123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- using System;
- using System.Diagnostics.CodeAnalysis;
- using System.Runtime.InteropServices;
- #nullable enable
- namespace Godot
- {
- /// <summary>
- /// A unit quaternion used for representing 3D rotations.
- /// Quaternions need to be normalized to be used for rotation.
- ///
- /// It is similar to <see cref="Basis"/>, which implements matrix
- /// representation of rotations, and can be parametrized using both
- /// an axis-angle pair or Euler angles. Basis stores rotation, scale,
- /// and shearing, while Quaternion only stores rotation.
- ///
- /// Due to its compactness and the way it is stored in memory, certain
- /// operations (obtaining axis-angle and performing SLERP, in particular)
- /// are more efficient and robust against floating-point errors.
- /// </summary>
- [Serializable]
- [StructLayout(LayoutKind.Sequential)]
- public struct Quaternion : IEquatable<Quaternion>
- {
- /// <summary>
- /// X component of the quaternion (imaginary <c>i</c> axis part).
- /// Quaternion components should usually not be manipulated directly.
- /// </summary>
- public real_t X;
- /// <summary>
- /// Y component of the quaternion (imaginary <c>j</c> axis part).
- /// Quaternion components should usually not be manipulated directly.
- /// </summary>
- public real_t Y;
- /// <summary>
- /// Z component of the quaternion (imaginary <c>k</c> axis part).
- /// Quaternion components should usually not be manipulated directly.
- /// </summary>
- public real_t Z;
- /// <summary>
- /// W component of the quaternion (real part).
- /// Quaternion components should usually not be manipulated directly.
- /// </summary>
- public real_t W;
- /// <summary>
- /// Access quaternion components using their index.
- /// </summary>
- /// <exception cref="ArgumentOutOfRangeException">
- /// <paramref name="index"/> is not 0, 1, 2 or 3.
- /// </exception>
- /// <value>
- /// <c>[0]</c> is equivalent to <see cref="X"/>,
- /// <c>[1]</c> is equivalent to <see cref="Y"/>,
- /// <c>[2]</c> is equivalent to <see cref="Z"/>,
- /// <c>[3]</c> is equivalent to <see cref="W"/>.
- /// </value>
- public real_t this[int index]
- {
- readonly get
- {
- switch (index)
- {
- case 0:
- return X;
- case 1:
- return Y;
- case 2:
- return Z;
- case 3:
- return W;
- default:
- throw new ArgumentOutOfRangeException(nameof(index));
- }
- }
- set
- {
- switch (index)
- {
- case 0:
- X = value;
- break;
- case 1:
- Y = value;
- break;
- case 2:
- Z = value;
- break;
- case 3:
- W = value;
- break;
- default:
- throw new ArgumentOutOfRangeException(nameof(index));
- }
- }
- }
- /// <summary>
- /// Returns the angle between this quaternion and <paramref name="to"/>.
- /// This is the magnitude of the angle you would need to rotate
- /// by to get from one to the other.
- ///
- /// Note: This method has an abnormally high amount
- /// of floating-point error, so methods such as
- /// <see cref="Mathf.IsZeroApprox(real_t)"/> will not work reliably.
- /// </summary>
- /// <param name="to">The other quaternion.</param>
- /// <returns>The angle between the quaternions.</returns>
- public readonly real_t AngleTo(Quaternion to)
- {
- real_t dot = Dot(to);
- return Mathf.Acos(Mathf.Clamp(dot * dot * 2 - 1, -1, 1));
- }
- /// <summary>
- /// Performs a spherical cubic interpolation between quaternions <paramref name="preA"/>, this quaternion,
- /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
- /// </summary>
- /// <param name="b">The destination quaternion.</param>
- /// <param name="preA">A quaternion before this quaternion.</param>
- /// <param name="postB">A quaternion after <paramref name="b"/>.</param>
- /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
- /// <returns>The interpolated quaternion.</returns>
- public readonly Quaternion SphericalCubicInterpolate(Quaternion b, Quaternion preA, Quaternion postB, real_t weight)
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized");
- }
- if (!b.IsNormalized())
- {
- throw new ArgumentException("Argument is not normalized", nameof(b));
- }
- #endif
- // Align flip phases.
