->ssao.ao[1]);
  2624. }
  2625. if (rb->ssao.ao_full.is_valid()) {
  2626. RD::get_singleton()->free(rb->ssao.ao_full);
  2627. }
  2628. rb->ssao.depth = RID();
  2629. rb->ssao.ao[0] = RID();
  2630. rb->ssao.ao[1] = RID();
  2631. rb->ssao.ao_full = RID();
  2632. rb->ssao.depth_slices.clear();
  2633. }
  2634. if (!rb->ssao.ao[0].is_valid()) {
  2635. //allocate depth slices
  2636. {
  2637. RD::TextureFormat tf;
  2638. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2639. tf.width = rb->width / 2;
  2640. tf.height = rb->height / 2;
  2641. tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1;
  2642. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2643. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2644. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  2645. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i);
  2646. rb->ssao.depth_slices.push_back(slice);
  2647. }
  2648. }
  2649. {
  2650. RD::TextureFormat tf;
  2651. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2652. tf.width = ssao_half_size ? rb->width / 2 : rb->width;
  2653. tf.height = ssao_half_size ? rb->height / 2 : rb->height;
  2654. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2655. rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2656. rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2657. }
  2658. if (ssao_half_size) {
  2659. //upsample texture
  2660. RD::TextureFormat tf;
  2661. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2662. tf.width = rb->width;
  2663. tf.height = rb->height;
  2664. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2665. rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2666. }
  2667. _render_buffers_uniform_set_changed(p_render_buffers);
  2668. }
  2669. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness);
  2670. }
  2671. void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  2672. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2673. ERR_FAIL_COND(!rb);
  2674. Environent *env = environment_owner.getornull(p_environment);
  2675. //glow (if enabled)
  2676. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  2677. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2678. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  2679. if (rb->blur[0].texture.is_null()) {
  2680. _allocate_blur_textures(rb);
  2681. _render_buffers_uniform_set_changed(p_render_buffers);
  2682. }
  2683. float bokeh_size = camfx->dof_blur_amount * 64.0;
  2684. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  2685. }
  2686. if (can_use_effects && env && env->auto_exposure) {
  2687. if (rb->luminance.current.is_null()) {
  2688. _allocate_luminance_textures(rb);
  2689. _render_buffers_uniform_set_changed(p_render_buffers);
  2690. }
  2691. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  2692. rb->auto_exposure_version = env->auto_exposure_version;
  2693. double step = env->auto_exp_speed * time_step;
  2694. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  2695. //swap final reduce with prev luminance
  2696. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  2697. RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on
  2698. }
  2699. int max_glow_level = -1;
  2700. int glow_mask = 0;
  2701. if (can_use_effects && env && env->glow_enabled) {
  2702. /* see that blur textures are allocated */
  2703. if (rb->blur[0].texture.is_null()) {
  2704. _allocate_blur_textures(rb);
  2705. _render_buffers_uniform_set_changed(p_render_buffers);
  2706. }
  2707. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  2708. if (env->glow_levels & (1 << i)) {
  2709. if (i >= rb->blur[1].mipmaps.size()) {
  2710. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  2711. glow_mask |= 1 << max_glow_level;
  2712. } else {
  2713. max_glow_level = i;
  2714. glow_mask |= (1 << i);
  2715. }
  2716. }
  2717. }
  2718. for (int i = 0; i < (max_glow_level + 1); i++) {
  2719. int vp_w = rb->blur[1].mipmaps[i].width;
  2720. int vp_h = rb->blur[1].mipmaps[i].height;
  2721. if (i == 0) {
  2722. RID luminance_texture;
  2723. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  2724. luminance_texture = rb->luminance.current;
  2725. }
  2726. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  2727. } else {
  2728. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength);
  2729. }
  2730. }
  2731. }
  2732. {
  2733. //tonemap
  2734. RasterizerEffectsRD::TonemapSettings tonemap;
  2735. tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  2736. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  2737. tonemap.use_auto_exposure = true;
  2738. tonemap.exposure_texture = rb->luminance.current;
  2739. tonemap.auto_exposure_grey = env->auto_exp_scale;
  2740. } else {
  2741. tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  2742. }
  2743. if (can_use_effects && env && env->glow_enabled) {
  2744. tonemap.use_glow = true;
  2745. tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  2746. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  2747. tonemap.glow_level_flags = glow_mask;
