variant.cpp 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466
  1. /*************************************************************************/
  2. /* variant.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "variant.h"
  31. #include "core/core_string_names.h"
  32. #include "core/debugger/engine_debugger.h"
  33. #include "core/io/json.h"
  34. #include "core/io/marshalls.h"
  35. #include "core/io/resource.h"
  36. #include "core/math/math_funcs.h"
  37. #include "core/string/print_string.h"
  38. #include "core/variant/variant_parser.h"
  39. String Variant::get_type_name(Variant::Type p_type) {
  40. switch (p_type) {
  41. case NIL: {
  42. return "Nil";
  43. } break;
  44. // atomic types
  45. case BOOL: {
  46. return "bool";
  47. } break;
  48. case INT: {
  49. return "int";
  50. } break;
  51. case FLOAT: {
  52. return "float";
  53. } break;
  54. case STRING: {
  55. return "String";
  56. } break;
  57. // math types
  58. case VECTOR2: {
  59. return "Vector2";
  60. } break;
  61. case VECTOR2I: {
  62. return "Vector2i";
  63. } break;
  64. case RECT2: {
  65. return "Rect2";
  66. } break;
  67. case RECT2I: {
  68. return "Rect2i";
  69. } break;
  70. case TRANSFORM2D: {
  71. return "Transform2D";
  72. } break;
  73. case VECTOR3: {
  74. return "Vector3";
  75. } break;
  76. case VECTOR3I: {
  77. return "Vector3i";
  78. } break;
  79. case PLANE: {
  80. return "Plane";
  81. } break;
  82. case AABB: {
  83. return "AABB";
  84. } break;
  85. case QUATERNION: {
  86. return "Quaternion";
  87. } break;
  88. case BASIS: {
  89. return "Basis";
  90. } break;
  91. case TRANSFORM3D: {
  92. return "Transform3D";
  93. } break;
  94. // misc types
  95. case COLOR: {
  96. return "Color";
  97. } break;
  98. case RID: {
  99. return "RID";
  100. } break;
  101. case OBJECT: {
  102. return "Object";
  103. } break;
  104. case CALLABLE: {
  105. return "Callable";
  106. } break;
  107. case SIGNAL: {
  108. return "Signal";
  109. } break;
  110. case STRING_NAME: {
  111. return "StringName";
  112. } break;
  113. case NODE_PATH: {
  114. return "NodePath";
  115. } break;
  116. case DICTIONARY: {
  117. return "Dictionary";
  118. } break;
  119. case ARRAY: {
  120. return "Array";
  121. } break;
  122. // arrays
  123. case PACKED_BYTE_ARRAY: {
  124. return "PackedByteArray";
  125. } break;
  126. case PACKED_INT32_ARRAY: {
  127. return "PackedInt32Array";
  128. } break;
  129. case PACKED_INT64_ARRAY: {
  130. return "PackedInt64Array";
  131. } break;
  132. case PACKED_FLOAT32_ARRAY: {
  133. return "PackedFloat32Array";
  134. } break;
  135. case PACKED_FLOAT64_ARRAY: {
  136. return "PackedFloat64Array";
  137. } break;
  138. case PACKED_STRING_ARRAY: {
  139. return "PackedStringArray";
  140. } break;
  141. case PACKED_VECTOR2_ARRAY: {
  142. return "PackedVector2Array";
  143. } break;
  144. case PACKED_VECTOR3_ARRAY: {
  145. return "PackedVector3Array";
  146. } break;
  147. case PACKED_COLOR_ARRAY: {
  148. return "PackedColorArray";
  149. } break;
  150. default: {
  151. }
  152. }
  153. return "";
  154. }
  155. bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) {
  156. if (p_type_from == p_type_to) {
  157. return true;
  158. }
  159. if (p_type_to == NIL) { //nil can convert to anything
  160. return true;
  161. }
  162. if (p_type_from == NIL) {
  163. return (p_type_to == OBJECT);
  164. }
  165. const Type *valid_types = nullptr;
  166. const Type *invalid_types = nullptr;
  167. switch (p_type_to) {
  168. case BOOL: {
  169. static const Type valid[] = {
  170. INT,
  171. FLOAT,
  172. STRING,
  173. NIL,
  174. };
  175. valid_types = valid;
  176. } break;
  177. case INT: {
  178. static const Type valid[] = {
  179. BOOL,
  180. FLOAT,
  181. STRING,
  182. NIL,
  183. };
  184. valid_types = valid;
  185. } break;
  186. case FLOAT: {
  187. static const Type valid[] = {
  188. BOOL,
  189. INT,
  190. STRING,
  191. NIL,
  192. };
  193. valid_types = valid;
  194. } break;
  195. case STRING: {
  196. static const Type invalid[] = {
  197. OBJECT,
  198. NIL
  199. };
  200. invalid_types = invalid;
  201. } break;
  202. case VECTOR2: {
  203. static const Type valid[] = {
  204. VECTOR2I,
  205. NIL,
  206. };
  207. valid_types = valid;
  208. } break;
  209. case VECTOR2I: {
  210. static const Type valid[] = {
  211. VECTOR2,
  212. NIL,
  213. };
  214. valid_types = valid;
  215. } break;
  216. case RECT2: {
  217. static const Type valid[] = {
  218. RECT2I,
  219. NIL,
  220. };
  221. valid_types = valid;
  222. } break;
  223. case RECT2I: {
  224. static const Type valid[] = {
  225. RECT2,
  226. NIL,
  227. };
  228. valid_types = valid;
  229. } break;
  230. case TRANSFORM2D: {
  231. static const Type valid[] = {
  232. TRANSFORM3D,
  233. NIL
  234. };
  235. valid_types = valid;
  236. } break;
  237. case VECTOR3: {
  238. static const Type valid[] = {
  239. VECTOR3I,
  240. NIL,
  241. };
  242. valid_types = valid;
  243. } break;
  244. case VECTOR3I: {
  245. static const Type valid[] = {
  246. VECTOR3,
  247. NIL,
  248. };
  249. valid_types = valid;
  250. } break;
  251. case QUATERNION: {
  252. static const Type valid[] = {
  253. BASIS,
  254. NIL
  255. };
  256. valid_types = valid;
  257. } break;
  258. case BASIS: {
  259. static const Type valid[] = {
  260. QUATERNION,
  261. NIL
  262. };
  263. valid_types = valid;
  264. } break;
  265. case TRANSFORM3D: {
  266. static const Type valid[] = {
  267. TRANSFORM2D,
  268. QUATERNION,
  269. BASIS,
  270. NIL
  271. };
  272. valid_types = valid;
  273. } break;
  274. case COLOR: {
  275. static const Type valid[] = {
  276. STRING,
  277. INT,
  278. NIL,
  279. };
  280. valid_types = valid;
  281. } break;
  282. case RID: {
  283. static const Type valid[] = {
  284. OBJECT,
  285. NIL
  286. };
  287. valid_types = valid;
  288. } break;
  289. case OBJECT: {
  290. static const Type valid[] = {
  291. NIL
  292. };
  293. valid_types = valid;
  294. } break;
  295. case STRING_NAME: {
  296. static const Type valid[] = {
  297. STRING,
  298. NIL
  299. };
  300. valid_types = valid;
  301. } break;
  302. case NODE_PATH: {
  303. static const Type valid[] = {
  304. STRING,
  305. NIL
  306. };
  307. valid_types = valid;
  308. } break;
  309. case ARRAY: {
  310. static const Type valid[] = {
  311. PACKED_BYTE_ARRAY,
  312. PACKED_INT32_ARRAY,
  313. PACKED_INT64_ARRAY,
  314. PACKED_FLOAT32_ARRAY,
  315. PACKED_FLOAT64_ARRAY,
  316. PACKED_STRING_ARRAY,
  317. PACKED_COLOR_ARRAY,
  318. PACKED_VECTOR2_ARRAY,
  319. PACKED_VECTOR3_ARRAY,
  320. NIL
  321. };
  322. valid_types = valid;
  323. } break;
  324. // arrays
  325. case PACKED_BYTE_ARRAY: {
  326. static const Type valid[] = {
  327. ARRAY,
  328. NIL
  329. };
  330. valid_types = valid;
  331. } break;
  332. case PACKED_INT32_ARRAY: {
  333. static const Type valid[] = {
  334. ARRAY,
  335. NIL
  336. };
  337. valid_types = valid;
  338. } break;
  339. case PACKED_INT64_ARRAY: {
  340. static const Type valid[] = {
  341. ARRAY,
  342. NIL
  343. };
  344. valid_types = valid;
  345. } break;
  346. case PACKED_FLOAT32_ARRAY: {
  347. static const Type valid[] = {
  348. ARRAY,
  349. NIL
  350. };
  351. valid_types = valid;
  352. } break;
  353. case PACKED_FLOAT64_ARRAY: {
  354. static const Type valid[] = {
  355. ARRAY,
  356. NIL
  357. };
  358. valid_types = valid;
  359. } break;
  360. case PACKED_STRING_ARRAY: {
  361. static const Type valid[] = {
  362. ARRAY,
  363. NIL
  364. };
  365. valid_types = valid;
  366. } break;
  367. case PACKED_VECTOR2_ARRAY: {
  368. static const Type valid[] = {
  369. ARRAY,
  370. NIL
  371. };
  372. valid_types = valid;
  373. } break;
  374. case PACKED_VECTOR3_ARRAY: {
  375. static const Type valid[] = {
  376. ARRAY,
  377. NIL
  378. };
  379. valid_types = valid;
  380. } break;
  381. case PACKED_COLOR_ARRAY: {
  382. static const Type valid[] = {
  383. ARRAY,
  384. NIL
  385. };
  386. valid_types = valid;
  387. } break;
  388. default: {
  389. }
  390. }
  391. if (valid_types) {
  392. int i = 0;
  393. while (valid_types[i] != NIL) {
  394. if (p_type_from == valid_types[i]) {
  395. return true;
  396. }
  397. i++;
  398. }
  399. } else if (invalid_types) {
  400. int i = 0;
  401. while (invalid_types[i] != NIL) {
  402. if (p_type_from == invalid_types[i]) {
  403. return false;
  404. }
  405. i++;
  406. }
  407. return true;
  408. }
  409. return false;
  410. }
  411. bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) {
  412. if (p_type_from == p_type_to) {
  413. return true;
  414. }
  415. if (p_type_to == NIL) { //nil can convert to anything
  416. return true;
  417. }
  418. if (p_type_from == NIL) {
  419. return (p_type_to == OBJECT);
  420. }
  421. const Type *valid_types = nullptr;
  422. switch (p_type_to) {
  423. case BOOL: {
  424. static const Type valid[] = {
  425. INT,
  426. FLOAT,
  427. //STRING,
  428. NIL,
  429. };
  430. valid_types = valid;
  431. } break;
  432. case INT: {
  433. static const Type valid[] = {
  434. BOOL,
  435. FLOAT,
  436. //STRING,
  437. NIL,
  438. };
  439. valid_types = valid;
  440. } break;
  441. case FLOAT: {
  442. static const Type valid[] = {
  443. BOOL,
  444. INT,
  445. //STRING,
  446. NIL,
  447. };
  448. valid_types = valid;
  449. } break;
  450. case STRING: {
  451. static const Type valid[] = {
  452. NODE_PATH,
  453. STRING_NAME,
  454. NIL
  455. };
  456. valid_types = valid;
  457. } break;
  458. case VECTOR2: {
  459. static const Type valid[] = {
  460. VECTOR2I,
  461. NIL,
  462. };
  463. valid_types = valid;
  464. } break;
  465. case VECTOR2I: {
  466. static const Type valid[] = {
  467. VECTOR2,
  468. NIL,
  469. };
  470. valid_types = valid;
  471. } break;
  472. case RECT2: {
  473. static const Type valid[] = {
  474. RECT2I,
  475. NIL,
  476. };
  477. valid_types = valid;
  478. } break;
  479. case RECT2I: {
  480. static const Type valid[] = {
  481. RECT2,
  482. NIL,
  483. };
  484. valid_types = valid;
  485. } break;
  486. case TRANSFORM2D: {
  487. static const Type valid[] = {
  488. TRANSFORM3D,
  489. NIL
  490. };
  491. valid_types = valid;
  492. } break;
  493. case VECTOR3: {
  494. static const Type valid[] = {
  495. VECTOR3I,
  496. NIL,
  497. };
  498. valid_types = valid;
  499. } break;
  500. case VECTOR3I: {
  501. static const Type valid[] = {
  502. VECTOR3,
  503. NIL,
  504. };
  505. valid_types = valid;
  506. } break;
  507. case QUATERNION: {
  508. static const Type valid[] = {
  509. BASIS,
  510. NIL
  511. };
  512. valid_types = valid;
  513. } break;
  514. case BASIS: {
  515. static const Type valid[] = {
  516. QUATERNION,
  517. NIL
  518. };
  519. valid_types = valid;
  520. } break;
  521. case TRANSFORM3D: {
  522. static const Type valid[] = {
  523. TRANSFORM2D,
  524. QUATERNION,
  525. BASIS,
  526. NIL
  527. };
  528. valid_types = valid;
  529. } break;
