shape_2d_sw.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*************************************************************************/
  2. /* shape_2d_sw.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "shape_2d_sw.h"
  31. #include "geometry.h"
  32. #include "sort.h"
  33. void Shape2DSW::configure(const Rect2 &p_aabb) {
  34. aabb = p_aabb;
  35. configured = true;
  36. for (Map<ShapeOwner2DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
  37. ShapeOwner2DSW *co = (ShapeOwner2DSW *)E->key();
  38. co->_shape_changed();
  39. }
  40. }
  41. Vector2 Shape2DSW::get_support(const Vector2 &p_normal) const {
  42. Vector2 res[2];
  43. int amnt;
  44. get_supports(p_normal, res, amnt);
  45. return res[0];
  46. }
  47. void Shape2DSW::add_owner(ShapeOwner2DSW *p_owner) {
  48. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  49. if (E) {
  50. E->get()++;
  51. } else {
  52. owners[p_owner] = 1;
  53. }
  54. }
  55. void Shape2DSW::remove_owner(ShapeOwner2DSW *p_owner) {
  56. Map<ShapeOwner2DSW *, int>::Element *E = owners.find(p_owner);
  57. ERR_FAIL_COND(!E);
  58. E->get()--;
  59. if (E->get() == 0) {
  60. owners.erase(E);
  61. }
  62. }
  63. bool Shape2DSW::is_owner(ShapeOwner2DSW *p_owner) const {
  64. return owners.has(p_owner);
  65. }
  66. const Map<ShapeOwner2DSW *, int> &Shape2DSW::get_owners() const {
  67. return owners;
  68. }
  69. Shape2DSW::Shape2DSW() {
  70. custom_bias = 0;
  71. configured = false;
  72. }
  73. Shape2DSW::~Shape2DSW() {
  74. ERR_FAIL_COND(owners.size());
  75. }
  76. /*********************************************************/
  77. /*********************************************************/
  78. /*********************************************************/
  79. void LineShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  80. r_amount = 0;
  81. }
  82. bool LineShape2DSW::contains_point(const Vector2 &p_point) const {
  83. return normal.dot(p_point) < d;
  84. }
  85. bool LineShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  86. Vector2 segment = p_begin - p_end;
  87. real_t den = normal.dot(segment);
  88. //printf("den is %i\n",den);
  89. if (Math::abs(den) <= CMP_EPSILON) {
  90. return false;
  91. }
  92. real_t dist = (normal.dot(p_begin) - d) / den;
  93. //printf("dist is %i\n",dist);
  94. if (dist < -CMP_EPSILON || dist > (1.0 + CMP_EPSILON)) {
  95. return false;
  96. }
  97. r_point = p_begin + segment * -dist;
  98. r_normal = normal;
  99. return true;
  100. }
  101. real_t LineShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  102. return 0;
  103. }
  104. void LineShape2DSW::set_data(const Variant &p_data) {
  105. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY);
  106. Array arr = p_data;
  107. ERR_FAIL_COND(arr.size() != 2);
  108. normal = arr[0];
  109. d = arr[1];
  110. configure(Rect2(Vector2(-1e4, -1e4), Vector2(1e4 * 2, 1e4 * 2)));
  111. }
  112. Variant LineShape2DSW::get_data() const {
  113. Array arr;
  114. arr.resize(2);
  115. arr[0] = normal;
  116. arr[1] = d;
  117. return arr;
  118. }
  119. /*********************************************************/
  120. /*********************************************************/
  121. /*********************************************************/
  122. void RayShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  123. r_amount = 1;
  124. if (p_normal.y > 0)
  125. *r_supports = Vector2(0, length);
  126. else
  127. *r_supports = Vector2();
  128. }
  129. bool RayShape2DSW::contains_point(const Vector2 &p_point) const {
  130. return false;
  131. }