- Quaternion fromQ = new Basis(this).GetRotationQuaternion();
- Quaternion preQ = new Basis(preA).GetRotationQuaternion();
- Quaternion toQ = new Basis(b).GetRotationQuaternion();
- Quaternion postQ = new Basis(postB).GetRotationQuaternion();
- // Flip quaternions to shortest path if necessary.
- bool flip1 = Math.Sign(fromQ.Dot(preQ)) < 0;
- preQ = flip1 ? -preQ : preQ;
- bool flip2 = Math.Sign(fromQ.Dot(toQ)) < 0;
- toQ = flip2 ? -toQ : toQ;
- bool flip3 = flip2 ? toQ.Dot(postQ) <= 0 : Math.Sign(toQ.Dot(postQ)) < 0;
- postQ = flip3 ? -postQ : postQ;
- // Calc by Expmap in fromQ space.
- Quaternion lnFrom = new Quaternion(0, 0, 0, 0);
- Quaternion lnTo = (fromQ.Inverse() * toQ).Log();
- Quaternion lnPre = (fromQ.Inverse() * preQ).Log();
- Quaternion lnPost = (fromQ.Inverse() * postQ).Log();
- Quaternion ln = new Quaternion(
- Mathf.CubicInterpolate(lnFrom.X, lnTo.X, lnPre.X, lnPost.X, weight),
- Mathf.CubicInterpolate(lnFrom.Y, lnTo.Y, lnPre.Y, lnPost.Y, weight),
- Mathf.CubicInterpolate(lnFrom.Z, lnTo.Z, lnPre.Z, lnPost.Z, weight),
- 0);
- Quaternion q1 = fromQ * ln.Exp();
- // Calc by Expmap in toQ space.
- lnFrom = (toQ.Inverse() * fromQ).Log();
- lnTo = new Quaternion(0, 0, 0, 0);
- lnPre = (toQ.Inverse() * preQ).Log();
- lnPost = (toQ.Inverse() * postQ).Log();
- ln = new Quaternion(
- Mathf.CubicInterpolate(lnFrom.X, lnTo.X, lnPre.X, lnPost.X, weight),
- Mathf.CubicInterpolate(lnFrom.Y, lnTo.Y, lnPre.Y, lnPost.Y, weight),
- Mathf.CubicInterpolate(lnFrom.Z, lnTo.Z, lnPre.Z, lnPost.Z, weight),
- 0);
- Quaternion q2 = toQ * ln.Exp();
- // To cancel error made by Expmap ambiguity, do blending.
- return q1.Slerp(q2, weight);
- }
- /// <summary>
- /// Performs a spherical cubic interpolation between quaternions <paramref name="preA"/>, this quaternion,
- /// <paramref name="b"/>, and <paramref name="postB"/>, by the given amount <paramref name="weight"/>.
- /// It can perform smoother interpolation than <see cref="SphericalCubicInterpolate"/>
- /// by the time values.
- /// </summary>
- /// <param name="b">The destination quaternion.</param>
- /// <param name="preA">A quaternion before this quaternion.</param>
- /// <param name="postB">A quaternion after <paramref name="b"/>.</param>
- /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
- /// <param name="bT"></param>
- /// <param name="preAT"></param>
- /// <param name="postBT"></param>
- /// <returns>The interpolated quaternion.</returns>
- public readonly Quaternion SphericalCubicInterpolateInTime(Quaternion b, Quaternion preA, Quaternion postB, real_t weight, real_t bT, real_t preAT, real_t postBT)
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized");
- }
- if (!b.IsNormalized())
- {
- throw new ArgumentException("Argument is not normalized", nameof(b));
- }
- #endif
- // Align flip phases.