  530. case COLOR: {
  531. static const Type valid[] = {
  532. STRING,
  533. INT,
  534. NIL,
  535. };
  536. valid_types = valid;
  537. } break;
  538. case RID: {
  539. static const Type valid[] = {
  540. OBJECT,
  541. NIL
  542. };
  543. valid_types = valid;
  544. } break;
  545. case OBJECT: {
  546. static const Type valid[] = {
  547. NIL
  548. };
  549. valid_types = valid;
  550. } break;
  551. case STRING_NAME: {
  552. static const Type valid[] = {
  553. STRING,
  554. NIL
  555. };
  556. valid_types = valid;
  557. } break;
  558. case NODE_PATH: {
  559. static const Type valid[] = {
  560. STRING,
  561. NIL
  562. };
  563. valid_types = valid;
  564. } break;
  565. case ARRAY: {
  566. static const Type valid[] = {
  567. PACKED_BYTE_ARRAY,
  568. PACKED_INT32_ARRAY,
  569. PACKED_INT64_ARRAY,
  570. PACKED_FLOAT32_ARRAY,
  571. PACKED_FLOAT64_ARRAY,
  572. PACKED_STRING_ARRAY,
  573. PACKED_COLOR_ARRAY,
  574. PACKED_VECTOR2_ARRAY,
  575. PACKED_VECTOR3_ARRAY,
  576. NIL
  577. };
  578. valid_types = valid;
  579. } break;
  580. // arrays
  581. case PACKED_BYTE_ARRAY: {
  582. static const Type valid[] = {
  583. ARRAY,
  584. NIL
  585. };
  586. valid_types = valid;
  587. } break;
  588. case PACKED_INT32_ARRAY: {
  589. static const Type valid[] = {
  590. ARRAY,
  591. NIL
  592. };
  593. valid_types = valid;
  594. } break;
  595. case PACKED_INT64_ARRAY: {
  596. static const Type valid[] = {
  597. ARRAY,
  598. NIL
  599. };
  600. valid_types = valid;
  601. } break;
  602. case PACKED_FLOAT32_ARRAY: {
  603. static const Type valid[] = {
  604. ARRAY,
  605. NIL
  606. };
  607. valid_types = valid;
  608. } break;
  609. case PACKED_FLOAT64_ARRAY: {
  610. static const Type valid[] = {
  611. ARRAY,
  612. NIL
  613. };
  614. valid_types = valid;
  615. } break;
  616. case PACKED_STRING_ARRAY: {
  617. static const Type valid[] = {
  618. ARRAY,
  619. NIL
  620. };
  621. valid_types = valid;
  622. } break;
  623. case PACKED_VECTOR2_ARRAY: {
  624. static const Type valid[] = {
  625. ARRAY,
  626. NIL
  627. };
  628. valid_types = valid;
  629. } break;
  630. case PACKED_VECTOR3_ARRAY: {
  631. static const Type valid[] = {
  632. ARRAY,
  633. NIL
  634. };
  635. valid_types = valid;
  636. } break;
  637. case PACKED_COLOR_ARRAY: {
  638. static const Type valid[] = {
  639. ARRAY,
  640. NIL
  641. };
  642. valid_types = valid;
  643. } break;
  644. default: {
  645. }
  646. }
  647. if (valid_types) {
  648. int i = 0;
  649. while (valid_types[i] != NIL) {
  650. if (p_type_from == valid_types[i]) {
  651. return true;
  652. }
  653. i++;
  654. }
  655. }
  656. return false;
  657. }
  658. bool Variant::operator==(const Variant &p_variant) const {
  659. return hash_compare(p_variant);
  660. }
  661. bool Variant::operator!=(const Variant &p_variant) const {
  662. // Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL
  663. if (type != p_variant.type) { //evaluation of operator== needs to be more strict
  664. return true;
  665. }
  666. bool v;
  667. Variant r;
  668. evaluate(OP_NOT_EQUAL, *this, p_variant, r, v);
  669. return r;
  670. }
  671. bool Variant::operator<(const Variant &p_variant) const {
  672. if (type != p_variant.type) { //if types differ, then order by type first
  673. return type < p_variant.type;
  674. }
  675. bool v;
  676. Variant r;
  677. evaluate(OP_LESS, *this, p_variant, r, v);
  678. return r;
  679. }
  680. bool Variant::is_zero() const {
  681. switch (type) {
  682. case NIL: {
  683. return true;
  684. } break;
  685. // atomic types
  686. case BOOL: {
  687. return !(_data._bool);
  688. } break;
  689. case INT: {
  690. return _data._int == 0;
  691. } break;
  692. case FLOAT: {
  693. return _data._float == 0;
  694. } break;
  695. case STRING: {
  696. return *reinterpret_cast<const String *>(_data._mem) == String();
  697. } break;
  698. // math types
  699. case VECTOR2: {
  700. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2();
  701. } break;
  702. case VECTOR2I: {
  703. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i();
  704. } break;
  705. case RECT2: {
  706. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2();
  707. } break;
  708. case RECT2I: {
  709. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i();
  710. } break;
  711. case TRANSFORM2D: {
  712. return *_data._transform2d == Transform2D();
  713. } break;
  714. case VECTOR3: {
  715. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3();
  716. } break;
  717. case VECTOR3I: {
  718. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i();
  719. } break;
  720. case PLANE: {
  721. return *reinterpret_cast<const Plane *>(_data._mem) == Plane();
  722. } break;
  723. case AABB: {
  724. return *_data._aabb == ::AABB();
  725. } break;
  726. case QUATERNION: {
  727. return *reinterpret_cast<const Quaternion *>(_data._mem) == Quaternion();
  728. } break;
  729. case BASIS: {
  730. return *_data._basis == Basis();
  731. } break;
  732. case TRANSFORM3D: {
  733. return *_data._transform3d == Transform3D();
  734. } break;
  735. // misc types
  736. case COLOR: {
  737. return *reinterpret_cast<const Color *>(_data._mem) == Color();
  738. } break;
  739. case RID: {
  740. return *reinterpret_cast<const ::RID *>(_data._mem) == ::RID();
  741. } break;
  742. case OBJECT: {
  743. return _get_obj().obj == nullptr;
  744. } break;
  745. case CALLABLE: {
  746. return reinterpret_cast<const Callable *>(_data._mem)->is_null();
  747. } break;
  748. case SIGNAL: {
  749. return reinterpret_cast<const Signal *>(_data._mem)->is_null();
  750. } break;
  751. case STRING_NAME: {
  752. return *reinterpret_cast<const StringName *>(_data._mem) != StringName();
  753. } break;
  754. case NODE_PATH: {
  755. return reinterpret_cast<const NodePath *>(_data._mem)->is_empty();
  756. } break;
  757. case DICTIONARY: {
  758. return reinterpret_cast<const Dictionary *>(_data._mem)->is_empty();
  759. } break;
  760. case ARRAY: {
  761. return reinterpret_cast<const Array *>(_data._mem)->is_empty();
  762. } break;
  763. // arrays
  764. case PACKED_BYTE_ARRAY: {
  765. return PackedArrayRef<uint8_t>::get_array(_data.packed_array).size() == 0;
  766. } break;
  767. case PACKED_INT32_ARRAY: {
  768. return PackedArrayRef<int32_t>::get_array(_data.packed_array).size() == 0;
  769. } break;
  770. case PACKED_INT64_ARRAY: {
  771. return PackedArrayRef<int64_t>::get_array(_data.packed_array).size() == 0;
  772. } break;
  773. case PACKED_FLOAT32_ARRAY: {
  774. return PackedArrayRef<float>::get_array(_data.packed_array).size() == 0;
  775. } break;
  776. case PACKED_FLOAT64_ARRAY: {
  777. return PackedArrayRef<double>::get_array(_data.packed_array).size() == 0;
  778. } break;
  779. case PACKED_STRING_ARRAY: {
  780. return PackedArrayRef<String>::get_array(_data.packed_array).size() == 0;
  781. } break;
  782. case PACKED_VECTOR2_ARRAY: {
  783. return PackedArrayRef<Vector2>::get_array(_data.packed_array).size() == 0;
  784. } break;
  785. case PACKED_VECTOR3_ARRAY: {
  786. return PackedArrayRef<Vector3>::get_array(_data.packed_array).size() == 0;
  787. } break;
  788. case PACKED_COLOR_ARRAY: {
  789. return PackedArrayRef<Color>::get_array(_data.packed_array).size() == 0;
  790. } break;
  791. default: {
  792. }
  793. }
  794. return false;
  795. }
  796. bool Variant::is_one() const {
  797. switch (type) {
  798. case NIL: {
  799. return true;
  800. } break;
  801. // atomic types
  802. case BOOL: {
  803. return _data._bool;
  804. } break;
  805. case INT: {
  806. return _data._int == 1;
  807. } break;
  808. case FLOAT: {
  809. return _data._float == 1;
  810. } break;
  811. case VECTOR2: {
  812. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1);
  813. } break;
  814. case VECTOR2I: {
  815. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i(1, 1);
  816. } break;
  817. case RECT2: {
  818. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1);
  819. } break;
  820. case RECT2I: {
  821. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i(1, 1, 1, 1);
  822. } break;
  823. case VECTOR3: {
  824. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1);
  825. } break;
  826. case VECTOR3I: {
  827. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i(1, 1, 1);
  828. } break;
  829. case PLANE: {
  830. return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1);
  831. } break;
  832. case COLOR: {
  833. return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1);
  834. } break;
  835. default: {
  836. return !is_zero();
  837. }
  838. }
  839. return false;
  840. }
  841. bool Variant::is_null() const {
  842. if (type == OBJECT && _get_obj().obj) {
  843. return false;
  844. } else {
  845. return true;
  846. }
  847. }
  848. bool Variant::initialize_ref(Object *p_object) {
  849. RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object));
  850. if (!ref_counted->init_ref()) {
  851. return false;
  852. }
  853. return true;
  854. }
  855. void Variant::reference(const Variant &p_variant) {
  856. switch (type) {
  857. case NIL:
  858. case BOOL:
  859. case INT:
  860. case FLOAT:
  861. break;
  862. default:
  863. clear();
  864. }
  865. type = p_variant.type;
  866. switch (p_variant.type) {
  867. case NIL: {
  868. // none
  869. } break;
  870. // atomic types
  871. case BOOL: {
  872. _data._bool = p_variant._data._bool;
  873. } break;
  874. case INT: {
  875. _data._int = p_variant._data._int;
  876. } break;
  877. case FLOAT: {
  878. _data._float = p_variant._data._float;
  879. } break;
  880. case STRING: {
  881. memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem)));
  882. } break;
  883. // math types
  884. case VECTOR2: {
  885. memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem)));
  886. } break;
  887. case VECTOR2I: {
  888. memnew_placement(_data._mem, Vector2i(*reinterpret_cast<const Vector2i *>(p_variant._data._mem)));
  889. } break;
  890. case RECT2: {
  891. memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem)));
  892. } break;
  893. case RECT2I: {
  894. memnew_placement(_data._mem, Rect2i(*reinterpret_cast<const Rect2i *>(p_variant._data._mem)));
  895. } break;
  896. case TRANSFORM2D: {
  897. _data._transform2d = memnew(Transform2D(*p_variant._data._transform2d));
  898. } break;
  899. case VECTOR3: {
  900. memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem)));
  901. } break;
  902. case VECTOR3I: {
  903. memnew_placement(_data._mem, Vector3i(*reinterpret_cast<const Vector3i *>(p_variant._data._mem)));
  904. } break;
  905. case PLANE: {
  906. memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem)));
  907. } break;
  908. case AABB: {
  909. _data._aabb = memnew(::AABB(*p_variant._data._aabb));
  910. } break;
  911. case QUATERNION: {
  912. memnew_placement(_data._mem, Quaternion(*reinterpret_cast<const Quaternion *>(p_variant._data._mem)));
  913. } break;
  914. case BASIS: {