  132. bool RayShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  133. return false; //rays can't be intersected
  134. }
  135. real_t RayShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  136. return 0; //rays are mass-less
  137. }
  138. void RayShape2DSW::set_data(const Variant &p_data) {
  139. length = p_data;
  140. configure(Rect2(0, 0, 0.001, length));
  141. }
  142. Variant RayShape2DSW::get_data() const {
  143. return length;
  144. }
  145. /*********************************************************/
  146. /*********************************************************/
  147. /*********************************************************/
  148. void SegmentShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  149. if (Math::abs(p_normal.dot(n)) > _SEGMENT_IS_VALID_SUPPORT_TRESHOLD) {
  150. r_supports[0] = a;
  151. r_supports[1] = b;
  152. r_amount = 2;
  153. return;
  154. }
  155. float dp = p_normal.dot(b - a);
  156. if (dp > 0)
  157. *r_supports = b;
  158. else
  159. *r_supports = a;
  160. r_amount = 1;
  161. }
  162. bool SegmentShape2DSW::contains_point(const Vector2 &p_point) const {
  163. return false;
  164. }
  165. bool SegmentShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  166. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &r_point))
  167. return false;
  168. if (n.dot(p_begin) > n.dot(a)) {
  169. r_normal = n;
  170. } else {
  171. r_normal = -n;
  172. }
  173. return true;
  174. }
  175. real_t SegmentShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  176. Vector2 s[2] = { a * p_scale, b * p_scale };
  177. real_t l = s[1].distance_to(s[0]);
  178. Vector2 ofs = (s[0] + s[1]) * 0.5;
  179. return p_mass * (l * l / 12.0f + ofs.length_squared());
  180. }
  181. void SegmentShape2DSW::set_data(const Variant &p_data) {
  182. ERR_FAIL_COND(p_data.get_type() != Variant::RECT2);
  183. Rect2 r = p_data;
  184. a = r.pos;
  185. b = r.size;
  186. n = (b - a).tangent();
  187. Rect2 aabb;
  188. aabb.pos = a;
  189. aabb.expand_to(b);
  190. if (aabb.size.x == 0)
  191. aabb.size.x = 0.001;
  192. if (aabb.size.y == 0)
  193. aabb.size.y = 0.001;
  194. configure(aabb);
  195. }
  196. Variant SegmentShape2DSW::get_data() const {
  197. Rect2 r;
  198. r.pos = a;
  199. r.size = b;
  200. return r;
  201. }
  202. /*********************************************************/
  203. /*********************************************************/
  204. /*********************************************************/
  205. void CircleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  206. r_amount = 1;
  207. *r_supports = p_normal * radius;
  208. }
  209. bool CircleShape2DSW::contains_point(const Vector2 &p_point) const {
  210. return p_point.length_squared() < radius * radius;
  211. }
  212. bool CircleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  213. Vector2 line_vec = p_end - p_begin;
  214. real_t a, b, c;
  215. a = line_vec.dot(line_vec);
  216. b = 2 * p_begin.dot(line_vec);
  217. c = p_begin.dot(p_begin) - radius * radius;
  218. real_t sqrtterm = b * b - 4 * a * c;
  219. if (sqrtterm < 0)
  220. return false;
  221. sqrtterm = Math::sqrt(sqrtterm);
  222. real_t res = (-b - sqrtterm) / (2 * a);
  223. if (res < 0 || res > 1 + CMP_EPSILON) {
  224. return false;
  225. }
  226. r_point = p_begin + line_vec * res;
  227. r_normal = r_point.normalized();
  228. return true;
  229. }
  230. real_t CircleShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  231. return (radius * radius) * (p_scale.x * 0.5 + p_scale.y * 0.5);
  232. }
  233. void CircleShape2DSW::set_data(const Variant &p_data) {
  234. ERR_FAIL_COND(!p_data.is_num());