- Quaternion fromQ = new Basis(this).GetRotationQuaternion();
- Quaternion preQ = new Basis(preA).GetRotationQuaternion();
- Quaternion toQ = new Basis(b).GetRotationQuaternion();
- Quaternion postQ = new Basis(postB).GetRotationQuaternion();
- // Flip quaternions to shortest path if necessary.
- bool flip1 = Math.Sign(fromQ.Dot(preQ)) < 0;
- preQ = flip1 ? -preQ : preQ;
- bool flip2 = Math.Sign(fromQ.Dot(toQ)) < 0;
- toQ = flip2 ? -toQ : toQ;
- bool flip3 = flip2 ? toQ.Dot(postQ) <= 0 : Math.Sign(toQ.Dot(postQ)) < 0;
- postQ = flip3 ? -postQ : postQ;
- // Calc by Expmap in fromQ space.
- Quaternion lnFrom = new Quaternion(0, 0, 0, 0);
- Quaternion lnTo = (fromQ.Inverse() * toQ).Log();
- Quaternion lnPre = (fromQ.Inverse() * preQ).Log();
- Quaternion lnPost = (fromQ.Inverse() * postQ).Log();
- Quaternion ln = new Quaternion(
- Mathf.CubicInterpolateInTime(lnFrom.X, lnTo.X, lnPre.X, lnPost.X, weight, bT, preAT, postBT),
- Mathf.CubicInterpolateInTime(lnFrom.Y, lnTo.Y, lnPre.Y, lnPost.Y, weight, bT, preAT, postBT),
- Mathf.CubicInterpolateInTime(lnFrom.Z, lnTo.Z, lnPre.Z, lnPost.Z, weight, bT, preAT, postBT),
- 0);
- Quaternion q1 = fromQ * ln.Exp();
- // Calc by Expmap in toQ space.
- lnFrom = (toQ.Inverse() * fromQ).Log();
- lnTo = new Quaternion(0, 0, 0, 0);
- lnPre = (toQ.Inverse() * preQ).Log();
- lnPost = (toQ.Inverse() * postQ).Log();
- ln = new Quaternion(
- Mathf.CubicInterpolateInTime(lnFrom.X, lnTo.X, lnPre.X, lnPost.X, weight, bT, preAT, postBT),
- Mathf.CubicInterpolateInTime(lnFrom.Y, lnTo.Y, lnPre.Y, lnPost.Y, weight, bT, preAT, postBT),
- Mathf.CubicInterpolateInTime(lnFrom.Z, lnTo.Z, lnPre.Z, lnPost.Z, weight, bT, preAT, postBT),
- 0);
- Quaternion q2 = toQ * ln.Exp();
- // To cancel error made by Expmap ambiguity, do blending.
- return q1.Slerp(q2, weight);
- }
- /// <summary>
- /// Returns the dot product of two quaternions.
- /// </summary>
- /// <param name="b">The other quaternion.</param>
- /// <returns>The dot product.</returns>
- public readonly real_t Dot(Quaternion b)
- {
- return (X * b.X) + (Y * b.Y) + (Z * b.Z) + (W * b.W);
- }
- public readonly Quaternion Exp()
- {
- Vector3 v = new Vector3(X, Y, Z);
- real_t theta = v.Length();
- v = v.Normalized();
- if (theta < Mathf.Epsilon || !v.IsNormalized())
- {
- return new Quaternion(0, 0, 0, 1);
- }
- return new Quaternion(v, theta);
- }
- public readonly real_t GetAngle()
- {
- return 2 * Mathf.Acos(W);
- }
- public readonly Vector3 GetAxis()
- {
- if (Mathf.Abs(W) > 1 - Mathf.Epsilon)
- {
- return new Vector3(X, Y, Z);
- }
- real_t r = 1 / Mathf.Sqrt(1 - W * W);
- return new Vector3(X * r, Y * r, Z * r);
- }
- /// <summary>
- /// Returns Euler angles (in the YXZ convention: when decomposing,
- /// first Z, then X, and Y last) corresponding to the rotation
- /// represented by the unit quaternion. Returned vector contains
- /// the rotation angles in the format (X angle, Y angle, Z angle).