  915. _data._basis = memnew(Basis(*p_variant._data._basis));
  916. } break;
  917. case TRANSFORM3D: {
  918. _data._transform3d = memnew(Transform3D(*p_variant._data._transform3d));
  919. } break;
  920. // misc types
  921. case COLOR: {
  922. memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem)));
  923. } break;
  924. case RID: {
  925. memnew_placement(_data._mem, ::RID(*reinterpret_cast<const ::RID *>(p_variant._data._mem)));
  926. } break;
  927. case OBJECT: {
  928. memnew_placement(_data._mem, ObjData);
  929. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  930. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  931. if (!ref_counted->reference()) {
  932. _get_obj().obj = nullptr;
  933. _get_obj().id = ObjectID();
  934. break;
  935. }
  936. }
  937. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  938. _get_obj().id = p_variant._get_obj().id;
  939. } break;
  940. case CALLABLE: {
  941. memnew_placement(_data._mem, Callable(*reinterpret_cast<const Callable *>(p_variant._data._mem)));
  942. } break;
  943. case SIGNAL: {
  944. memnew_placement(_data._mem, Signal(*reinterpret_cast<const Signal *>(p_variant._data._mem)));
  945. } break;
  946. case STRING_NAME: {
  947. memnew_placement(_data._mem, StringName(*reinterpret_cast<const StringName *>(p_variant._data._mem)));
  948. } break;
  949. case NODE_PATH: {
  950. memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem)));
  951. } break;
  952. case DICTIONARY: {
  953. memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem)));
  954. } break;
  955. case ARRAY: {
  956. memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem)));
  957. } break;
  958. // arrays
  959. case PACKED_BYTE_ARRAY: {
  960. _data.packed_array = static_cast<PackedArrayRef<uint8_t> *>(p_variant._data.packed_array)->reference();
  961. if (!_data.packed_array) {
  962. _data.packed_array = PackedArrayRef<uint8_t>::create();
  963. }
  964. } break;
  965. case PACKED_INT32_ARRAY: {
  966. _data.packed_array = static_cast<PackedArrayRef<int32_t> *>(p_variant._data.packed_array)->reference();
  967. if (!_data.packed_array) {
  968. _data.packed_array = PackedArrayRef<int32_t>::create();
  969. }
  970. } break;
  971. case PACKED_INT64_ARRAY: {
  972. _data.packed_array = static_cast<PackedArrayRef<int64_t> *>(p_variant._data.packed_array)->reference();
  973. if (!_data.packed_array) {
  974. _data.packed_array = PackedArrayRef<int64_t>::create();
  975. }
  976. } break;
  977. case PACKED_FLOAT32_ARRAY: {
  978. _data.packed_array = static_cast<PackedArrayRef<float> *>(p_variant._data.packed_array)->reference();
  979. if (!_data.packed_array) {
  980. _data.packed_array = PackedArrayRef<float>::create();
  981. }
  982. } break;
  983. case PACKED_FLOAT64_ARRAY: {
  984. _data.packed_array = static_cast<PackedArrayRef<double> *>(p_variant._data.packed_array)->reference();
  985. if (!_data.packed_array) {
  986. _data.packed_array = PackedArrayRef<double>::create();
  987. }
  988. } break;
  989. case PACKED_STRING_ARRAY: {
  990. _data.packed_array = static_cast<PackedArrayRef<String> *>(p_variant._data.packed_array)->reference();
  991. if (!_data.packed_array) {
  992. _data.packed_array = PackedArrayRef<String>::create();
  993. }
  994. } break;
  995. case PACKED_VECTOR2_ARRAY: {
  996. _data.packed_array = static_cast<PackedArrayRef<Vector2> *>(p_variant._data.packed_array)->reference();
  997. if (!_data.packed_array) {
  998. _data.packed_array = PackedArrayRef<Vector2>::create();
  999. }
  1000. } break;
  1001. case PACKED_VECTOR3_ARRAY: {
  1002. _data.packed_array = static_cast<PackedArrayRef<Vector3> *>(p_variant._data.packed_array)->reference();
  1003. if (!_data.packed_array) {
  1004. _data.packed_array = PackedArrayRef<Vector3>::create();
  1005. }
  1006. } break;
  1007. case PACKED_COLOR_ARRAY: {
  1008. _data.packed_array = static_cast<PackedArrayRef<Color> *>(p_variant._data.packed_array)->reference();
  1009. if (!_data.packed_array) {
  1010. _data.packed_array = PackedArrayRef<Color>::create();
  1011. }
  1012. } break;
  1013. default: {
  1014. }
  1015. }
  1016. }
  1017. void Variant::zero() {
  1018. switch (type) {
  1019. case NIL:
  1020. break;
  1021. case BOOL:
  1022. this->_data._bool = false;
  1023. break;
  1024. case INT:
  1025. this->_data._int = 0;
  1026. break;
  1027. case FLOAT:
  1028. this->_data._float = 0;
  1029. break;
  1030. case VECTOR2:
  1031. *reinterpret_cast<Vector2 *>(this->_data._mem) = Vector2();
  1032. break;
  1033. case VECTOR2I:
  1034. *reinterpret_cast<Vector2i *>(this->_data._mem) = Vector2i();
  1035. break;
  1036. case RECT2:
  1037. *reinterpret_cast<Rect2 *>(this->_data._mem) = Rect2();
  1038. break;
  1039. case RECT2I:
  1040. *reinterpret_cast<Rect2i *>(this->_data._mem) = Rect2i();
  1041. break;
  1042. case VECTOR3:
  1043. *reinterpret_cast<Vector3 *>(this->_data._mem) = Vector3();
  1044. break;
  1045. case VECTOR3I:
  1046. *reinterpret_cast<Vector3i *>(this->_data._mem) = Vector3i();
  1047. break;
  1048. case PLANE:
  1049. *reinterpret_cast<Plane *>(this->_data._mem) = Plane();
  1050. break;
  1051. case QUATERNION:
  1052. *reinterpret_cast<Quaternion *>(this->_data._mem) = Quaternion();
  1053. break;
  1054. case COLOR:
  1055. *reinterpret_cast<Color *>(this->_data._mem) = Color();
  1056. break;
  1057. default:
  1058. this->clear();
  1059. break;
  1060. }
  1061. }
  1062. void Variant::_clear_internal() {
  1063. switch (type) {
  1064. case STRING: {
  1065. reinterpret_cast<String *>(_data._mem)->~String();
  1066. } break;
  1067. /*
  1068. // no point, they don't allocate memory
  1069. VECTOR3,
  1070. PLANE,
  1071. QUATERNION,
  1072. COLOR,
  1073. VECTOR2,
  1074. RECT2
  1075. */
  1076. case TRANSFORM2D: {
  1077. memdelete(_data._transform2d);
  1078. } break;
  1079. case AABB: {
  1080. memdelete(_data._aabb);
  1081. } break;
  1082. case BASIS: {
  1083. memdelete(_data._basis);
  1084. } break;
  1085. case TRANSFORM3D: {
  1086. memdelete(_data._transform3d);
  1087. } break;
  1088. // misc types
  1089. case STRING_NAME: {
  1090. reinterpret_cast<StringName *>(_data._mem)->~StringName();
  1091. } break;
  1092. case NODE_PATH: {
  1093. reinterpret_cast<NodePath *>(_data._mem)->~NodePath();
  1094. } break;
  1095. case OBJECT: {
  1096. if (_get_obj().id.is_ref_counted()) {
  1097. //we are safe that there is a reference here
  1098. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  1099. if (ref_counted->unreference()) {
  1100. memdelete(ref_counted);
  1101. }
  1102. }
  1103. _get_obj().obj = nullptr;
  1104. _get_obj().id = ObjectID();
  1105. } break;
  1106. case RID: {
  1107. // not much need probably
  1108. // Can't seem to use destructor + scoping operator, so hack.
  1109. typedef ::RID RID_Class;
  1110. reinterpret_cast<RID_Class *>(_data._mem)->~RID_Class();
  1111. } break;
  1112. case CALLABLE: {
  1113. reinterpret_cast<Callable *>(_data._mem)->~Callable();
  1114. } break;
  1115. case SIGNAL: {
  1116. reinterpret_cast<Signal *>(_data._mem)->~Signal();
  1117. } break;
  1118. case DICTIONARY: {
  1119. reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary();
  1120. } break;
  1121. case ARRAY: {
  1122. reinterpret_cast<Array *>(_data._mem)->~Array();
  1123. } break;
  1124. // arrays
  1125. case PACKED_BYTE_ARRAY: {
  1126. PackedArrayRefBase::destroy(_data.packed_array);
  1127. } break;
  1128. case PACKED_INT32_ARRAY: {
  1129. PackedArrayRefBase::destroy(_data.packed_array);
  1130. } break;
  1131. case PACKED_INT64_ARRAY: {
  1132. PackedArrayRefBase::destroy(_data.packed_array);
  1133. } break;
  1134. case PACKED_FLOAT32_ARRAY: {
  1135. PackedArrayRefBase::destroy(_data.packed_array);
  1136. } break;
  1137. case PACKED_FLOAT64_ARRAY: {
  1138. PackedArrayRefBase::destroy(_data.packed_array);
  1139. } break;
  1140. case PACKED_STRING_ARRAY: {
  1141. PackedArrayRefBase::destroy(_data.packed_array);
  1142. } break;
  1143. case PACKED_VECTOR2_ARRAY: {
  1144. PackedArrayRefBase::destroy(_data.packed_array);
  1145. } break;
  1146. case PACKED_VECTOR3_ARRAY: {
  1147. PackedArrayRefBase::destroy(_data.packed_array);
  1148. } break;
  1149. case PACKED_COLOR_ARRAY: {
  1150. PackedArrayRefBase::destroy(_data.packed_array);
  1151. } break;
  1152. default: {
  1153. } /* not needed */
  1154. }
  1155. }
  1156. Variant::operator signed int() const {
  1157. switch (type) {
  1158. case NIL:
  1159. return 0;
  1160. case BOOL:
  1161. return _data._bool ? 1 : 0;
  1162. case INT:
  1163. return _data._int;
  1164. case FLOAT:
  1165. return _data._float;
  1166. case STRING:
  1167. return operator String().to_int();
  1168. default: {
  1169. return 0;
  1170. }
  1171. }
  1172. }
  1173. Variant::operator unsigned int() const {
  1174. switch (type) {
  1175. case NIL:
  1176. return 0;
  1177. case BOOL:
  1178. return _data._bool ? 1 : 0;
  1179. case INT:
  1180. return _data._int;
  1181. case FLOAT:
  1182. return _data._float;
  1183. case STRING:
  1184. return operator String().to_int();
  1185. default: {
  1186. return 0;
  1187. }
  1188. }
  1189. }
  1190. Variant::operator int64_t() const {
  1191. switch (type) {
  1192. case NIL:
  1193. return 0;
  1194. case BOOL:
  1195. return _data._bool ? 1 : 0;
  1196. case INT:
  1197. return _data._int;
  1198. case FLOAT:
  1199. return _data._float;
  1200. case STRING:
  1201. return operator String().to_int();
  1202. default: {
  1203. return 0;
  1204. }
  1205. }
  1206. }
  1207. Variant::operator uint64_t() const {
  1208. switch (type) {
  1209. case NIL:
  1210. return 0;
  1211. case BOOL:
  1212. return _data._bool ? 1 : 0;
  1213. case INT:
  1214. return _data._int;
  1215. case FLOAT:
  1216. return _data._float;
  1217. case STRING:
  1218. return operator String().to_int();
  1219. default: {
  1220. return 0;
  1221. }
  1222. }
  1223. }
  1224. Variant::operator ObjectID() const {
  1225. if (type == INT) {
  1226. return ObjectID(_data._int);
  1227. } else if (type == OBJECT) {
  1228. return _get_obj().id;
  1229. } else {
  1230. return ObjectID();
  1231. }
  1232. }
  1233. #ifdef NEED_LONG_INT
  1234. Variant::operator signed long() const {
  1235. switch (type) {
  1236. case NIL:
  1237. return 0;
  1238. case BOOL:
  1239. return _data._bool ? 1 : 0;
  1240. case INT:
  1241. return _data._int;
  1242. case FLOAT:
  1243. return _data._float;
  1244. case STRING:
  1245. return operator String().to_int();
  1246. default: {
  1247. return 0;
  1248. }
  1249. }
  1250. return 0;
  1251. }
  1252. Variant::operator unsigned long() const {
  1253. switch (type) {
  1254. case NIL:
  1255. return 0;
  1256. case BOOL:
  1257. return _data._bool ? 1 : 0;
  1258. case INT:
  1259. return _data._int;
  1260. case FLOAT:
  1261. return _data._float;
  1262. case STRING:
  1263. return operator String().to_int();
  1264. default: {
  1265. return 0;
  1266. }
  1267. }
  1268. return 0;
  1269. }
  1270. #endif