  2748. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  2749. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  2750. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  2751. tonemap.glow_texture = rb->blur[1].texture;
  2752. } else {
  2753. tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  2754. }
  2755. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  2756. tonemap.use_fxaa = true;
  2757. }
  2758. tonemap.texture_size = Vector2i(rb->width, rb->height);
  2759. if (env) {
  2760. tonemap.tonemap_mode = env->tone_mapper;
  2761. tonemap.white = env->white;
  2762. tonemap.exposure = env->exposure;
  2763. }
  2764. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  2765. }
  2766. storage->render_target_disable_clear_request(rb->render_target);
  2767. }
  2768. void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) {
  2769. RasterizerEffectsRD *effects = storage->get_effects();
  2770. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2771. ERR_FAIL_COND(!rb);
  2772. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  2773. if (p_shadow_atlas.is_valid()) {
  2774. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  2775. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2776. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  2777. }
  2778. }
  2779. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  2780. if (directional_shadow_get_texture().is_valid()) {
  2781. RID shadow_atlas_texture = directional_shadow_get_texture();
  2782. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2783. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  2784. }
  2785. }
  2786. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  2787. if (rb->luminance.current.is_valid()) {
  2788. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2789. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  2790. }
  2791. }
  2792. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) {
  2793. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2794. RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  2795. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  2796. }
  2797. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_ROUGHNESS_LIMITER && _render_buffers_get_roughness_texture(p_render_buffers).is_valid()) {
  2798. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2799. effects->copy_to_fb_rect(_render_buffers_get_roughness_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  2800. }
  2801. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  2802. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2803. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  2804. }
  2805. }
  2806. RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  2807. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2808. ERR_FAIL_COND_V(!rb, RID());
  2809. if (!rb->blur[0].texture.is_valid()) {
  2810. return RID(); //not valid at the moment
  2811. }
  2812. return rb->blur[0].texture;
  2813. }
  2814. RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  2815. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2816. ERR_FAIL_COND_V(!rb, RID());
  2817. return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  2818. }
  2819. void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa) {
  2820. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2821. rb->width = p_width;
  2822. rb->height = p_height;
  2823. rb->render_target = p_render_target;
  2824. rb->msaa = p_msaa;
  2825. rb->screen_space_aa = p_screen_space_aa;
  2826. _free_render_buffer_data(rb);
  2827. {
  2828. RD::TextureFormat tf;
  2829. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2830. tf.width = rb->width;
  2831. tf.height = rb->height;
  2832. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2833. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2834. }
  2835. {
  2836. RD::TextureFormat tf;
  2837. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  2838. tf.width = p_width;
  2839. tf.height = p_height;
  2840. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  2841. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2842. }
  2843. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  2844. _render_buffers_uniform_set_changed(p_render_buffers);
  2845. }
  2846. void RasterizerSceneRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  2847. sss_quality = p_quality;
  2848. }
  2849. RS::SubSurfaceScatteringQuality RasterizerSceneRD::sub_surface_scattering_get_quality() const {
  2850. return sss_quality;
  2851. }
  2852. void RasterizerSceneRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  2853. sss_scale = p_scale;
  2854. sss_depth_scale = p_depth_scale;
  2855. }
  2856. void RasterizerSceneRD::shadow_filter_set(RS::ShadowFilter p_filter) {
  2857. shadow_filter = p_filter;
  2858. }
  2859. int RasterizerSceneRD::get_roughness_layers() const {
  2860. return roughness_layers;
  2861. }
  2862. bool RasterizerSceneRD::is_using_radiance_cubemap_array() const {
  2863. return sky_use_cubemap_array;