- /// </summary>
- /// <returns>The Euler angle representation of this quaternion.</returns>
- public readonly Vector3 GetEuler(EulerOrder order = EulerOrder.Yxz)
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized.");
- }
- #endif
- var basis = new Basis(this);
- return basis.GetEuler(order);
- }
- /// <summary>
- /// Returns the inverse of the quaternion.
- /// </summary>
- /// <returns>The inverse quaternion.</returns>
- public readonly Quaternion Inverse()
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized.");
- }
- #endif
- return new Quaternion(-X, -Y, -Z, W);
- }
- /// <summary>
- /// Returns <see langword="true"/> if this quaternion is finite, by calling
- /// <see cref="Mathf.IsFinite(real_t)"/> on each component.
- /// </summary>
- /// <returns>Whether this vector is finite or not.</returns>
- public readonly bool IsFinite()
- {
- return Mathf.IsFinite(X) && Mathf.IsFinite(Y) && Mathf.IsFinite(Z) && Mathf.IsFinite(W);
- }
- /// <summary>
- /// Returns whether the quaternion is normalized or not.
- /// </summary>
- /// <returns>A <see langword="bool"/> for whether the quaternion is normalized or not.</returns>
- public readonly bool IsNormalized()
- {
- return Mathf.Abs(LengthSquared() - 1) <= Mathf.Epsilon;
- }
- public readonly Quaternion Log()
- {
- Vector3 v = GetAxis() * GetAngle();
- return new Quaternion(v.X, v.Y, v.Z, 0);
- }
- /// <summary>
- /// Returns the length (magnitude) of the quaternion.
- /// </summary>
- /// <seealso cref="LengthSquared"/>
- /// <value>Equivalent to <c>Mathf.Sqrt(LengthSquared)</c>.</value>
- public readonly real_t Length()
- {
- return Mathf.Sqrt(LengthSquared());
- }
- /// <summary>
- /// Returns the squared length (squared magnitude) of the quaternion.
- /// This method runs faster than <see cref="Length"/>, so prefer it if
- /// you need to compare quaternions or need the squared length for some formula.
- /// </summary>
- /// <value>Equivalent to <c>Dot(this)</c>.</value>
- public readonly real_t LengthSquared()
- {
- return Dot(this);
- }
- /// <summary>
- /// Returns a copy of the quaternion, normalized to unit length.
- /// </summary>
- /// <returns>The normalized quaternion.</returns>
- public readonly Quaternion Normalized()
- {
- return this / Length();
- }
- /// <summary>
- /// Returns the result of the spherical linear interpolation between
- /// this quaternion and <paramref name="to"/> by amount <paramref name="weight"/>.
- ///
- /// Note: Both quaternions must be normalized.
- /// </summary>
- /// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
- /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
- /// <returns>The resulting quaternion of the interpolation.</returns>
- public readonly Quaternion Slerp(Quaternion to, real_t weight)
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized.");
- }
- if (!to.IsNormalized())
- {
- throw new ArgumentException("Argument is not normalized.", nameof(to));
- }
- #endif
- // Calculate cosine.
- real_t cosom = Dot(to);
- var to1 = new Quaternion();
- // Adjust signs if necessary.
- if (cosom < 0.0)
- {
- cosom = -cosom;
- to1 = -to;
- }
- else
- {
- to1 = to;
- }
- real_t sinom, scale0, scale1;
- // Calculate coefficients.
- if (1.0 - cosom > Mathf.Epsilon)
- {
- // Standard case (Slerp).