  1271. Variant::operator signed short() const {
  1272. switch (type) {
  1273. case NIL:
  1274. return 0;
  1275. case BOOL:
  1276. return _data._bool ? 1 : 0;
  1277. case INT:
  1278. return _data._int;
  1279. case FLOAT:
  1280. return _data._float;
  1281. case STRING:
  1282. return operator String().to_int();
  1283. default: {
  1284. return 0;
  1285. }
  1286. }
  1287. }
  1288. Variant::operator unsigned short() const {
  1289. switch (type) {
  1290. case NIL:
  1291. return 0;
  1292. case BOOL:
  1293. return _data._bool ? 1 : 0;
  1294. case INT:
  1295. return _data._int;
  1296. case FLOAT:
  1297. return _data._float;
  1298. case STRING:
  1299. return operator String().to_int();
  1300. default: {
  1301. return 0;
  1302. }
  1303. }
  1304. }
  1305. Variant::operator signed char() const {
  1306. switch (type) {
  1307. case NIL:
  1308. return 0;
  1309. case BOOL:
  1310. return _data._bool ? 1 : 0;
  1311. case INT:
  1312. return _data._int;
  1313. case FLOAT:
  1314. return _data._float;
  1315. case STRING:
  1316. return operator String().to_int();
  1317. default: {
  1318. return 0;
  1319. }
  1320. }
  1321. }
  1322. Variant::operator unsigned char() const {
  1323. switch (type) {
  1324. case NIL:
  1325. return 0;
  1326. case BOOL:
  1327. return _data._bool ? 1 : 0;
  1328. case INT:
  1329. return _data._int;
  1330. case FLOAT:
  1331. return _data._float;
  1332. case STRING:
  1333. return operator String().to_int();
  1334. default: {
  1335. return 0;
  1336. }
  1337. }
  1338. }
  1339. Variant::operator char32_t() const {
  1340. return operator unsigned int();
  1341. }
  1342. Variant::operator float() const {
  1343. switch (type) {
  1344. case NIL:
  1345. return 0;
  1346. case BOOL:
  1347. return _data._bool ? 1.0 : 0.0;
  1348. case INT:
  1349. return (float)_data._int;
  1350. case FLOAT:
  1351. return _data._float;
  1352. case STRING:
  1353. return operator String().to_float();
  1354. default: {
  1355. return 0;
  1356. }
  1357. }
  1358. }
  1359. Variant::operator double() const {
  1360. switch (type) {
  1361. case NIL:
  1362. return 0;
  1363. case BOOL:
  1364. return _data._bool ? 1.0 : 0.0;
  1365. case INT:
  1366. return (double)_data._int;
  1367. case FLOAT:
  1368. return _data._float;
  1369. case STRING:
  1370. return operator String().to_float();
  1371. default: {
  1372. return 0;
  1373. }
  1374. }
  1375. }
  1376. Variant::operator StringName() const {
  1377. if (type == STRING_NAME) {
  1378. return *reinterpret_cast<const StringName *>(_data._mem);
  1379. } else if (type == STRING) {
  1380. return *reinterpret_cast<const String *>(_data._mem);
  1381. }
  1382. return StringName();
  1383. }
  1384. struct _VariantStrPair {
  1385. String key;
  1386. String value;
  1387. bool operator<(const _VariantStrPair &p) const {
  1388. return key < p.key;
  1389. }
  1390. };
  1391. Variant::operator String() const {
  1392. return stringify(0);
  1393. }
  1394. template <class T>
  1395. String stringify_vector(const T &vec, int recursion_count) {
  1396. String str("[");
  1397. for (int i = 0; i < vec.size(); i++) {
  1398. if (i > 0) {
  1399. str += ", ";
  1400. }
  1401. str = str + Variant(vec[i]).stringify(recursion_count);
  1402. }
  1403. str += "]";
  1404. return str;
  1405. }
  1406. String Variant::stringify(int recursion_count) const {
  1407. switch (type) {
  1408. case NIL:
  1409. return "null";
  1410. case BOOL:
  1411. return _data._bool ? "true" : "false";
  1412. case INT:
  1413. return itos(_data._int);
  1414. case FLOAT:
  1415. return rtos(_data._float);
  1416. case STRING:
  1417. return *reinterpret_cast<const String *>(_data._mem);
  1418. case VECTOR2:
  1419. return operator Vector2();
  1420. case VECTOR2I:
  1421. return operator Vector2i();
  1422. case RECT2:
  1423. return operator Rect2();
  1424. case RECT2I:
  1425. return operator Rect2i();
  1426. case TRANSFORM2D:
  1427. return operator Transform2D();
  1428. case VECTOR3:
  1429. return operator Vector3();
  1430. case VECTOR3I:
  1431. return operator Vector3i();
  1432. case PLANE:
  1433. return operator Plane();
  1434. case AABB:
  1435. return operator ::AABB();
  1436. case QUATERNION:
  1437. return operator Quaternion();
  1438. case BASIS:
  1439. return operator Basis();
  1440. case TRANSFORM3D:
  1441. return operator Transform3D();
  1442. case STRING_NAME:
  1443. return operator StringName();
  1444. case NODE_PATH:
  1445. return operator NodePath();
  1446. case COLOR:
  1447. return operator Color();
  1448. case DICTIONARY: {
  1449. const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem);
  1450. if (recursion_count > MAX_RECURSION) {
  1451. ERR_PRINT("Max recursion reached");
  1452. return "{...}";
  1453. }
  1454. String str("{");
  1455. List<Variant> keys;
  1456. d.get_key_list(&keys);
  1457. Vector<_VariantStrPair> pairs;
  1458. recursion_count++;
  1459. for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
  1460. _VariantStrPair sp;
  1461. sp.key = E->get().stringify(recursion_count);
  1462. sp.value = d[E->get()].stringify(recursion_count);
  1463. pairs.push_back(sp);
  1464. }
  1465. for (int i = 0; i < pairs.size(); i++) {
  1466. if (i > 0) {
  1467. str += ", ";
  1468. }
  1469. str += pairs[i].key + ":" + pairs[i].value;
  1470. }
  1471. str += "}";
  1472. return str;
  1473. } break;
  1474. case PACKED_VECTOR2_ARRAY: {
  1475. return stringify_vector(operator Vector<Vector2>(), recursion_count);
  1476. } break;
  1477. case PACKED_VECTOR3_ARRAY: {
  1478. return stringify_vector(operator Vector<Vector3>(), recursion_count);
  1479. } break;
  1480. case PACKED_COLOR_ARRAY: {
  1481. return stringify_vector(operator Vector<Color>(), recursion_count);
  1482. } break;
  1483. case PACKED_STRING_ARRAY: {
  1484. return stringify_vector(operator Vector<String>(), recursion_count);
  1485. } break;
  1486. case PACKED_BYTE_ARRAY: {
  1487. return stringify_vector(operator Vector<uint8_t>(), recursion_count);
  1488. } break;
  1489. case PACKED_INT32_ARRAY: {
  1490. return stringify_vector(operator Vector<int32_t>(), recursion_count);
  1491. } break;
  1492. case PACKED_INT64_ARRAY: {
  1493. return stringify_vector(operator Vector<int64_t>(), recursion_count);
  1494. } break;
  1495. case PACKED_FLOAT32_ARRAY: {
  1496. return stringify_vector(operator Vector<float>(), recursion_count);
  1497. } break;
  1498. case PACKED_FLOAT64_ARRAY: {
  1499. return stringify_vector(operator Vector<double>(), recursion_count);
  1500. } break;
  1501. case ARRAY: {
  1502. Array arr = operator Array();
  1503. if (recursion_count > MAX_RECURSION) {
  1504. ERR_PRINT("Max recursion reached");
  1505. return "[...]";
  1506. }
  1507. String str = stringify_vector(arr, recursion_count);
  1508. return str;
  1509. } break;
  1510. case OBJECT: {
  1511. if (_get_obj().obj) {
  1512. if (!_get_obj().id.is_ref_counted() && ObjectDB::get_instance(_get_obj().id) == nullptr) {
  1513. return "[Freed Object]";
  1514. }
  1515. return _get_obj().obj->to_string();
  1516. } else {
  1517. return "[Object:null]";
  1518. }
  1519. } break;
  1520. case CALLABLE: {
  1521. const Callable &c = *reinterpret_cast<const Callable *>(_data._mem);
  1522. return c;
  1523. } break;
  1524. case SIGNAL: {
  1525. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  1526. return s;
  1527. } break;
  1528. case RID: {
  1529. const ::RID &s = *reinterpret_cast<const ::RID *>(_data._mem);
  1530. return "RID(" + itos(s.get_id()) + ")";
  1531. } break;
  1532. default: {
  1533. return "[" + get_type_name(type) + "]";
  1534. }
  1535. }
  1536. return "";
  1537. }
  1538. String Variant::to_json_string() const {
  1539. JSON json;
  1540. return json.stringify(*this);
  1541. }
  1542. Variant::operator Vector2() const {
  1543. if (type == VECTOR2) {
  1544. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1545. } else if (type == VECTOR2I) {
  1546. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1547. } else if (type == VECTOR3) {
  1548. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1549. } else if (type == VECTOR3I) {
  1550. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1551. } else {
  1552. return Vector2();
  1553. }
  1554. }
  1555. Variant::operator Vector2i() const {
  1556. if (type == VECTOR2I) {
  1557. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1558. } else if (type == VECTOR2) {
  1559. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1560. } else if (type == VECTOR3) {
  1561. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1562. } else if (type == VECTOR3I) {
  1563. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1564. } else {
  1565. return Vector2i();
  1566. }
  1567. }
  1568. Variant::operator Rect2() const {
  1569. if (type == RECT2) {
  1570. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1571. } else if (type == RECT2I) {
  1572. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1573. } else {
  1574. return Rect2();
  1575. }
  1576. }
  1577. Variant::operator Rect2i() const {
  1578. if (type == RECT2I) {
  1579. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1580. } else if (type == RECT2) {
  1581. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1582. } else {
  1583. return Rect2i();
  1584. }
  1585. }
  1586. Variant::operator Vector3() const {
  1587. if (type == VECTOR3) {
  1588. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1589. } else if (type == VECTOR3I) {
  1590. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1591. } else if (type == VECTOR2) {
  1592. return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1593. } else if (type == VECTOR2I) {
  1594. return Vector3(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1595. } else {
  1596. return Vector3();
  1597. }
  1598. }
  1599. Variant::operator Vector3i() const {
  1600. if (type == VECTOR3I) {
  1601. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1602. } else if (type == VECTOR3) {
  1603. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1604. } else if (type == VECTOR2) {
  1605. return Vector3i(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1606. } else if (type == VECTOR2I) {
  1607. return Vector3i(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1608. } else {
  1609. return Vector3i();
  1610. }
  1611. }
  1612. Variant::operator Plane() const {
  1613. if (type == PLANE) {
  1614. return *reinterpret_cast<const Plane *>(_data._mem);
  1615. } else {
  1616. return Plane();
  1617. }
  1618. }
  1619. Variant::operator ::AABB() const {
  1620. if (type == AABB) {
  1621. return *_data._aabb;
  1622. } else {
  1623. return ::AABB();
  1624. }
  1625. }
  1626. Variant::operator Basis() const {
  1627. if (type == BASIS) {
  1628. return *_data._basis;
  1629. } else if (type == QUATERNION) {
  1630. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1631. } else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert?