  2864. }
  2865. RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) {
  2866. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2867. ERR_FAIL_COND_V(!rb, nullptr);
  2868. return rb->data;
  2869. }
  2870. void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2871. Color clear_color;
  2872. if (p_render_buffers.is_valid()) {
  2873. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2874. ERR_FAIL_COND(!rb);
  2875. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  2876. } else {
  2877. clear_color = storage->get_default_clear_color();
  2878. }
  2879. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
  2880. if (p_render_buffers.is_valid()) {
  2881. RENDER_TIMESTAMP("Tonemap");
  2882. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  2883. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas);
  2884. }
  2885. }
  2886. void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2887. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2888. ERR_FAIL_COND(!light_instance);
  2889. Rect2i atlas_rect;
  2890. RID atlas_texture;
  2891. bool using_dual_paraboloid = false;
  2892. bool using_dual_paraboloid_flip = false;
  2893. float znear = 0;
  2894. float zfar = 0;
  2895. RID render_fb;
  2896. RID render_texture;
  2897. float bias = 0;
  2898. float normal_bias = 0;
  2899. bool use_pancake = false;
  2900. bool use_linear_depth = false;
  2901. bool render_cubemap = false;
  2902. bool finalize_cubemap = false;
  2903. CameraMatrix light_projection;
  2904. Transform light_transform;
  2905. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  2906. //set pssm stuff
  2907. if (light_instance->last_scene_shadow_pass != scene_pass) {
  2908. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  2909. directional_shadow.current_light++;
  2910. light_instance->last_scene_shadow_pass = scene_pass;
  2911. }
  2912. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  2913. light_projection = light_instance->shadow_transform[p_pass].camera;
  2914. light_transform = light_instance->shadow_transform[p_pass].transform;
  2915. atlas_rect.position.x = light_instance->directional_rect.position.x;
  2916. atlas_rect.position.y = light_instance->directional_rect.position.y;
  2917. atlas_rect.size.width = light_instance->directional_rect.size.x;
  2918. atlas_rect.size.height = light_instance->directional_rect.size.y;
  2919. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2920. atlas_rect.size.width /= 2;
  2921. atlas_rect.size.height /= 2;
  2922. if (p_pass == 1) {
  2923. atlas_rect.position.x += atlas_rect.size.width;
  2924. } else if (p_pass == 2) {
  2925. atlas_rect.position.y += atlas_rect.size.height;
  2926. } else if (p_pass == 3) {
  2927. atlas_rect.position.x += atlas_rect.size.width;
  2928. atlas_rect.position.y += atlas_rect.size.height;
  2929. }
  2930. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2931. atlas_rect.size.height /= 2;
  2932. if (p_pass == 0) {
  2933. } else {
  2934. atlas_rect.position.y += atlas_rect.size.height;
  2935. }
  2936. }
  2937. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  2938. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  2939. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  2940. float bias_mult = light_instance->shadow_transform[p_pass].bias_scale;
  2941. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2942. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult;
  2943. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult;
  2944. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  2945. render_fb = shadow_map->fb;
  2946. render_texture = shadow_map->depth;
  2947. atlas_texture = directional_shadow.depth;
  2948. } else {
  2949. //set from shadow atlas
  2950. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2951. ERR_FAIL_COND(!shadow_atlas);
  2952. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2953. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2954. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2955. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2956. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2957. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2958. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  2959. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  2960. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2961. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2962. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2963. atlas_rect.size.width = shadow_size;
  2964. atlas_rect.size.height = shadow_size;
  2965. atlas_texture = shadow_atlas->depth;
  2966. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2967. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS);
  2968. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS);
  2969. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  2970. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2971. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  2972. render_fb = cubemap->side_fb[p_pass];