  235. radius = p_data;
  236. configure(Rect2(-radius, -radius, radius * 2, radius * 2));
  237. }
  238. Variant CircleShape2DSW::get_data() const {
  239. return radius;
  240. }
  241. /*********************************************************/
  242. /*********************************************************/
  243. /*********************************************************/
  244. void RectangleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  245. for (int i = 0; i < 2; i++) {
  246. Vector2 ag;
  247. ag[i] = 1.0;
  248. float dp = ag.dot(p_normal);
  249. if (Math::abs(dp) < _SEGMENT_IS_VALID_SUPPORT_TRESHOLD)
  250. continue;
  251. float sgn = dp > 0 ? 1.0 : -1.0;
  252. r_amount = 2;
  253. r_supports[0][i] = half_extents[i] * sgn;
  254. r_supports[0][i ^ 1] = half_extents[i ^ 1];
  255. r_supports[1][i] = half_extents[i] * sgn;
  256. r_supports[1][i ^ 1] = -half_extents[i ^ 1];
  257. return;
  258. }
  259. /* USE POINT */
  260. r_amount = 1;
  261. r_supports[0] = Vector2(
  262. (p_normal.x < 0) ? -half_extents.x : half_extents.x,
  263. (p_normal.y < 0) ? -half_extents.y : half_extents.y);
  264. }
  265. bool RectangleShape2DSW::contains_point(const Vector2 &p_point) const {
  266. return Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y;
  267. }
  268. bool RectangleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  269. return get_aabb().intersects_segment(p_begin, p_end, &r_point, &r_normal);
  270. }
  271. real_t RectangleShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  272. Vector2 he2 = half_extents * 2 * p_scale;
  273. return p_mass * he2.dot(he2) / 12.0f;
  274. }
  275. void RectangleShape2DSW::set_data(const Variant &p_data) {
  276. ERR_FAIL_COND(p_data.get_type() != Variant::VECTOR2);
  277. half_extents = p_data;
  278. configure(Rect2(-half_extents, half_extents * 2.0));
  279. }
  280. Variant RectangleShape2DSW::get_data() const {
  281. return half_extents;
  282. }
  283. /*********************************************************/
  284. /*********************************************************/
  285. /*********************************************************/
  286. void CapsuleShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  287. Vector2 n = p_normal;
  288. float d = n.y;
  289. if (Math::abs(d) < (1.0 - _SEGMENT_IS_VALID_SUPPORT_TRESHOLD)) {
  290. // make it flat
  291. n.y = 0.0;
  292. n.normalize();
  293. n *= radius;
  294. r_amount = 2;
  295. r_supports[0] = n;
  296. r_supports[0].y += height * 0.5;
  297. r_supports[1] = n;
  298. r_supports[1].y -= height * 0.5;
  299. } else {
  300. float h = (d > 0) ? height : -height;
  301. n *= radius;
  302. n.y += h * 0.5;
  303. r_amount = 1;
  304. *r_supports = n;
  305. }
  306. }
  307. bool CapsuleShape2DSW::contains_point(const Vector2 &p_point) const {
  308. Vector2 p = p_point;
  309. p.y = Math::abs(p.y);
  310. p.y -= height * 0.5;
  311. if (p.y < 0)
  312. p.y = 0;
  313. return p.length_squared() < radius * radius;
  314. }
  315. bool CapsuleShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  316. float d = 1e10;
  317. Vector2 n = (p_end - p_begin).normalized();
  318. bool collided = false;
  319. //try spheres
  320. for (int i = 0; i < 2; i++) {
  321. Vector2 begin = p_begin;
  322. Vector2 end = p_end;
  323. float ofs = (i == 0) ? -height * 0.5 : height * 0.5;
  324. begin.y += ofs;
  325. end.y += ofs;
  326. Vector2 line_vec = end - begin;
  327. real_t a, b, c;
  328. a = line_vec.dot(line_vec);
  329. b = 2 * begin.dot(line_vec);
  330. c = begin.dot(begin) - radius * radius;
  331. real_t sqrtterm = b * b - 4 * a * c;