  1632. return _data._transform3d->basis;
  1633. } else {
  1634. return Basis();
  1635. }
  1636. }
  1637. Variant::operator Quaternion() const {
  1638. if (type == QUATERNION) {
  1639. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1640. } else if (type == BASIS) {
  1641. return *_data._basis;
  1642. } else if (type == TRANSFORM3D) {
  1643. return _data._transform3d->basis;
  1644. } else {
  1645. return Quaternion();
  1646. }
  1647. }
  1648. Variant::operator Transform3D() const {
  1649. if (type == TRANSFORM3D) {
  1650. return *_data._transform3d;
  1651. } else if (type == BASIS) {
  1652. return Transform3D(*_data._basis, Vector3());
  1653. } else if (type == QUATERNION) {
  1654. return Transform3D(Basis(*reinterpret_cast<const Quaternion *>(_data._mem)), Vector3());
  1655. } else if (type == TRANSFORM2D) {
  1656. const Transform2D &t = *_data._transform2d;
  1657. Transform3D m;
  1658. m.basis.rows[0][0] = t.columns[0][0];
  1659. m.basis.rows[1][0] = t.columns[0][1];
  1660. m.basis.rows[0][1] = t.columns[1][0];
  1661. m.basis.rows[1][1] = t.columns[1][1];
  1662. m.origin[0] = t.columns[2][0];
  1663. m.origin[1] = t.columns[2][1];
  1664. return m;
  1665. } else {
  1666. return Transform3D();
  1667. }
  1668. }
  1669. Variant::operator Transform2D() const {
  1670. if (type == TRANSFORM2D) {
  1671. return *_data._transform2d;
  1672. } else if (type == TRANSFORM3D) {
  1673. const Transform3D &t = *_data._transform3d;
  1674. Transform2D m;
  1675. m.columns[0][0] = t.basis.rows[0][0];
  1676. m.columns[0][1] = t.basis.rows[1][0];
  1677. m.columns[1][0] = t.basis.rows[0][1];
  1678. m.columns[1][1] = t.basis.rows[1][1];
  1679. m.columns[2][0] = t.origin[0];
  1680. m.columns[2][1] = t.origin[1];
  1681. return m;
  1682. } else {
  1683. return Transform2D();
  1684. }
  1685. }
  1686. Variant::operator Color() const {
  1687. if (type == COLOR) {
  1688. return *reinterpret_cast<const Color *>(_data._mem);
  1689. } else if (type == STRING) {
  1690. return Color(operator String());
  1691. } else if (type == INT) {
  1692. return Color::hex(operator int());
  1693. } else {
  1694. return Color();
  1695. }
  1696. }
  1697. Variant::operator NodePath() const {
  1698. if (type == NODE_PATH) {
  1699. return *reinterpret_cast<const NodePath *>(_data._mem);
  1700. } else if (type == STRING) {
  1701. return NodePath(operator String());
  1702. } else {
  1703. return NodePath();
  1704. }
  1705. }
  1706. Variant::operator ::RID() const {
  1707. if (type == RID) {
  1708. return *reinterpret_cast<const ::RID *>(_data._mem);
  1709. } else if (type == OBJECT && _get_obj().obj == nullptr) {
  1710. return ::RID();
  1711. } else if (type == OBJECT && _get_obj().obj) {
  1712. #ifdef DEBUG_ENABLED
  1713. if (EngineDebugger::is_active()) {
  1714. ERR_FAIL_COND_V_MSG(ObjectDB::get_instance(_get_obj().id) == nullptr, ::RID(), "Invalid pointer (object was freed).");
  1715. }
  1716. #endif
  1717. Callable::CallError ce;
  1718. Variant ret = _get_obj().obj->callp(CoreStringNames::get_singleton()->get_rid, nullptr, 0, ce);
  1719. if (ce.error == Callable::CallError::CALL_OK && ret.get_type() == Variant::RID) {
  1720. return ret;
  1721. }
  1722. return ::RID();
  1723. } else {
  1724. return ::RID();
  1725. }
  1726. }
  1727. Variant::operator Object *() const {
  1728. if (type == OBJECT) {
  1729. return _get_obj().obj;
  1730. } else {
  1731. return nullptr;
  1732. }
  1733. }
  1734. Object *Variant::get_validated_object_with_check(bool &r_previously_freed) const {
  1735. if (type == OBJECT) {
  1736. Object *instance = ObjectDB::get_instance(_get_obj().id);
  1737. r_previously_freed = !instance && _get_obj().id != ObjectID();
  1738. return instance;
  1739. } else {
  1740. r_previously_freed = false;
  1741. return nullptr;
  1742. }
  1743. }
  1744. Object *Variant::get_validated_object() const {
  1745. if (type == OBJECT) {
  1746. return ObjectDB::get_instance(_get_obj().id);
  1747. } else {
  1748. return nullptr;
  1749. }
  1750. }
  1751. Variant::operator Dictionary() const {
  1752. if (type == DICTIONARY) {
  1753. return *reinterpret_cast<const Dictionary *>(_data._mem);
  1754. } else {
  1755. return Dictionary();
  1756. }
  1757. }
  1758. Variant::operator Callable() const {
  1759. if (type == CALLABLE) {
  1760. return *reinterpret_cast<const Callable *>(_data._mem);
  1761. } else {
  1762. return Callable();
  1763. }
  1764. }
  1765. Variant::operator Signal() const {
  1766. if (type == SIGNAL) {
  1767. return *reinterpret_cast<const Signal *>(_data._mem);
  1768. } else {
  1769. return Signal();
  1770. }
  1771. }
  1772. template <class DA, class SA>
  1773. inline DA _convert_array(const SA &p_array) {
  1774. DA da;
  1775. da.resize(p_array.size());
  1776. for (int i = 0; i < p_array.size(); i++) {
  1777. da.set(i, Variant(p_array.get(i)));
  1778. }
  1779. return da;
  1780. }
  1781. template <class DA>
  1782. inline DA _convert_array_from_variant(const Variant &p_variant) {
  1783. switch (p_variant.get_type()) {
  1784. case Variant::ARRAY: {
  1785. return _convert_array<DA, Array>(p_variant.operator Array());
  1786. }
  1787. case Variant::PACKED_BYTE_ARRAY: {
  1788. return _convert_array<DA, Vector<uint8_t>>(p_variant.operator Vector<uint8_t>());
  1789. }
  1790. case Variant::PACKED_INT32_ARRAY: {
  1791. return _convert_array<DA, Vector<int32_t>>(p_variant.operator Vector<int32_t>());
  1792. }
  1793. case Variant::PACKED_INT64_ARRAY: {
  1794. return _convert_array<DA, Vector<int64_t>>(p_variant.operator Vector<int64_t>());
  1795. }
  1796. case Variant::PACKED_FLOAT32_ARRAY: {
  1797. return _convert_array<DA, Vector<float>>(p_variant.operator Vector<float>());
  1798. }
  1799. case Variant::PACKED_FLOAT64_ARRAY: {
  1800. return _convert_array<DA, Vector<double>>(p_variant.operator Vector<double>());
  1801. }
  1802. case Variant::PACKED_STRING_ARRAY: {
  1803. return _convert_array<DA, Vector<String>>(p_variant.operator Vector<String>());
  1804. }
  1805. case Variant::PACKED_VECTOR2_ARRAY: {
  1806. return _convert_array<DA, Vector<Vector2>>(p_variant.operator Vector<Vector2>());
  1807. }
  1808. case Variant::PACKED_VECTOR3_ARRAY: {
  1809. return _convert_array<DA, Vector<Vector3>>(p_variant.operator Vector<Vector3>());
  1810. }
  1811. case Variant::PACKED_COLOR_ARRAY: {
  1812. return _convert_array<DA, Vector<Color>>(p_variant.operator Vector<Color>());
  1813. }
  1814. default: {
  1815. return DA();
  1816. }
  1817. }
  1818. }
  1819. Variant::operator Array() const {
  1820. if (type == ARRAY) {
  1821. return *reinterpret_cast<const Array *>(_data._mem);
  1822. } else {
  1823. return _convert_array_from_variant<Array>(*this);
  1824. }
  1825. }
  1826. Variant::operator Vector<uint8_t>() const {
  1827. if (type == PACKED_BYTE_ARRAY) {
  1828. return static_cast<PackedArrayRef<uint8_t> *>(_data.packed_array)->array;
  1829. } else {
  1830. return _convert_array_from_variant<Vector<uint8_t>>(*this);
  1831. }
  1832. }
  1833. Variant::operator Vector<int32_t>() const {
  1834. if (type == PACKED_INT32_ARRAY) {
  1835. return static_cast<PackedArrayRef<int32_t> *>(_data.packed_array)->array;
  1836. } else {
  1837. return _convert_array_from_variant<Vector<int>>(*this);
  1838. }
  1839. }
  1840. Variant::operator Vector<int64_t>() const {
  1841. if (type == PACKED_INT64_ARRAY) {
  1842. return static_cast<PackedArrayRef<int64_t> *>(_data.packed_array)->array;
  1843. } else {
  1844. return _convert_array_from_variant<Vector<int64_t>>(*this);
  1845. }
  1846. }
  1847. Variant::operator Vector<float>() const {
  1848. if (type == PACKED_FLOAT32_ARRAY) {
  1849. return static_cast<PackedArrayRef<float> *>(_data.packed_array)->array;
  1850. } else {
  1851. return _convert_array_from_variant<Vector<float>>(*this);
  1852. }
  1853. }
  1854. Variant::operator Vector<double>() const {
  1855. if (type == PACKED_FLOAT64_ARRAY) {
  1856. return static_cast<PackedArrayRef<double> *>(_data.packed_array)->array;
  1857. } else {
  1858. return _convert_array_from_variant<Vector<double>>(*this);
  1859. }
  1860. }
  1861. Variant::operator Vector<String>() const {
  1862. if (type == PACKED_STRING_ARRAY) {
  1863. return static_cast<PackedArrayRef<String> *>(_data.packed_array)->array;
  1864. } else {
  1865. return _convert_array_from_variant<Vector<String>>(*this);
  1866. }
  1867. }
  1868. Variant::operator Vector<Vector3>() const {
  1869. if (type == PACKED_VECTOR3_ARRAY) {
  1870. return static_cast<PackedArrayRef<Vector3> *>(_data.packed_array)->array;
  1871. } else {
  1872. return _convert_array_from_variant<Vector<Vector3>>(*this);
  1873. }
  1874. }
  1875. Variant::operator Vector<Vector2>() const {
  1876. if (type == PACKED_VECTOR2_ARRAY) {
  1877. return static_cast<PackedArrayRef<Vector2> *>(_data.packed_array)->array;
  1878. } else {
  1879. return _convert_array_from_variant<Vector<Vector2>>(*this);
  1880. }
  1881. }
  1882. Variant::operator Vector<Color>() const {
  1883. if (type == PACKED_COLOR_ARRAY) {
  1884. return static_cast<PackedArrayRef<Color> *>(_data.packed_array)->array;
  1885. } else {
  1886. return _convert_array_from_variant<Vector<Color>>(*this);
  1887. }
  1888. }
  1889. /* helpers */
  1890. Variant::operator Vector<::RID>() const {
  1891. Array va = operator Array();
  1892. Vector<::RID> rids;
  1893. rids.resize(va.size());
  1894. for (int i = 0; i < rids.size(); i++) {
  1895. rids.write[i] = va[i];
  1896. }
  1897. return rids;
  1898. }
  1899. Variant::operator Vector<Plane>() const {
  1900. Array va = operator Array();
  1901. Vector<Plane> planes;
  1902. int va_size = va.size();
  1903. if (va_size == 0) {
  1904. return planes;
  1905. }
  1906. planes.resize(va_size);
  1907. Plane *w = planes.ptrw();
  1908. for (int i = 0; i < va_size; i++) {
  1909. w[i] = va[i];
  1910. }
  1911. return planes;
  1912. }
  1913. Variant::operator Vector<Face3>() const {
  1914. Vector<Vector3> va = operator Vector<Vector3>();
  1915. Vector<Face3> faces;
  1916. int va_size = va.size();
  1917. if (va_size == 0) {
  1918. return faces;
  1919. }
  1920. faces.resize(va_size / 3);
  1921. Face3 *w = faces.ptrw();
  1922. const Vector3 *r = va.ptr();
  1923. for (int i = 0; i < va_size; i++) {
  1924. w[i / 3].vertex[i % 3] = r[i];
  1925. }
  1926. return faces;
  1927. }
  1928. Variant::operator Vector<Variant>() const {
  1929. Array va = operator Array();
  1930. Vector<Variant> variants;
  1931. int va_size = va.size();
  1932. if (va_size == 0) {
  1933. return variants;
  1934. }
  1935. variants.resize(va_size);
  1936. Variant *w = variants.ptrw();
  1937. for (int i = 0; i < va_size; i++) {
  1938. w[i] = va[i];
  1939. }
  1940. return variants;
  1941. }
  1942. Variant::operator Vector<StringName>() const {
  1943. Vector<String> from = operator Vector<String>();
  1944. Vector<StringName> to;
  1945. int len = from.size();
  1946. to.resize(len);
  1947. for (int i = 0; i < len; i++) {
  1948. to.write[i] = from[i];
  1949. }
  1950. return to;
  1951. }
  1952. Variant::operator Side() const {
  1953. return (Side) operator int();
  1954. }
  1955. Variant::operator Orientation() const {
  1956. return (Orientation) operator int();
  1957. }
  1958. Variant::operator IPAddress() const {
  1959. if (type == PACKED_FLOAT32_ARRAY || type == PACKED_INT32_ARRAY || type == PACKED_FLOAT64_ARRAY || type == PACKED_INT64_ARRAY || type == PACKED_BYTE_ARRAY) {
  1960. Vector<int> addr = operator Vector<int>();
  1961. if (addr.size() == 4) {
  1962. return IPAddress(addr.get(0), addr.get(1), addr.get(2), addr.get(3));
  1963. }
  1964. }
  1965. return IPAddress(operator String());
  1966. }
  1967. Variant::Variant(bool p_bool) {
  1968. type = BOOL;
  1969. _data._bool = p_bool;
  1970. }
  1971. Variant::Variant(signed int p_int) {
  1972. type = INT;
  1973. _data._int = p_int;
  1974. }
  1975. Variant::Variant(unsigned int p_int) {
  1976. type = INT;
  1977. _data._int = p_int;
  1978. }
  1979. #ifdef NEED_LONG_INT
  1980. Variant::Variant(signed long p_int) {
  1981. type = INT;
  1982. _data._int = p_int;
  1983. }
  1984. Variant::Variant(unsigned long p_int) {
  1985. type = INT;
  1986. _data._int = p_int;
  1987. }
  1988. #endif
  1989. Variant::Variant(int64_t p_int) {