  2973. render_texture = cubemap->cubemap;
  2974. light_projection = light_instance->shadow_transform[0].camera;
  2975. light_transform = light_instance->shadow_transform[0].transform;
  2976. render_cubemap = true;
  2977. finalize_cubemap = p_pass == 5;
  2978. } else {
  2979. light_projection = light_instance->shadow_transform[0].camera;
  2980. light_transform = light_instance->shadow_transform[0].transform;
  2981. atlas_rect.size.height /= 2;
  2982. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  2983. using_dual_paraboloid = true;
  2984. using_dual_paraboloid_flip = p_pass == 1;
  2985. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  2986. render_fb = shadow_map->fb;
  2987. render_texture = shadow_map->depth;
  2988. }
  2989. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  2990. light_projection = light_instance->shadow_transform[0].camera;
  2991. light_transform = light_instance->shadow_transform[0].transform;
  2992. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  2993. render_fb = shadow_map->fb;
  2994. render_texture = shadow_map->depth;
  2995. znear = light_instance->shadow_transform[0].camera.get_z_near();
  2996. use_linear_depth = true;
  2997. }
  2998. }
  2999. if (render_cubemap) {
  3000. //rendering to cubemap
  3001. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake);
  3002. if (finalize_cubemap) {
  3003. //reblit
  3004. atlas_rect.size.height /= 2;
  3005. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, false);
  3006. atlas_rect.position.y += atlas_rect.size.height;
  3007. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, true);
  3008. }
  3009. } else {
  3010. //render shadow
  3011. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake);
  3012. //copy to atlas
  3013. if (use_linear_depth) {
  3014. storage->get_effects()->copy_depth_to_rect_and_linearize(render_texture, atlas_texture, atlas_rect, true, znear, zfar);
  3015. } else {
  3016. storage->get_effects()->copy_depth_to_rect(render_texture, atlas_texture, atlas_rect, true);
  3017. }
  3018. //does not work from depth to color
  3019. //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true);
  3020. }
  3021. }
  3022. void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {
  3023. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region);
  3024. }
  3025. bool RasterizerSceneRD::free(RID p_rid) {
  3026. if (render_buffers_owner.owns(p_rid)) {
  3027. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  3028. _free_render_buffer_data(rb);
  3029. memdelete(rb->data);
  3030. render_buffers_owner.free(p_rid);
  3031. } else if (environment_owner.owns(p_rid)) {
  3032. //not much to delete, just free it
  3033. environment_owner.free(p_rid);
  3034. } else if (camera_effects_owner.owns(p_rid)) {
  3035. //not much to delete, just free it
  3036. camera_effects_owner.free(p_rid);
  3037. } else if (reflection_atlas_owner.owns(p_rid)) {
  3038. reflection_atlas_set_size(p_rid, 0, 0);
  3039. reflection_atlas_owner.free(p_rid);
  3040. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  3041. //not much to delete, just free it
  3042. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  3043. reflection_probe_release_atlas_index(p_rid);
  3044. reflection_probe_instance_owner.free(p_rid);
  3045. } else if (gi_probe_instance_owner.owns(p_rid)) {
  3046. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
  3047. if (gi_probe->texture.is_valid()) {
  3048. RD::get_singleton()->free(gi_probe->texture);
  3049. RD::get_singleton()->free(gi_probe->write_buffer);
  3050. }
  3051. if (gi_probe->anisotropy[0].is_valid()) {
  3052. RD::get_singleton()->free(gi_probe->anisotropy[0]);
  3053. RD::get_singleton()->free(gi_probe->anisotropy[1]);
  3054. }
  3055. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3056. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3057. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3058. }
  3059. gi_probe_slots.write[gi_probe->slot] = RID();
  3060. gi_probe_instance_owner.free(p_rid);
  3061. } else if (sky_owner.owns(p_rid)) {
  3062. _update_dirty_skys();
  3063. Sky *sky = sky_owner.getornull(p_rid);
  3064. if (sky->radiance.is_valid()) {
  3065. RD::get_singleton()->free(sky->radiance);
  3066. sky->radiance = RID();
  3067. }
  3068. _clear_reflection_data(sky->reflection);
  3069. if (sky->uniform_buffer.is_valid()) {
  3070. RD::get_singleton()->free(sky->uniform_buffer);
  3071. sky->uniform_buffer = RID();
  3072. }
  3073. if (sky->half_res_pass.is_valid()) {
  3074. RD::get_singleton()->free(sky->half_res_pass);
  3075. sky->half_res_pass = RID();
  3076. }
  3077. if (sky->quarter_res_pass.is_valid()) {
  3078. RD::get_singleton()->free(sky->quarter_res_pass);
  3079. sky->quarter_res_pass = RID();
  3080. }
  3081. if (sky->material.is_valid()) {
  3082. storage->free(sky->material);
  3083. }
  3084. sky_owner.free(p_rid);
  3085. } else if (light_instance_owner.owns(p_rid)) {
  3086. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  3087. //remove from shadow atlases..