  332. if (sqrtterm < 0)
  333. continue;
  334. sqrtterm = Math::sqrt(sqrtterm);
  335. real_t res = (-b - sqrtterm) / (2 * a);
  336. if (res < 0 || res > 1 + CMP_EPSILON) {
  337. continue;
  338. }
  339. Vector2 point = begin + line_vec * res;
  340. Vector2 pointf(point.x, point.y - ofs);
  341. real_t pd = n.dot(pointf);
  342. if (pd < d) {
  343. r_point = pointf;
  344. r_normal = point.normalized();
  345. d = pd;
  346. collided = true;
  347. }
  348. }
  349. Vector2 rpos, rnorm;
  350. if (Rect2(Point2(-radius, -height * 0.5), Size2(radius * 2.0, height)).intersects_segment(p_begin, p_end, &rpos, &rnorm)) {
  351. real_t pd = n.dot(rpos);
  352. if (pd < d) {
  353. r_point = rpos;
  354. r_normal = rnorm;
  355. d = pd;
  356. collided = true;
  357. }
  358. }
  359. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  360. return collided; //todo
  361. }
  362. real_t CapsuleShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  363. Vector2 he2 = Vector2(radius * 2, height + radius * 2) * p_scale;
  364. return p_mass * he2.dot(he2) / 12.0f;
  365. }
  366. void CapsuleShape2DSW::set_data(const Variant &p_data) {
  367. ERR_FAIL_COND(p_data.get_type() != Variant::ARRAY && p_data.get_type() != Variant::VECTOR2);
  368. if (p_data.get_type() == Variant::ARRAY) {
  369. Array arr = p_data;
  370. ERR_FAIL_COND(arr.size() != 2);
  371. height = arr[0];
  372. radius = arr[1];
  373. } else {
  374. Point2 p = p_data;
  375. radius = p.x;
  376. height = p.y;
  377. }
  378. Point2 he(radius, height * 0.5 + radius);
  379. configure(Rect2(-he, he * 2));
  380. }
  381. Variant CapsuleShape2DSW::get_data() const {
  382. return Point2(height, radius);
  383. }
  384. /*********************************************************/
  385. /*********************************************************/
  386. /*********************************************************/
  387. void ConvexPolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  388. int support_idx = -1;
  389. real_t d = -1e10;
  390. for (int i = 0; i < point_count; i++) {
  391. //test point
  392. real_t ld = p_normal.dot(points[i].pos);
  393. if (ld > d) {
  394. support_idx = i;
  395. d = ld;
  396. }
  397. //test segment
  398. if (points[i].normal.dot(p_normal) > _SEGMENT_IS_VALID_SUPPORT_TRESHOLD) {
  399. r_amount = 2;
  400. r_supports[0] = points[i].pos;
  401. r_supports[1] = points[(i + 1) % point_count].pos;
  402. return;
  403. }
  404. }
  405. ERR_FAIL_COND(support_idx == -1);
  406. r_amount = 1;
  407. r_supports[0] = points[support_idx].pos;
  408. }
  409. bool ConvexPolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  410. bool out = false;
  411. bool in = false;
  412. for (int i = 0; i < point_count; i++) {
  413. float d = points[i].normal.dot(p_point) - points[i].normal.dot(points[i].pos);
  414. if (d > 0)
  415. out = true;
  416. else
  417. in = true;
  418. }
  419. return (in && !out) || (!in && out);
  420. }
  421. bool ConvexPolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  422. Vector2 n = (p_end - p_begin).normalized();
  423. real_t d = 1e10;
  424. bool inters = false;
  425. for (int i = 0; i < point_count; i++) {
  426. //hmm crap.. no can do..
  427. //if (d.dot(points[i].normal)>=0)
  428. // continue;
  429. Vector2 res;
  430. if (!Geometry::segment_intersects_segment_2d(p_begin, p_end, points[i].pos, points[(i + 1) % point_count].pos, &res))
  431. continue;
  432. float nd = n.dot(res);
  433. if (nd < d) {
  434. d = nd;
  435. r_point = res;
  436. r_normal = points[i].normal;
  437. inters = true;
  438. }
  439. }
  440. if (inters) {