- real_t omega = Mathf.Acos(cosom);
- sinom = Mathf.Sin(omega);
- scale0 = Mathf.Sin((1.0f - weight) * omega) / sinom;
- scale1 = Mathf.Sin(weight * omega) / sinom;
- }
- else
- {
- // Quaternions are very close so we can do a linear interpolation.
- scale0 = 1.0f - weight;
- scale1 = weight;
- }
- // Calculate final values.
- return new Quaternion
- (
- (scale0 * X) + (scale1 * to1.X),
- (scale0 * Y) + (scale1 * to1.Y),
- (scale0 * Z) + (scale1 * to1.Z),
- (scale0 * W) + (scale1 * to1.W)
- );
- }
- /// <summary>
- /// Returns the result of the spherical linear interpolation between
- /// this quaternion and <paramref name="to"/> by amount <paramref name="weight"/>, but without
- /// checking if the rotation path is not bigger than 90 degrees.
- /// </summary>
- /// <param name="to">The destination quaternion for interpolation. Must be normalized.</param>
- /// <param name="weight">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
- /// <returns>The resulting quaternion of the interpolation.</returns>
- public readonly Quaternion Slerpni(Quaternion to, real_t weight)
- {
- #if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized");
- }
- if (!to.IsNormalized())
- {
- throw new ArgumentException("Argument is not normalized", nameof(to));
- }
- #endif
- real_t dot = Dot(to);
- if (Mathf.Abs(dot) > 0.9999f)
- {
- return this;
- }
- real_t theta = Mathf.Acos(dot);
- real_t sinT = 1.0f / Mathf.Sin(theta);
- real_t newFactor = Mathf.Sin(weight * theta) * sinT;
- real_t invFactor = Mathf.Sin((1.0f - weight) * theta) * sinT;
- return new Quaternion
- (
- (invFactor * X) + (newFactor * to.X),
- (invFactor * Y) + (newFactor * to.Y),
- (invFactor * Z) + (newFactor * to.Z),
- (invFactor * W) + (newFactor * to.W)
- );
- }
- // Constants
- private static readonly Quaternion _identity = new Quaternion(0, 0, 0, 1);
- /// <summary>
- /// The identity quaternion, representing no rotation.
- /// Equivalent to an identity <see cref="Basis"/> matrix. If a vector is transformed by
- /// an identity quaternion, it will not change.
- /// </summary>
- /// <value>Equivalent to <c>new Quaternion(0, 0, 0, 1)</c>.</value>
- public static Quaternion Identity { get { return _identity; } }
- /// <summary>
- /// Constructs a <see cref="Quaternion"/> defined by the given values.
- /// </summary>
- /// <param name="x">X component of the quaternion (imaginary <c>i</c> axis part).</param>
- /// <param name="y">Y component of the quaternion (imaginary <c>j</c> axis part).</param>
- /// <param name="z">Z component of the quaternion (imaginary <c>k</c> axis part).</param>
- /// <param name="w">W component of the quaternion (real part).</param>
- public Quaternion(real_t x, real_t y, real_t z, real_t w)
- {
- X = x;
- Y = y;
- Z = z;
- W = w;
- }
- /// <summary>
- /// Constructs a <see cref="Quaternion"/> from the given <see cref="Basis"/>.
- /// </summary>
- /// <param name="basis">The <see cref="Basis"/> to construct from.</param>
- public Quaternion(Basis basis)
- {
- this = basis.GetQuaternion();
- }
- /// <summary>
- /// Constructs a <see cref="Quaternion"/> that will rotate around the given axis
- /// by the specified angle. The axis must be a normalized vector.