  3088. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  3089. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  3090. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  3091. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  3092. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3093. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3094. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3095. shadow_atlas->shadow_owners.erase(p_rid);
  3096. }
  3097. light_instance_owner.free(p_rid);
  3098. } else if (shadow_atlas_owner.owns(p_rid)) {
  3099. shadow_atlas_set_size(p_rid, 0);
  3100. shadow_atlas_owner.free(p_rid);
  3101. } else {
  3102. return false;
  3103. }
  3104. return true;
  3105. }
  3106. void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  3107. debug_draw = p_debug_draw;
  3108. }
  3109. void RasterizerSceneRD::update() {
  3110. _update_dirty_skys();
  3111. }
  3112. void RasterizerSceneRD::set_time(double p_time, double p_step) {
  3113. time = p_time;
  3114. time_step = p_step;
  3115. }
  3116. void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) {
  3117. screen_space_roughness_limiter = p_enable;
  3118. screen_space_roughness_limiter_curve = p_curve;
  3119. }
  3120. bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const {
  3121. return screen_space_roughness_limiter;
  3122. }
  3123. float RasterizerSceneRD::screen_space_roughness_limiter_get_curve() const {
  3124. return screen_space_roughness_limiter_curve;
  3125. }
  3126. RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr;
  3127. RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
  3128. storage = p_storage;
  3129. singleton = this;
  3130. roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
  3131. sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
  3132. sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
  3133. // sky_use_cubemap_array = false;
  3134. uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
  3135. {
  3136. //kinda complicated to compute the amount of slots, we try to use as many as we can
  3137. gi_probe_max_lights = 32;
  3138. gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
  3139. gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
  3140. gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic");
  3141. gi_probe_quality = GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 2));
  3142. if (textures_per_stage <= 16) {
  3143. gi_probe_slots.resize(2); //thats all you can get
  3144. gi_probe_use_anisotropy = false;
  3145. } else if (textures_per_stage <= 31) {
  3146. gi_probe_slots.resize(4); //thats all you can get, iOS
  3147. gi_probe_use_anisotropy = false;
  3148. } else if (textures_per_stage <= 128) {
  3149. gi_probe_slots.resize(32); //old intel
  3150. gi_probe_use_anisotropy = false;
  3151. } else if (textures_per_stage <= 256) {
  3152. gi_probe_slots.resize(64); //old intel too
  3153. gi_probe_use_anisotropy = false;
  3154. } else {
  3155. if (gi_probe_use_anisotropy) {
  3156. gi_probe_slots.resize(1024 / 3); //needs 3 textures
  3157. } else {
  3158. gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater
  3159. }
  3160. }
  3161. String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
  3162. if (gi_probe_use_anisotropy) {
  3163. defines += "\n#define MODE_ANISOTROPIC\n";
  3164. }
  3165. Vector<String> versions;
  3166. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  3167. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  3168. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  3169. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  3170. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  3171. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  3172. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  3173. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  3174. giprobe_shader.initialize(versions, defines);
  3175. giprobe_lighting_shader_version = giprobe_shader.version_create();
  3176. for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
  3177. giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
  3178. giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
  3179. }
  3180. }
  3181. {
  3182. String defines;
  3183. if (gi_probe_use_anisotropy) {
  3184. defines += "\n#define USE_ANISOTROPY\n";
  3185. }
  3186. Vector<String> versions;
  3187. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  3188. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  3189. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  3190. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  3191. giprobe_debug_shader.initialize(versions, defines);
  3192. giprobe_debug_shader_version = giprobe_debug_shader.version_create();
  3193. for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
  3194. giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
  3195. RD::PipelineRasterizationState rs;
  3196. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  3197. RD::PipelineDepthStencilState ds;
  3198. ds.enable_depth_test = true;
  3199. ds.enable_depth_write = true;
  3200. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  3201. giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  3202. }
  3203. }
  3204. /* SKY SHADER */
  3205. {
  3206. // Start with the directional lights for the sky
  3207. sky_scene_state.max_directional_lights = 4;
  3208. uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
  3209. sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  3210. sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  3211. sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
  3212. sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3213. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
  3214. // Initialize sky
  3215. Vector<String> sky_modes;
  3216. sky_modes.push_back(""); // Full size
  3217. sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
  3218. sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
  3219. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
  3220. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
  3221. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
  3222. sky_shader.shader.initialize(sky_modes, defines);
  3223. }
  3224. // register our shader funds
  3225. storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs);