  441. if (n.dot(r_normal) > 0)
  442. r_normal = -r_normal;
  443. }
  444. //return get_aabb().intersects_segment(p_begin,p_end,&r_point,&r_normal);
  445. return inters; //todo
  446. }
  447. real_t ConvexPolygonShape2DSW::get_moment_of_inertia(float p_mass, const Size2 &p_scale) const {
  448. Rect2 aabb;
  449. aabb.pos = points[0].pos * p_scale;
  450. for (int i = 0; i < point_count; i++) {
  451. aabb.expand_to(points[i].pos * p_scale);
  452. }
  453. return p_mass * aabb.size.dot(aabb.size) / 12.0f + p_mass * (aabb.pos + aabb.size * 0.5).length_squared();
  454. }
  455. void ConvexPolygonShape2DSW::set_data(const Variant &p_data) {
  456. ERR_FAIL_COND(p_data.get_type() != Variant::VECTOR2_ARRAY && p_data.get_type() != Variant::REAL_ARRAY);
  457. if (points)
  458. memdelete_arr(points);
  459. points = NULL;
  460. point_count = 0;
  461. if (p_data.get_type() == Variant::VECTOR2_ARRAY) {
  462. DVector<Vector2> arr = p_data;
  463. ERR_FAIL_COND(arr.size() == 0);
  464. point_count = arr.size();
  465. points = memnew_arr(Point, point_count);
  466. DVector<Vector2>::Read r = arr.read();
  467. for (int i = 0; i < point_count; i++) {
  468. points[i].pos = r[i];
  469. }
  470. for (int i = 0; i < point_count; i++) {
  471. Vector2 p = points[i].pos;
  472. Vector2 pn = points[(i + 1) % point_count].pos;
  473. points[i].normal = (pn - p).tangent().normalized();
  474. }
  475. } else {
  476. DVector<real_t> dvr = p_data;
  477. point_count = dvr.size() / 4;
  478. ERR_FAIL_COND(point_count == 0);
  479. points = memnew_arr(Point, point_count);
  480. DVector<real_t>::Read r = dvr.read();
  481. for (int i = 0; i < point_count; i++) {
  482. int idx = i << 2;
  483. points[i].pos.x = r[idx + 0];
  484. points[i].pos.y = r[idx + 1];
  485. points[i].normal.x = r[idx + 2];
  486. points[i].normal.y = r[idx + 3];
  487. }
  488. }
  489. ERR_FAIL_COND(point_count == 0);
  490. Rect2 aabb;
  491. aabb.pos = points[0].pos;
  492. for (int i = 1; i < point_count; i++)
  493. aabb.expand_to(points[i].pos);
  494. configure(aabb);
  495. }
  496. Variant ConvexPolygonShape2DSW::get_data() const {
  497. DVector<Vector2> dvr;
  498. dvr.resize(point_count);
  499. for (int i = 0; i < point_count; i++) {
  500. dvr.set(i, points[i].pos);
  501. }
  502. return dvr;
  503. }
  504. ConvexPolygonShape2DSW::ConvexPolygonShape2DSW() {
  505. points = NULL;
  506. point_count = 0;
  507. }
  508. ConvexPolygonShape2DSW::~ConvexPolygonShape2DSW() {
  509. if (points)
  510. memdelete_arr(points);
  511. }
  512. //////////////////////////////////////////////////
  513. void ConcavePolygonShape2DSW::get_supports(const Vector2 &p_normal, Vector2 *r_supports, int &r_amount) const {
  514. real_t d = -1e10;
  515. int idx = -1;
  516. for (int i = 0; i < points.size(); i++) {
  517. real_t ld = p_normal.dot(points[i]);
  518. if (ld > d) {
  519. d = ld;
  520. idx = i;
  521. }
  522. }
  523. r_amount = 1;
  524. ERR_FAIL_COND(idx == -1);
  525. *r_supports = points[idx];
  526. }
  527. bool ConcavePolygonShape2DSW::contains_point(const Vector2 &p_point) const {
  528. return false; //sorry
  529. }
  530. bool ConcavePolygonShape2DSW::intersect_segment(const Vector2 &p_begin, const Vector2 &p_end, Vector2 &r_point, Vector2 &r_normal) const {
  531. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  532. enum {
  533. TEST_AABB_BIT = 0,
  534. VISIT_LEFT_BIT = 1,
  535. VISIT_RIGHT_BIT = 2,
  536. VISIT_DONE_BIT = 3,
  537. VISITED_BIT_SHIFT = 29,
  538. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  539. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  540. };