- /// </summary>
- /// <param name="axis">The axis to rotate around. Must be normalized.</param>
- /// <param name="angle">The angle to rotate, in radians.</param>
- public Quaternion(Vector3 axis, real_t angle)
- {
- #if DEBUG
- if (!axis.IsNormalized())
- {
- throw new ArgumentException("Argument is not normalized.", nameof(axis));
- }
- #endif
- real_t d = axis.Length();
- if (d == 0f)
- {
- X = 0f;
- Y = 0f;
- Z = 0f;
- W = 0f;
- }
- else
- {
- (real_t sin, real_t cos) = Mathf.SinCos(angle * 0.5f);
- real_t s = sin / d;
- X = axis.X * s;
- Y = axis.Y * s;
- Z = axis.Z * s;
- W = cos;
- }
- }
- public Quaternion(Vector3 arcFrom, Vector3 arcTo)
- {
- Vector3 c = arcFrom.Cross(arcTo);
- real_t d = arcFrom.Dot(arcTo);
- if (d < -1.0f + Mathf.Epsilon)
- {
- X = 0f;
- Y = 1f;
- Z = 0f;
- W = 0f;
- }
- else
- {
- real_t s = Mathf.Sqrt((1.0f + d) * 2.0f);
- real_t rs = 1.0f / s;
- X = c.X * rs;
- Y = c.Y * rs;
- Z = c.Z * rs;
- W = s * 0.5f;
- }
- }
- /// <summary>
- /// Constructs a <see cref="Quaternion"/> that will perform a rotation specified by
- /// Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last),
- /// given in the vector format as (X angle, Y angle, Z angle).
- /// </summary>
- /// <param name="eulerYXZ">Euler angles that the quaternion will be rotated by.</param>
- public static Quaternion FromEuler(Vector3 eulerYXZ)
- {
- real_t halfA1 = eulerYXZ.Y * 0.5f;
- real_t halfA2 = eulerYXZ.X * 0.5f;
- real_t halfA3 = eulerYXZ.Z * 0.5f;
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
- (real_t sinA1, real_t cosA1) = Mathf.SinCos(halfA1);
- (real_t sinA2, real_t cosA2) = Mathf.SinCos(halfA2);
- (real_t sinA3, real_t cosA3) = Mathf.SinCos(halfA3);
- return new Quaternion(
- (sinA1 * cosA2 * sinA3) + (cosA1 * sinA2 * cosA3),
- (sinA1 * cosA2 * cosA3) - (cosA1 * sinA2 * sinA3),
- (cosA1 * cosA2 * sinA3) - (sinA1 * sinA2 * cosA3),
- (sinA1 * sinA2 * sinA3) + (cosA1 * cosA2 * cosA3)
- );
- }
- /// <summary>
- /// Composes these two quaternions by multiplying them together.
- /// This has the effect of rotating the second quaternion
- /// (the child) by the first quaternion (the parent).
- /// </summary>
- /// <param name="left">The parent quaternion.</param>
- /// <param name="right">The child quaternion.</param>
- /// <returns>The composed quaternion.</returns>
- public static Quaternion operator *(Quaternion left, Quaternion right)
- {
- return new Quaternion
- (
- (left.W * right.X) + (left.X * right.W) + (left.Y * right.Z) - (left.Z * right.Y),
- (left.W * right.Y) + (left.Y * right.W) + (left.Z * right.X) - (left.X * right.Z),
- (left.W * right.Z) + (left.Z * right.W) + (left.X * right.Y) - (left.Y * right.X),
- (left.W * right.W) - (left.X * right.X) - (left.Y * right.Y) - (left.Z * right.Z)
- );
- }
- /// <summary>
- /// Returns a Vector3 rotated (multiplied) by the quaternion.
- /// </summary>
- /// <param name="quaternion">The quaternion to rotate by.</param>
- /// <param name="vector">A Vector3 to transform.</param>
- /// <returns>The rotated Vector3.</returns>
- public static Vector3 operator *(Quaternion quaternion, Vector3 vector)
- {
- #if DEBUG
- if (!quaternion.IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized.");
- }
- #endif
- var u = new Vector3(quaternion.X, quaternion.Y, quaternion.Z);
- Vector3 uv = u.Cross(vector);
- return vector + (((uv * quaternion.W) + u.Cross(uv)) * 2);
- }
- /// <summary>
- /// Returns a Vector3 rotated (multiplied) by the inverse quaternion.