  3226. storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs);
  3227. {
  3228. ShaderCompilerRD::DefaultIdentifierActions actions;
  3229. actions.renames["COLOR"] = "color";
  3230. actions.renames["ALPHA"] = "alpha";
  3231. actions.renames["EYEDIR"] = "cube_normal";
  3232. actions.renames["POSITION"] = "params.position_multiplier.xyz";
  3233. actions.renames["SKY_COORDS"] = "panorama_coords";
  3234. actions.renames["SCREEN_UV"] = "uv";
  3235. actions.renames["TIME"] = "params.time";
  3236. actions.renames["HALF_RES_COLOR"] = "half_res_color";
  3237. actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
  3238. actions.renames["RADIANCE"] = "radiance";
  3239. actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
  3240. actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction";
  3241. actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].energy";
  3242. actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color";
  3243. actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
  3244. actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction";
  3245. actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].energy";
  3246. actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color";
  3247. actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
  3248. actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction";
  3249. actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].energy";
  3250. actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color";
  3251. actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
  3252. actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction";
  3253. actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].energy";
  3254. actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color";
  3255. actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
  3256. actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
  3257. actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
  3258. actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
  3259. actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
  3260. actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
  3261. actions.sampler_array_name = "material_samplers";
  3262. actions.base_texture_binding_index = 1;
  3263. actions.texture_layout_set = 1;
  3264. actions.base_uniform_string = "material.";
  3265. actions.base_varying_index = 10;
  3266. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  3267. actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
  3268. sky_shader.compiler.initialize(actions);
  3269. }
  3270. {
  3271. // default material and shader for sky shader
  3272. sky_shader.default_shader = storage->shader_create();
  3273. storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = mix(vec3(0.3), vec3(0.2, 0.4, 0.9), smoothstep(0.0, 0.05, EYEDIR.y)); } \n");
  3274. sky_shader.default_material = storage->material_create();
  3275. storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
  3276. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  3277. sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
  3278. Vector<RD::Uniform> uniforms;
  3279. {
  3280. RD::Uniform u;
  3281. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3282. u.binding = 0;
  3283. u.ids.resize(12);
  3284. RID *ids_ptr = u.ids.ptrw();
  3285. ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3286. ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3287. ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3288. ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3289. ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3290. ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3291. ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3292. ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3293. ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3294. ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3295. ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3296. ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3297. uniforms.push_back(u);
  3298. }
  3299. sky_scene_state.sampler_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_SAMPLERS);
  3300. }
  3301. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_shape"))));
  3302. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/filters/depth_of_field_use_jitter"));
  3303. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"));
  3304. screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter");
  3305. screen_space_roughness_limiter_curve = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter_curve");
  3306. glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0;
  3307. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality")));
  3308. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality")));
  3309. sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale");
  3310. sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale");
  3311. shadow_filter = RS::ShadowFilter(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  3312. }
  3313. RasterizerSceneRD::~RasterizerSceneRD() {
  3314. for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) {
  3315. RD::get_singleton()->free(E->get().depth);
  3316. }
  3317. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  3318. RD::get_singleton()->free(E->get().cubemap);
  3319. }
  3320. if (sky_scene_state.sampler_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.sampler_uniform_set)) {
  3321. RD::get_singleton()->free(sky_scene_state.sampler_uniform_set);
  3322. }
  3323. if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) {
  3324. RD::get_singleton()->free(sky_scene_state.light_uniform_set);
  3325. }
  3326. RD::get_singleton()->free(gi_probe_lights_uniform);
  3327. giprobe_debug_shader.version_free(giprobe_debug_shader_version);
  3328. giprobe_shader.version_free(giprobe_lighting_shader_version);
  3329. memdelete_arr(gi_probe_lights);
  3330. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  3331. sky_shader.shader.version_free(md->shader_data->version);
  3332. RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
  3333. memdelete_arr(sky_scene_state.directional_lights);
  3334. memdelete_arr(sky_scene_state.last_frame_directional_lights);
  3335. storage->free(sky_shader.default_shader);
  3336. storage->free(sky_shader.default_material);
  3337. }