  541. Vector2 n = (p_end - p_begin).normalized();
  542. real_t d = 1e10;
  543. bool inters = false;
  544. //for(int i=0;i<bvh_depth;i++)
  545. // stack[i]=0;
  546. int level = 0;
  547. const Segment *segmentptr = &segments[0];
  548. const Vector2 *pointptr = &points[0];
  549. const BVH *bvhptr = &bvh[0];
  550. stack[0] = 0;
  551. while (true) {
  552. uint32_t node = stack[level] & NODE_IDX_MASK;
  553. const BVH &b = bvhptr[node];
  554. bool done = false;
  555. switch (stack[level] >> VISITED_BIT_SHIFT) {
  556. case TEST_AABB_BIT: {
  557. bool valid = b.aabb.intersects_segment(p_begin, p_end);
  558. if (!valid) {
  559. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  560. } else {
  561. if (b.left < 0) {
  562. const Segment &s = segmentptr[b.right];
  563. Vector2 a = pointptr[s.points[0]];
  564. Vector2 b = pointptr[s.points[1]];
  565. Vector2 res;
  566. if (Geometry::segment_intersects_segment_2d(p_begin, p_end, a, b, &res)) {
  567. float nd = n.dot(res);
  568. if (nd < d) {
  569. d = nd;
  570. r_point = res;
  571. r_normal = (b - a).tangent().normalized();
  572. inters = true;
  573. }
  574. }
  575. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  576. } else {
  577. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  578. }
  579. }
  580. }
  581. continue;
  582. case VISIT_LEFT_BIT: {
  583. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  584. stack[level + 1] = b.left | TEST_AABB_BIT;
  585. level++;
  586. }
  587. continue;
  588. case VISIT_RIGHT_BIT: {
  589. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  590. stack[level + 1] = b.right | TEST_AABB_BIT;
  591. level++;
  592. }
  593. continue;
  594. case VISIT_DONE_BIT: {
  595. if (level == 0) {
  596. done = true;
  597. break;
  598. } else
  599. level--;
  600. }
  601. continue;
  602. }
  603. if (done)
  604. break;
  605. }
  606. if (inters) {
  607. if (n.dot(r_normal) > 0)
  608. r_normal = -r_normal;
  609. }
  610. return inters;
  611. }
  612. int ConcavePolygonShape2DSW::_generate_bvh(BVH *p_bvh, int p_len, int p_depth) {
  613. if (p_len == 1) {
  614. bvh_depth = MAX(p_depth, bvh_depth);
  615. bvh.push_back(*p_bvh);
  616. return bvh.size() - 1;
  617. }
  618. //else sort best
  619. Rect2 global_aabb = p_bvh[0].aabb;
  620. for (int i = 1; i < p_len; i++) {
  621. global_aabb = global_aabb.merge(p_bvh[i].aabb);
  622. }
  623. if (global_aabb.size.x > global_aabb.size.y) {
  624. SortArray<BVH, BVH_CompareX> sort;
  625. sort.sort(p_bvh, p_len);
  626. } else {
  627. SortArray<BVH, BVH_CompareY> sort;
  628. sort.sort(p_bvh, p_len);
  629. }
  630. int median = p_len / 2;
  631. BVH node;
  632. node.aabb = global_aabb;
  633. int node_idx = bvh.size();
  634. bvh.push_back(node);
  635. int l = _generate_bvh(p_bvh, median, p_depth + 1);
  636. int r = _generate_bvh(&p_bvh[median], p_len - median, p_depth + 1);
  637. bvh[node_idx].left = l;
  638. bvh[node_idx].right = r;
  639. return node_idx;
  640. }
  641. void ConcavePolygonShape2DSW::set_data(const Variant &p_data) {
  642. ERR_FAIL_COND(p_data.get_type() != Variant::VECTOR2_ARRAY && p_data.get_type() != Variant::REAL_ARRAY);
  643. Rect2 aabb;
  644. if (p_data.get_type() == Variant::VECTOR2_ARRAY) {
  645. DVector<Vector2> p2arr = p_data;
  646. int len = p2arr.size();
  647. ERR_FAIL_COND(len % 2);
  648. segments.clear();
  649. points.clear();
  650. bvh.clear();
  651. bvh_depth = 1;
  652. if (len == 0) {
  653. configure(aabb);
  654. return;
  655. }
  656. DVector<Vector2>::Read arr = p2arr.read();
  657. Map<Point2, int> pointmap;
  658. for (int i = 0; i < len; i += 2) {