- /// <c>vector * quaternion</c> is equivalent to <c>quaternion.Inverse() * vector</c>. See <see cref="Inverse"/>.
- /// </summary>
- /// <param name="vector">A Vector3 to inversely rotate.</param>
- /// <param name="quaternion">The quaternion to rotate by.</param>
- /// <returns>The inversely rotated Vector3.</returns>
- public static Vector3 operator *(Vector3 vector, Quaternion quaternion)
- {
- return quaternion.Inverse() * vector;
- }
- /// <summary>
- /// Adds each component of the left <see cref="Quaternion"/>
- /// to the right <see cref="Quaternion"/>. This operation is not
- /// meaningful on its own, but it can be used as a part of a
- /// larger expression, such as approximating an intermediate
- /// rotation between two nearby rotations.
- /// </summary>
- /// <param name="left">The left quaternion to add.</param>
- /// <param name="right">The right quaternion to add.</param>
- /// <returns>The added quaternion.</returns>
- public static Quaternion operator +(Quaternion left, Quaternion right)
- {
- return new Quaternion(left.X + right.X, left.Y + right.Y, left.Z + right.Z, left.W + right.W);
- }
- /// <summary>
- /// Subtracts each component of the left <see cref="Quaternion"/>
- /// by the right <see cref="Quaternion"/>. This operation is not
- /// meaningful on its own, but it can be used as a part of a
- /// larger expression.
- /// </summary>
- /// <param name="left">The left quaternion to subtract.</param>
- /// <param name="right">The right quaternion to subtract.</param>
- /// <returns>The subtracted quaternion.</returns>
- public static Quaternion operator -(Quaternion left, Quaternion right)
- {
- return new Quaternion(left.X - right.X, left.Y - right.Y, left.Z - right.Z, left.W - right.W);
- }
- /// <summary>
- /// Returns the negative value of the <see cref="Quaternion"/>.
- /// This is the same as writing
- /// <c>new Quaternion(-q.X, -q.Y, -q.Z, -q.W)</c>. This operation
- /// results in a quaternion that represents the same rotation.
- /// </summary>
- /// <param name="quat">The quaternion to negate.</param>
- /// <returns>The negated quaternion.</returns>
- public static Quaternion operator -(Quaternion quat)
- {
- return new Quaternion(-quat.X, -quat.Y, -quat.Z, -quat.W);
- }
- /// <summary>
- /// Multiplies each component of the <see cref="Quaternion"/>
- /// by the given <see cref="real_t"/>. This operation is not
- /// meaningful on its own, but it can be used as a part of a
- /// larger expression.
- /// </summary>
- /// <param name="left">The quaternion to multiply.</param>
- /// <param name="right">The value to multiply by.</param>
- /// <returns>The multiplied quaternion.</returns>
- public static Quaternion operator *(Quaternion left, real_t right)
- {
- return new Quaternion(left.X * right, left.Y * right, left.Z * right, left.W * right);
- }
- /// <summary>
- /// Multiplies each component of the <see cref="Quaternion"/>
- /// by the given <see cref="real_t"/>. This operation is not
- /// meaningful on its own, but it can be used as a part of a
- /// larger expression.
- /// </summary>
- /// <param name="left">The value to multiply by.</param>
- /// <param name="right">The quaternion to multiply.</param>
- /// <returns>The multiplied quaternion.</returns>
- public static Quaternion operator *(real_t left, Quaternion right)
- {
- return new Quaternion(right.X * left, right.Y * left, right.Z * left, right.W * left);
- }
- /// <summary>
- /// Divides each component of the <see cref="Quaternion"/>
- /// by the given <see cref="real_t"/>. This operation is not
- /// meaningful on its own, but it can be used as a part of a
- /// larger expression.