  1990. type = INT;
  1991. _data._int = p_int;
  1992. }
  1993. Variant::Variant(uint64_t p_int) {
  1994. type = INT;
  1995. _data._int = p_int;
  1996. }
  1997. Variant::Variant(signed short p_short) {
  1998. type = INT;
  1999. _data._int = p_short;
  2000. }
  2001. Variant::Variant(unsigned short p_short) {
  2002. type = INT;
  2003. _data._int = p_short;
  2004. }
  2005. Variant::Variant(signed char p_char) {
  2006. type = INT;
  2007. _data._int = p_char;
  2008. }
  2009. Variant::Variant(unsigned char p_char) {
  2010. type = INT;
  2011. _data._int = p_char;
  2012. }
  2013. Variant::Variant(float p_float) {
  2014. type = FLOAT;
  2015. _data._float = p_float;
  2016. }
  2017. Variant::Variant(double p_double) {
  2018. type = FLOAT;
  2019. _data._float = p_double;
  2020. }
  2021. Variant::Variant(const ObjectID &p_id) {
  2022. type = INT;
  2023. _data._int = p_id;
  2024. }
  2025. Variant::Variant(const StringName &p_string) {
  2026. type = STRING_NAME;
  2027. memnew_placement(_data._mem, StringName(p_string));
  2028. }
  2029. Variant::Variant(const String &p_string) {
  2030. type = STRING;
  2031. memnew_placement(_data._mem, String(p_string));
  2032. }
  2033. Variant::Variant(const char *const p_cstring) {
  2034. type = STRING;
  2035. memnew_placement(_data._mem, String((const char *)p_cstring));
  2036. }
  2037. Variant::Variant(const char32_t *p_wstring) {
  2038. type = STRING;
  2039. memnew_placement(_data._mem, String(p_wstring));
  2040. }
  2041. Variant::Variant(const Vector3 &p_vector3) {
  2042. type = VECTOR3;
  2043. memnew_placement(_data._mem, Vector3(p_vector3));
  2044. }
  2045. Variant::Variant(const Vector3i &p_vector3i) {
  2046. type = VECTOR3I;
  2047. memnew_placement(_data._mem, Vector3i(p_vector3i));
  2048. }
  2049. Variant::Variant(const Vector2 &p_vector2) {
  2050. type = VECTOR2;
  2051. memnew_placement(_data._mem, Vector2(p_vector2));
  2052. }
  2053. Variant::Variant(const Vector2i &p_vector2i) {
  2054. type = VECTOR2I;
  2055. memnew_placement(_data._mem, Vector2i(p_vector2i));
  2056. }
  2057. Variant::Variant(const Rect2 &p_rect2) {
  2058. type = RECT2;
  2059. memnew_placement(_data._mem, Rect2(p_rect2));
  2060. }
  2061. Variant::Variant(const Rect2i &p_rect2i) {
  2062. type = RECT2I;
  2063. memnew_placement(_data._mem, Rect2i(p_rect2i));
  2064. }
  2065. Variant::Variant(const Plane &p_plane) {
  2066. type = PLANE;
  2067. memnew_placement(_data._mem, Plane(p_plane));
  2068. }
  2069. Variant::Variant(const ::AABB &p_aabb) {
  2070. type = AABB;
  2071. _data._aabb = memnew(::AABB(p_aabb));
  2072. }
  2073. Variant::Variant(const Basis &p_matrix) {
  2074. type = BASIS;
  2075. _data._basis = memnew(Basis(p_matrix));
  2076. }
  2077. Variant::Variant(const Quaternion &p_quaternion) {
  2078. type = QUATERNION;
  2079. memnew_placement(_data._mem, Quaternion(p_quaternion));
  2080. }
  2081. Variant::Variant(const Transform3D &p_transform) {
  2082. type = TRANSFORM3D;
  2083. _data._transform3d = memnew(Transform3D(p_transform));
  2084. }
  2085. Variant::Variant(const Transform2D &p_transform) {
  2086. type = TRANSFORM2D;
  2087. _data._transform2d = memnew(Transform2D(p_transform));
  2088. }
  2089. Variant::Variant(const Color &p_color) {
  2090. type = COLOR;
  2091. memnew_placement(_data._mem, Color(p_color));
  2092. }
  2093. Variant::Variant(const NodePath &p_node_path) {
  2094. type = NODE_PATH;
  2095. memnew_placement(_data._mem, NodePath(p_node_path));
  2096. }
  2097. Variant::Variant(const ::RID &p_rid) {
  2098. type = RID;
  2099. memnew_placement(_data._mem, ::RID(p_rid));
  2100. }
  2101. Variant::Variant(const Object *p_object) {
  2102. type = OBJECT;
  2103. memnew_placement(_data._mem, ObjData);
  2104. if (p_object) {
  2105. if (p_object->is_ref_counted()) {
  2106. RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object));
  2107. if (!ref_counted->init_ref()) {
  2108. _get_obj().obj = nullptr;
  2109. _get_obj().id = ObjectID();
  2110. return;
  2111. }
  2112. }
  2113. _get_obj().obj = const_cast<Object *>(p_object);
  2114. _get_obj().id = p_object->get_instance_id();
  2115. } else {
  2116. _get_obj().obj = nullptr;
  2117. _get_obj().id = ObjectID();
  2118. }
  2119. }
  2120. Variant::Variant(const Callable &p_callable) {
  2121. type = CALLABLE;
  2122. memnew_placement(_data._mem, Callable(p_callable));
  2123. }
  2124. Variant::Variant(const Signal &p_callable) {
  2125. type = SIGNAL;
  2126. memnew_placement(_data._mem, Signal(p_callable));
  2127. }
  2128. Variant::Variant(const Dictionary &p_dictionary) {
  2129. type = DICTIONARY;
  2130. memnew_placement(_data._mem, Dictionary(p_dictionary));
  2131. }
  2132. Variant::Variant(const Array &p_array) {
  2133. type = ARRAY;
  2134. memnew_placement(_data._mem, Array(p_array));
  2135. }
  2136. Variant::Variant(const Vector<Plane> &p_array) {
  2137. type = ARRAY;
  2138. Array *plane_array = memnew_placement(_data._mem, Array);
  2139. plane_array->resize(p_array.size());
  2140. for (int i = 0; i < p_array.size(); i++) {
  2141. plane_array->operator[](i) = Variant(p_array[i]);
  2142. }
  2143. }
  2144. Variant::Variant(const Vector<::RID> &p_array) {
  2145. type = ARRAY;
  2146. Array *rid_array = memnew_placement(_data._mem, Array);
  2147. rid_array->resize(p_array.size());
  2148. for (int i = 0; i < p_array.size(); i++) {
  2149. rid_array->set(i, Variant(p_array[i]));
  2150. }
  2151. }
  2152. Variant::Variant(const Vector<uint8_t> &p_byte_array) {
  2153. type = PACKED_BYTE_ARRAY;
  2154. _data.packed_array = PackedArrayRef<uint8_t>::create(p_byte_array);
  2155. }
  2156. Variant::Variant(const Vector<int32_t> &p_int32_array) {
  2157. type = PACKED_INT32_ARRAY;
  2158. _data.packed_array = PackedArrayRef<int32_t>::create(p_int32_array);
  2159. }
  2160. Variant::Variant(const Vector<int64_t> &p_int64_array) {
  2161. type = PACKED_INT64_ARRAY;
  2162. _data.packed_array = PackedArrayRef<int64_t>::create(p_int64_array);
  2163. }
  2164. Variant::Variant(const Vector<float> &p_float32_array) {
  2165. type = PACKED_FLOAT32_ARRAY;
  2166. _data.packed_array = PackedArrayRef<float>::create(p_float32_array);
  2167. }
  2168. Variant::Variant(const Vector<double> &p_float64_array) {
  2169. type = PACKED_FLOAT64_ARRAY;
  2170. _data.packed_array = PackedArrayRef<double>::create(p_float64_array);
  2171. }
  2172. Variant::Variant(const Vector<String> &p_string_array) {
  2173. type = PACKED_STRING_ARRAY;
  2174. _data.packed_array = PackedArrayRef<String>::create(p_string_array);
  2175. }
  2176. Variant::Variant(const Vector<Vector3> &p_vector3_array) {
  2177. type = PACKED_VECTOR3_ARRAY;
  2178. _data.packed_array = PackedArrayRef<Vector3>::create(p_vector3_array);
  2179. }
  2180. Variant::Variant(const Vector<Vector2> &p_vector2_array) {
  2181. type = PACKED_VECTOR2_ARRAY;
  2182. _data.packed_array = PackedArrayRef<Vector2>::create(p_vector2_array);
  2183. }
  2184. Variant::Variant(const Vector<Color> &p_color_array) {
  2185. type = PACKED_COLOR_ARRAY;
  2186. _data.packed_array = PackedArrayRef<Color>::create(p_color_array);
  2187. }
  2188. Variant::Variant(const Vector<Face3> &p_face_array) {
  2189. Vector<Vector3> vertices;
  2190. int face_count = p_face_array.size();
  2191. vertices.resize(face_count * 3);
  2192. if (face_count) {
  2193. const Face3 *r = p_face_array.ptr();
  2194. Vector3 *w = vertices.ptrw();
  2195. for (int i = 0; i < face_count; i++) {
  2196. for (int j = 0; j < 3; j++) {
  2197. w[i * 3 + j] = r[i].vertex[j];
  2198. }
  2199. }
  2200. }
  2201. type = NIL;
  2202. *this = vertices;
  2203. }
  2204. /* helpers */
  2205. Variant::Variant(const Vector<Variant> &p_array) {
  2206. type = NIL;
  2207. Array arr;
  2208. arr.resize(p_array.size());
  2209. for (int i = 0; i < p_array.size(); i++) {
  2210. arr[i] = p_array[i];
  2211. }
  2212. *this = arr;
  2213. }
  2214. Variant::Variant(const Vector<StringName> &p_array) {
  2215. type = NIL;
  2216. Vector<String> v;
  2217. int len = p_array.size();
  2218. v.resize(len);
  2219. for (int i = 0; i < len; i++) {
  2220. v.set(i, p_array[i]);
  2221. }
  2222. *this = v;
  2223. }
  2224. void Variant::operator=(const Variant &p_variant) {
  2225. if (unlikely(this == &p_variant)) {
  2226. return;
  2227. }
  2228. if (unlikely(type != p_variant.type)) {
  2229. reference(p_variant);
  2230. return;
  2231. }
  2232. switch (p_variant.type) {
  2233. case NIL: {
  2234. // none
  2235. } break;
  2236. // atomic types
  2237. case BOOL: {
  2238. _data._bool = p_variant._data._bool;
  2239. } break;
  2240. case INT: {
  2241. _data._int = p_variant._data._int;
  2242. } break;
  2243. case FLOAT: {
  2244. _data._float = p_variant._data._float;
  2245. } break;
  2246. case STRING: {
  2247. *reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem);
  2248. } break;
  2249. // math types
  2250. case VECTOR2: {
  2251. *reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2252. } break;
  2253. case VECTOR2I: {
  2254. *reinterpret_cast<Vector2i *>(_data._mem) = *reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2255. } break;
  2256. case RECT2: {
  2257. *reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2258. } break;
  2259. case RECT2I: {
  2260. *reinterpret_cast<Rect2i *>(_data._mem) = *reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2261. } break;
  2262. case TRANSFORM2D: {
  2263. *_data._transform2d = *(p_variant._data._transform2d);
  2264. } break;
  2265. case VECTOR3: {
  2266. *reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2267. } break;
  2268. case VECTOR3I: {
  2269. *reinterpret_cast<Vector3i *>(_data._mem) = *reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2270. } break;
  2271. case PLANE: {
  2272. *reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem);
  2273. } break;
  2274. case AABB: {
  2275. *_data._aabb = *(p_variant._data._aabb);
  2276. } break;
  2277. case QUATERNION: {
  2278. *reinterpret_cast<Quaternion *>(_data._mem) = *reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2279. } break;
  2280. case BASIS: {
  2281. *_data._basis = *(p_variant._data._basis);
  2282. } break;
  2283. case TRANSFORM3D: {
  2284. *_data._transform3d = *(p_variant._data._transform3d);
  2285. } break;
  2286. // misc types
  2287. case COLOR: {
  2288. *reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem);
  2289. } break;
  2290. case RID: {
  2291. *reinterpret_cast<::RID *>(_data._mem) = *reinterpret_cast<const ::RID *>(p_variant._data._mem);
  2292. } break;
  2293. case OBJECT: {
  2294. if (_get_obj().id.is_ref_counted()) {
  2295. //we are safe that there is a reference here
  2296. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  2297. if (ref_counted->unreference()) {
  2298. memdelete(ref_counted);
  2299. }
  2300. }
  2301. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  2302. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  2303. if (!ref_counted->reference()) {
  2304. _get_obj().obj = nullptr;
  2305. _get_obj().id = ObjectID();
  2306. break;
  2307. }
  2308. }
  2309. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  2310. _get_obj().id = p_variant._get_obj().id;
  2311. } break;
  2312. case CALLABLE: {
  2313. *reinterpret_cast<Callable *>(_data._mem) = *reinterpret_cast<const Callable *>(p_variant._data._mem);
  2314. } break;
  2315. case SIGNAL: {
  2316. *reinterpret_cast<Signal *>(_data._mem) = *reinterpret_cast<const Signal *>(p_variant._data._mem);
  2317. } break;
  2318. case STRING_NAME: {
  2319. *reinterpret_cast<StringName *>(_data._mem) = *reinterpret_cast<const StringName *>(p_variant._data._mem);
  2320. } break;
  2321. case NODE_PATH: {
  2322. *reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem);
  2323. } break;
  2324. case DICTIONARY: {
  2325. *reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem);
  2326. } break;
  2327. case ARRAY: {
  2328. *reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem);
  2329. } break;
  2330. // arrays
  2331. case PACKED_BYTE_ARRAY: {
  2332. _data.packed_array = PackedArrayRef<uint8_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2333. } break;
  2334. case PACKED_INT32_ARRAY: {
  2335. _data.packed_array = PackedArrayRef<int32_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2336. } break;