- /// </summary>
- /// <param name="left">The quaternion to divide.</param>
- /// <param name="right">The value to divide by.</param>
- /// <returns>The divided quaternion.</returns>
- public static Quaternion operator /(Quaternion left, real_t right)
- {
- return left * (1.0f / right);
- }
- /// <summary>
- /// Returns <see langword="true"/> if the quaternions are exactly equal.
- /// Note: Due to floating-point precision errors, consider using
- /// <see cref="IsEqualApprox"/> instead, which is more reliable.
- /// </summary>
- /// <param name="left">The left quaternion.</param>
- /// <param name="right">The right quaternion.</param>
- /// <returns>Whether or not the quaternions are exactly equal.</returns>
- public static bool operator ==(Quaternion left, Quaternion right)
- {
- return left.Equals(right);
- }
- /// <summary>
- /// Returns <see langword="true"/> if the quaternions are not equal.
- /// Note: Due to floating-point precision errors, consider using
- /// <see cref="IsEqualApprox"/> instead, which is more reliable.
- /// </summary>
- /// <param name="left">The left quaternion.</param>
- /// <param name="right">The right quaternion.</param>
- /// <returns>Whether or not the quaternions are not equal.</returns>
- public static bool operator !=(Quaternion left, Quaternion right)
- {
- return !left.Equals(right);
- }
- /// <summary>
- /// Returns <see langword="true"/> if this quaternion and <paramref name="obj"/> are equal.
- /// </summary>
- /// <param name="obj">The other object to compare.</param>
- /// <returns>Whether or not the quaternion and the other object are exactly equal.</returns>
- public override readonly bool Equals([NotNullWhen(true)] object? obj)
- {
- return obj is Quaternion other && Equals(other);
- }
- /// <summary>
- /// Returns <see langword="true"/> if this quaternion and <paramref name="other"/> are equal.
- /// </summary>
- /// <param name="other">The other quaternion to compare.</param>
- /// <returns>Whether or not the quaternions are exactly equal.</returns>
- public readonly bool Equals(Quaternion other)
- {
- return X == other.X && Y == other.Y && Z == other.Z && W == other.W;
- }
- /// <summary>
- /// Returns <see langword="true"/> if this quaternion and <paramref name="other"/> are approximately equal,
- /// by running <see cref="Mathf.IsEqualApprox(real_t, real_t)"/> on each component.
- /// </summary>
- /// <param name="other">The other quaternion to compare.</param>
- /// <returns>Whether or not the quaternions are approximately equal.</returns>
- public readonly bool IsEqualApprox(Quaternion other)
- {
- return Mathf.IsEqualApprox(X, other.X) && Mathf.IsEqualApprox(Y, other.Y) && Mathf.IsEqualApprox(Z, other.Z) && Mathf.IsEqualApprox(W, other.W);
- }
- /// <summary>
- /// Serves as the hash function for <see cref="Quaternion"/>.
- /// </summary>
- /// <returns>A hash code for this quaternion.</returns>
- public override readonly int GetHashCode()
- {
- return HashCode.Combine(X, Y, Z, W);
- }
- /// <summary>
- /// Converts this <see cref="Quaternion"/> to a string.
- /// </summary>
- /// <returns>A string representation of this quaternion.</returns>
- public override readonly string ToString()
- {
- return $"({X}, {Y}, {Z}, {W})";
- }
- /// <summary>
- /// Converts this <see cref="Quaternion"/> to a string with the given <paramref name="format"/>.
- /// </summary>
- /// <returns>A string representation of this quaternion.</returns>
- public readonly string ToString(string? format)
- {
- #pragma warning disable CA1305 // Disable warning: "Specify IFormatProvider"
- return $"({X.ToString(format)}, {Y.ToString(format)}, {Z.ToString(format)}, {W.ToString(format)})";
- #pragma warning restore CA1305
- }
- }
- }
|