  2337. case PACKED_INT64_ARRAY: {
  2338. _data.packed_array = PackedArrayRef<int64_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2339. } break;
  2340. case PACKED_FLOAT32_ARRAY: {
  2341. _data.packed_array = PackedArrayRef<float>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2342. } break;
  2343. case PACKED_FLOAT64_ARRAY: {
  2344. _data.packed_array = PackedArrayRef<double>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2345. } break;
  2346. case PACKED_STRING_ARRAY: {
  2347. _data.packed_array = PackedArrayRef<String>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2348. } break;
  2349. case PACKED_VECTOR2_ARRAY: {
  2350. _data.packed_array = PackedArrayRef<Vector2>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2351. } break;
  2352. case PACKED_VECTOR3_ARRAY: {
  2353. _data.packed_array = PackedArrayRef<Vector3>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2354. } break;
  2355. case PACKED_COLOR_ARRAY: {
  2356. _data.packed_array = PackedArrayRef<Color>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2357. } break;
  2358. default: {
  2359. }
  2360. }
  2361. }
  2362. Variant::Variant(const IPAddress &p_address) {
  2363. type = STRING;
  2364. memnew_placement(_data._mem, String(p_address));
  2365. }
  2366. Variant::Variant(const Variant &p_variant) {
  2367. reference(p_variant);
  2368. }
  2369. uint32_t Variant::hash() const {
  2370. return recursive_hash(0);
  2371. }
  2372. uint32_t Variant::recursive_hash(int recursion_count) const {
  2373. switch (type) {
  2374. case NIL: {
  2375. return 0;
  2376. } break;
  2377. case BOOL: {
  2378. return _data._bool ? 1 : 0;
  2379. } break;
  2380. case INT: {
  2381. return hash_one_uint64((uint64_t)_data._int);
  2382. } break;
  2383. case FLOAT: {
  2384. return hash_djb2_one_float(_data._float);
  2385. } break;
  2386. case STRING: {
  2387. return reinterpret_cast<const String *>(_data._mem)->hash();
  2388. } break;
  2389. // math types
  2390. case VECTOR2: {
  2391. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->x);
  2392. return hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->y, hash);
  2393. } break;
  2394. case VECTOR2I: {
  2395. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->x);
  2396. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->y, hash);
  2397. } break;
  2398. case RECT2: {
  2399. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.x);
  2400. hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.y, hash);
  2401. hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.x, hash);
  2402. return hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.y, hash);
  2403. } break;
  2404. case RECT2I: {
  2405. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.x);
  2406. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.y, hash);
  2407. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.x, hash);
  2408. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.y, hash);
  2409. } break;
  2410. case TRANSFORM2D: {
  2411. uint32_t hash = 5831;
  2412. for (int i = 0; i < 3; i++) {
  2413. for (int j = 0; j < 2; j++) {
  2414. hash = hash_djb2_one_float(_data._transform2d->columns[i][j], hash);
  2415. }
  2416. }
  2417. return hash;
  2418. } break;
  2419. case VECTOR3: {
  2420. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->x);
  2421. hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->y, hash);
  2422. return hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->z, hash);
  2423. } break;
  2424. case VECTOR3I: {
  2425. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->x);
  2426. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->y, hash);
  2427. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->z, hash);
  2428. } break;
  2429. case PLANE: {
  2430. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.x);
  2431. hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.y, hash);
  2432. hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.z, hash);
  2433. return hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->d, hash);
  2434. } break;
  2435. case AABB: {
  2436. uint32_t hash = 5831;
  2437. for (int i = 0; i < 3; i++) {
  2438. hash = hash_djb2_one_float(_data._aabb->position[i], hash);
  2439. hash = hash_djb2_one_float(_data._aabb->size[i], hash);
  2440. }
  2441. return hash;
  2442. } break;
  2443. case QUATERNION: {
  2444. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->x);
  2445. hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->y, hash);
  2446. hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->z, hash);
  2447. return hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->w, hash);
  2448. } break;
  2449. case BASIS: {
  2450. uint32_t hash = 5831;
  2451. for (int i = 0; i < 3; i++) {
  2452. for (int j = 0; j < 3; j++) {
  2453. hash = hash_djb2_one_float(_data._basis->rows[i][j], hash);
  2454. }
  2455. }
  2456. return hash;
  2457. } break;
  2458. case TRANSFORM3D: {
  2459. uint32_t hash = 5831;
  2460. for (int i = 0; i < 3; i++) {
  2461. for (int j = 0; j < 3; j++) {
  2462. hash = hash_djb2_one_float(_data._transform3d->basis.rows[i][j], hash);
  2463. }
  2464. hash = hash_djb2_one_float(_data._transform3d->origin[i], hash);
  2465. }
  2466. return hash;
  2467. } break;
  2468. // misc types
  2469. case COLOR: {
  2470. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->r);
  2471. hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->g, hash);
  2472. hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->b, hash);
  2473. return hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->a, hash);
  2474. } break;
  2475. case RID: {
  2476. return hash_djb2_one_64(reinterpret_cast<const ::RID *>(_data._mem)->get_id());
  2477. } break;
  2478. case OBJECT: {
  2479. return hash_djb2_one_64(make_uint64_t(_get_obj().obj));
  2480. } break;
  2481. case STRING_NAME: {
  2482. return reinterpret_cast<const StringName *>(_data._mem)->hash();
  2483. } break;
  2484. case NODE_PATH: {
  2485. return reinterpret_cast<const NodePath *>(_data._mem)->hash();
  2486. } break;
  2487. case DICTIONARY: {
  2488. return reinterpret_cast<const Dictionary *>(_data._mem)->recursive_hash(recursion_count);
  2489. } break;
  2490. case CALLABLE: {
  2491. return reinterpret_cast<const Callable *>(_data._mem)->hash();
  2492. } break;
  2493. case SIGNAL: {
  2494. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  2495. uint32_t hash = s.get_name().hash();
  2496. return hash_djb2_one_64(s.get_object_id(), hash);
  2497. } break;
  2498. case ARRAY: {
  2499. const Array &arr = *reinterpret_cast<const Array *>(_data._mem);
  2500. return arr.recursive_hash(recursion_count);
  2501. } break;
  2502. case PACKED_BYTE_ARRAY: {
  2503. const Vector<uint8_t> &arr = PackedArrayRef<uint8_t>::get_array(_data.packed_array);
  2504. int len = arr.size();
  2505. if (likely(len)) {
  2506. const uint8_t *r = arr.ptr();
  2507. return hash_djb2_buffer((uint8_t *)&r[0], len);
  2508. } else {
  2509. return hash_djb2_one_64(0);
  2510. }
  2511. } break;
  2512. case PACKED_INT32_ARRAY: {
  2513. const Vector<int32_t> &arr = PackedArrayRef<int32_t>::get_array(_data.packed_array);
  2514. int len = arr.size();
  2515. if (likely(len)) {
  2516. const int32_t *r = arr.ptr();
  2517. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int32_t));
  2518. } else {
  2519. return hash_djb2_one_64(0);
  2520. }
  2521. } break;
  2522. case PACKED_INT64_ARRAY: {
  2523. const Vector<int64_t> &arr = PackedArrayRef<int64_t>::get_array(_data.packed_array);
  2524. int len = arr.size();
  2525. if (likely(len)) {
  2526. const int64_t *r = arr.ptr();
  2527. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int64_t));
  2528. } else {
  2529. return hash_djb2_one_64(0);
  2530. }
  2531. } break;
  2532. case PACKED_FLOAT32_ARRAY: {
  2533. const Vector<float> &arr = PackedArrayRef<float>::get_array(_data.packed_array);
  2534. int len = arr.size();
  2535. if (likely(len)) {
  2536. const float *r = arr.ptr();
  2537. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(float));
  2538. } else {
  2539. return hash_djb2_one_float(0.0);
  2540. }
  2541. } break;
  2542. case PACKED_FLOAT64_ARRAY: {
  2543. const Vector<double> &arr = PackedArrayRef<double>::get_array(_data.packed_array);
  2544. int len = arr.size();
  2545. if (likely(len)) {
  2546. const double *r = arr.ptr();
  2547. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(double));
  2548. } else {
  2549. return hash_djb2_one_float(0.0);
  2550. }
  2551. } break;
  2552. case PACKED_STRING_ARRAY: {
  2553. uint32_t hash = 5831;
  2554. const Vector<String> &arr = PackedArrayRef<String>::get_array(_data.packed_array);
  2555. int len = arr.size();
  2556. if (likely(len)) {
  2557. const String *r = arr.ptr();
  2558. for (int i = 0; i < len; i++) {
  2559. hash = hash_djb2_one_32(r[i].hash(), hash);
  2560. }
  2561. }
  2562. return hash;
  2563. } break;
  2564. case PACKED_VECTOR2_ARRAY: {
  2565. uint32_t hash = 5831;
  2566. const Vector<Vector2> &arr = PackedArrayRef<Vector2>::get_array(_data.packed_array);
  2567. int len = arr.size();
  2568. if (likely(len)) {
  2569. const Vector2 *r = arr.ptr();
  2570. for (int i = 0; i < len; i++) {
  2571. hash = hash_djb2_one_float(r[i].x, hash);
  2572. hash = hash_djb2_one_float(r[i].y, hash);
  2573. }
  2574. }
  2575. return hash;
  2576. } break;
  2577. case PACKED_VECTOR3_ARRAY: {
  2578. uint32_t hash = 5831;
  2579. const Vector<Vector3> &arr = PackedArrayRef<Vector3>::get_array(_data.packed_array);
  2580. int len = arr.size();
  2581. if (likely(len)) {
  2582. const Vector3 *r = arr.ptr();
  2583. for (int i = 0; i < len; i++) {
  2584. hash = hash_djb2_one_float(r[i].x, hash);
  2585. hash = hash_djb2_one_float(r[i].y, hash);
  2586. hash = hash_djb2_one_float(r[i].z, hash);
  2587. }
  2588. }
  2589. return hash;
  2590. } break;
  2591. case PACKED_COLOR_ARRAY: {
  2592. uint32_t hash = 5831;
  2593. const Vector<Color> &arr = PackedArrayRef<Color>::get_array(_data.packed_array);
  2594. int len = arr.size();
  2595. if (likely(len)) {
  2596. const Color *r = arr.ptr();
  2597. for (int i = 0; i < len; i++) {
  2598. hash = hash_djb2_one_float(r[i].r, hash);
  2599. hash = hash_djb2_one_float(r[i].g, hash);
  2600. hash = hash_djb2_one_float(r[i].b, hash);
  2601. hash = hash_djb2_one_float(r[i].a, hash);
  2602. }
  2603. }
  2604. return hash;
  2605. } break;
  2606. default: {
  2607. }
  2608. }
  2609. return 0;
  2610. }
  2611. #define hash_compare_scalar(p_lhs, p_rhs) \
  2612. ((p_lhs) == (p_rhs)) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs))
  2613. #define hash_compare_vector2(p_lhs, p_rhs) \
  2614. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2615. (hash_compare_scalar((p_lhs).y, (p_rhs).y))
  2616. #define hash_compare_vector3(p_lhs, p_rhs) \
  2617. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2618. (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
  2619. (hash_compare_scalar((p_lhs).z, (p_rhs).z))
  2620. #define hash_compare_quaternion(p_lhs, p_rhs) \
  2621. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2622. (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
  2623. (hash_compare_scalar((p_lhs).z, (p_rhs).z)) && \
  2624. (hash_compare_scalar((p_lhs).w, (p_rhs).w))
  2625. #define hash_compare_color(p_lhs, p_rhs) \
  2626. (hash_compare_scalar((p_lhs).r, (p_rhs).r)) && \
  2627. (hash_compare_scalar((p_lhs).g, (p_rhs).g)) && \
  2628. (hash_compare_scalar((p_lhs).b, (p_rhs).b)) && \
  2629. (hash_compare_scalar((p_lhs).a, (p_rhs).a))
  2630. #define hash_compare_packed_array(p_lhs, p_rhs, p_type, p_compare_func) \
  2631. const Vector<p_type> &l = PackedArrayRef<p_type>::get_array(p_lhs); \
  2632. const Vector<p_type> &r = PackedArrayRef<p_type>::get_array(p_rhs); \
  2633. \
  2634. if (l.size() != r.size()) \
  2635. return false; \
  2636. \
  2637. const p_type *lr = l.ptr(); \
  2638. const p_type *rr = r.ptr(); \
  2639. \
  2640. for (int i = 0; i < l.size(); ++i) { \
  2641. if (!p_compare_func((lr[i]), (rr[i]))) \
  2642. return false; \
  2643. } \
  2644. \
  2645. return true
  2646. bool Variant::hash_compare(const Variant &p_variant, int recursion_count) const {
  2647. if (type != p_variant.type) {
  2648. return false;
  2649. }
  2650. switch (type) {
  2651. case INT: {
  2652. return _data._int == p_variant._data._int;
  2653. } break;
  2654. case FLOAT: {
  2655. return hash_compare_scalar(_data._float, p_variant._data._float);
  2656. } break;
  2657. case STRING: {
  2658. return *reinterpret_cast<const String *>(_data._mem) == *reinterpret_cast<const String *>(p_variant._data._mem);
  2659. } break;
  2660. case VECTOR2: {
  2661. const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem);
  2662. const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2663. return hash_compare_vector2(*l, *r);
  2664. } break;
  2665. case VECTOR2I: {
  2666. const Vector2i *l = reinterpret_cast<const Vector2i *>(_data._mem);
  2667. const Vector2i *r = reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2668. return *l == *r;
  2669. } break;
  2670. case RECT2: {
  2671. const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem);
  2672. const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2673. return (hash_compare_vector2(l->position, r->position)) &&
  2674. (hash_compare_vector2(l->size, r->size));
  2675. } break;
  2676. case RECT2I: {
  2677. const Rect2i *l = reinterpret_cast<const Rect2i *>(_data._mem);
  2678. const Rect2i *r = reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2679. return *l == *r;
  2680. } break;
  2681. case TRANSFORM2D: {
  2682. Transform2D *l = _data._transform2d;
  2683. Transform2D *r = p_variant._data._transform2d;
  2684. for (int i = 0; i < 3; i++) {
  2685. if (!(hash_compare_vector2(l->columns[i], r->columns[i]))) {
  2686. return false;
  2687. }
  2688. }
  2689. return true;
  2690. } break;
  2691. case VECTOR3: {
  2692. const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem);
  2693. const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2694. return hash_compare_vector3(*l, *r);
  2695. } break;
  2696. case VECTOR3I: {
  2697. const Vector3i *l = reinterpret_cast<const Vector3i *>(_data._mem);
  2698. const Vector3i *r = reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2699. return *l == *r;
  2700. } break;
  2701. case PLANE: {
  2702. const Plane *l = reinterpret_cast<const Plane *>(_data._mem);
  2703. const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem);
  2704. return (hash_compare_vector3(l->normal, r->normal)) &&
  2705. (hash_compare_scalar(l->d, r->d));
  2706. } break;
  2707. case AABB: {
  2708. const ::AABB *l = _data._aabb;
  2709. const ::AABB *r = p_variant._data._aabb;
  2710. return (hash_compare_vector3(l->position, r->position) &&
  2711. (hash_compare_vector3(l->size, r->size)));
  2712. } break;
  2713. case QUATERNION: {
  2714. const Quaternion *l = reinterpret_cast<const Quaternion *>(_data._mem);
  2715. const Quaternion *r = reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2716. return hash_compare_quaternion(*l, *r);
  2717. } break;
  2718. case BASIS: {
  2719. const Basis *l = _data._basis;
  2720. const Basis *r = p_variant._data._basis;
  2721. for (int i = 0; i < 3; i++) {
  2722. if (!(hash_compare_vector3(l->rows[i], r->rows[i]))) {
  2723. return false;
  2724. }
  2725. }
  2726. return true;
  2727. } break;
  2728. case TRANSFORM3D: {
  2729. const Transform3D *l = _data._transform3d;
  2730. const Transform3D *r = p_variant._data._transform3d;
  2731. for (int i = 0; i < 3; i++) {
  2732. if (!(hash_compare_vector3(l->basis.rows[i], r->basis.rows[i]))) {
  2733. return false;
  2734. }
  2735. }
  2736. return hash_compare_vector3(l->origin, r->origin);
  2737. } break;
  2738. case COLOR: {
  2739. const Color *l = reinterpret_cast<const Color *>(_data._mem);
  2740. const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem);
  2741. return hash_compare_color(*l, *r);
  2742. } break;
  2743. case ARRAY: {
  2744. const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
  2745. const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
  2746. if (!l.recursive_equal(r, recursion_count + 1)) {
  2747. return false;
  2748. }
  2749. return true;
  2750. } break;
  2751. case DICTIONARY: {
  2752. const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem));
  2753. const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem));
  2754. if (!l.recursive_equal(r, recursion_count + 1)) {
  2755. return false;
  2756. }
  2757. return true;
  2758. } break;
  2759. // This is for floating point comparisons only.
  2760. case PACKED_FLOAT32_ARRAY: {
  2761. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, float, hash_compare_scalar);
  2762. } break;
  2763. case PACKED_FLOAT64_ARRAY: {
  2764. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, double, hash_compare_scalar);
  2765. } break;
  2766. case PACKED_VECTOR2_ARRAY: {
  2767. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector2, hash_compare_vector2);
  2768. } break;
  2769. case PACKED_VECTOR3_ARRAY: {
  2770. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector3, hash_compare_vector3);
  2771. } break;
  2772. case PACKED_COLOR_ARRAY: {
  2773. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Color, hash_compare_color);
  2774. } break;
  2775. default:
  2776. bool v;
  2777. Variant r;
  2778. evaluate(OP_EQUAL, *this, p_variant, r, v);
  2779. return r;
  2780. }
  2781. return false;
  2782. }
  2783. bool Variant::is_ref_counted() const {
  2784. return type == OBJECT && _get_obj().id.is_ref_counted();
  2785. }
  2786. Vector<Variant> varray() {
  2787. return Vector<Variant>();
  2788. }
  2789. Vector<Variant> varray(const Variant &p_arg1) {
  2790. Vector<Variant> v;
  2791. v.push_back(p_arg1);
  2792. return v;
  2793. }
  2794. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) {
  2795. Vector<Variant> v;
  2796. v.push_back(p_arg1);
  2797. v.push_back(p_arg2);
  2798. return v;
  2799. }
  2800. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) {
  2801. Vector<Variant> v;
  2802. v.push_back(p_arg1);
  2803. v.push_back(p_arg2);
  2804. v.push_back(p_arg3);
  2805. return v;
  2806. }
  2807. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) {
  2808. Vector<Variant> v;
  2809. v.push_back(p_arg1);
  2810. v.push_back(p_arg2);
  2811. v.push_back(p_arg3);
  2812. v.push_back(p_arg4);
  2813. return v;
  2814. }
  2815. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) {
  2816. Vector<Variant> v;
  2817. v.push_back(p_arg1);
  2818. v.push_back(p_arg2);
  2819. v.push_back(p_arg3);
  2820. v.push_back(p_arg4);
  2821. v.push_back(p_arg5);
  2822. return v;
  2823. }
  2824. void Variant::static_assign(const Variant &p_variant) {
  2825. }
  2826. bool Variant::is_shared() const {
  2827. switch (type) {
  2828. case OBJECT:
  2829. return true;
  2830. case ARRAY:
  2831. return true;
  2832. case DICTIONARY:
  2833. return true;
  2834. default: {
  2835. }
  2836. }
  2837. return false;
  2838. }
  2839. void Variant::_variant_call_error(const String &p_method, Callable::CallError &error) {
  2840. switch (error.error) {
  2841. case Callable::CallError::CALL_ERROR_INVALID_ARGUMENT: {
  2842. String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(Variant::Type(error.expected)) + "'.";
  2843. ERR_PRINT(err.utf8().get_data());
  2844. } break;
  2845. case Callable::CallError::CALL_ERROR_INVALID_METHOD: {
  2846. String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'.";
  2847. ERR_PRINT(err.utf8().get_data());
  2848. } break;
  2849. case Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: {
  2850. String err = "Too many arguments for method '" + p_method + "'";
  2851. ERR_PRINT(err.utf8().get_data());
  2852. } break;
  2853. default: {
  2854. }
  2855. }
  2856. }
  2857. void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) {
  2858. r_value = Variant();
  2859. }
  2860. String Variant::get_construct_string() const {
  2861. String vars;
  2862. VariantWriter::write_to_string(*this, vars);
  2863. return vars;
  2864. }
  2865. String Variant::get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2866. String err_text;
  2867. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2868. int errorarg = ce.argument;
  2869. if (p_argptrs) {
  2870. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2871. } else {
  2872. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2873. }
  2874. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2875. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2876. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2877. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2878. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2879. err_text = "Method not found.";
  2880. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2881. err_text = "Instance is null";
  2882. } else if (ce.error == Callable::CallError::CALL_OK) {
  2883. return "Call OK";
  2884. }
  2885. return "'" + String(p_method) + "': " + err_text;
  2886. }
  2887. String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2888. String err_text;
  2889. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2890. int errorarg = ce.argument;
  2891. if (p_argptrs) {
  2892. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2893. } else {
  2894. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2895. }
  2896. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2897. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2898. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2899. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2900. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2901. err_text = "Method not found.";
  2902. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2903. err_text = "Instance is null";
  2904. } else if (ce.error == Callable::CallError::CALL_OK) {
  2905. return "Call OK";
  2906. }
  2907. String class_name = p_base->get_class();
  2908. Ref<Resource> script = p_base->get_script();
  2909. if (script.is_valid() && script->get_path().is_resource_file()) {
  2910. class_name += "(" + script->get_path().get_file() + ")";
  2911. }
  2912. return "'" + class_name + "::" + String(p_method) + "': " + err_text;
  2913. }
  2914. String Variant::get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2915. String err_text;
  2916. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2917. int errorarg = ce.argument;
  2918. if (p_argptrs) {
  2919. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2920. } else {
  2921. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2922. }
  2923. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2924. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2925. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2926. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2927. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2928. err_text = "Method not found.";
  2929. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2930. err_text = "Instance is null";
  2931. } else if (ce.error == Callable::CallError::CALL_OK) {
  2932. return "Call OK";
  2933. }
  2934. return String(p_callable) + " : " + err_text;
  2935. }
  2936. String vformat(const String &p_text, const Variant &p1, const Variant &p2, const Variant &p3, const Variant &p4, const Variant &p5) {
  2937. Array args;
  2938. if (p1.get_type() != Variant::NIL) {
  2939. args.push_back(p1);
  2940. if (p2.get_type() != Variant::NIL) {
  2941. args.push_back(p2);
  2942. if (p3.get_type() != Variant::NIL) {
  2943. args.push_back(p3);
  2944. if (p4.get_type() != Variant::NIL) {
  2945. args.push_back(p4);
  2946. if (p5.get_type() != Variant::NIL) {
  2947. args.push_back(p5);
  2948. }
  2949. }
  2950. }
  2951. }
  2952. }
  2953. bool error = false;
  2954. String fmt = p_text.sprintf(args, &error);
  2955. ERR_FAIL_COND_V_MSG(error, String(), fmt);
  2956. return fmt;
  2957. }
  2958. void Variant::register_types() {
  2959. _register_variant_operators();
  2960. _register_variant_methods();
  2961. _register_variant_setters_getters();
  2962. _register_variant_constructors();
  2963. _register_variant_destructors();
  2964. _register_variant_utility_functions();
  2965. }
  2966. void Variant::unregister_types() {
  2967. _unregister_variant_operators();
  2968. _unregister_variant_methods();
  2969. _unregister_variant_setters_getters();
  2970. _unregister_variant_destructors();
  2971. _unregister_variant_utility_functions();
  2972. }