  659. Point2 p1 = arr[i];
  660. Point2 p2 = arr[i + 1];
  661. int idx_p1, idx_p2;
  662. if (pointmap.has(p1)) {
  663. idx_p1 = pointmap[p1];
  664. } else {
  665. idx_p1 = pointmap.size();
  666. pointmap[p1] = idx_p1;
  667. }
  668. if (pointmap.has(p2)) {
  669. idx_p2 = pointmap[p2];
  670. } else {
  671. idx_p2 = pointmap.size();
  672. pointmap[p2] = idx_p2;
  673. }
  674. Segment s;
  675. s.points[0] = idx_p1;
  676. s.points[1] = idx_p2;
  677. segments.push_back(s);
  678. }
  679. points.resize(pointmap.size());
  680. aabb.pos = pointmap.front()->key();
  681. for (Map<Point2, int>::Element *E = pointmap.front(); E; E = E->next()) {
  682. aabb.expand_to(E->key());
  683. points[E->get()] = E->key();
  684. }
  685. Vector<BVH> main_vbh;
  686. main_vbh.resize(segments.size());
  687. for (int i = 0; i < main_vbh.size(); i++) {
  688. main_vbh[i].aabb.pos = points[segments[i].points[0]];
  689. main_vbh[i].aabb.expand_to(points[segments[i].points[1]]);
  690. main_vbh[i].left = -1;
  691. main_vbh[i].right = i;
  692. }
  693. _generate_bvh(&main_vbh[0], main_vbh.size(), 1);
  694. } else {
  695. //dictionary with arrays
  696. }
  697. configure(aabb);
  698. }
  699. Variant ConcavePolygonShape2DSW::get_data() const {
  700. DVector<Vector2> rsegments;
  701. int len = segments.size();
  702. rsegments.resize(len * 2);
  703. DVector<Vector2>::Write w = rsegments.write();
  704. for (int i = 0; i < len; i++) {
  705. w[(i << 1) + 0] = points[segments[i].points[0]];
  706. w[(i << 1) + 1] = points[segments[i].points[1]];
  707. }
  708. w = DVector<Vector2>::Write();
  709. return rsegments;
  710. }
  711. void ConcavePolygonShape2DSW::cull(const Rect2 &p_local_aabb, Callback p_callback, void *p_userdata) const {
  712. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * bvh_depth);
  713. enum {
  714. TEST_AABB_BIT = 0,
  715. VISIT_LEFT_BIT = 1,
  716. VISIT_RIGHT_BIT = 2,
  717. VISIT_DONE_BIT = 3,
  718. VISITED_BIT_SHIFT = 29,
  719. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  720. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  721. };
  722. //for(int i=0;i<bvh_depth;i++)
  723. // stack[i]=0;
  724. int level = 0;
  725. const Segment *segmentptr = &segments[0];
  726. const Vector2 *pointptr = &points[0];
  727. const BVH *bvhptr = &bvh[0];
  728. stack[0] = 0;
  729. while (true) {
  730. uint32_t node = stack[level] & NODE_IDX_MASK;
  731. const BVH &b = bvhptr[node];
  732. switch (stack[level] >> VISITED_BIT_SHIFT) {
  733. case TEST_AABB_BIT: {
  734. bool valid = p_local_aabb.intersects(b.aabb);
  735. if (!valid) {
  736. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  737. } else {
  738. if (b.left < 0) {
  739. const Segment &s = segmentptr[b.right];
  740. Vector2 a = pointptr[s.points[0]];
  741. Vector2 b = pointptr[s.points[1]];
  742. SegmentShape2DSW ss(a, b, (b - a).tangent().normalized());
  743. p_callback(p_userdata, &ss);
  744. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  745. } else {
  746. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  747. }
  748. }
  749. }
  750. continue;
  751. case VISIT_LEFT_BIT: {
  752. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  753. stack[level + 1] = b.left | TEST_AABB_BIT;
  754. level++;
  755. }
  756. continue;
  757. case VISIT_RIGHT_BIT: {
  758. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  759. stack[level + 1] = b.right | TEST_AABB_BIT;
  760. level++;
  761. }
  762. continue;
  763. case VISIT_DONE_BIT: {
  764. if (level == 0)
  765. return;
  766. else
  767. level--;
  768. }
  769. continue;
  770. }
  771. }
  772. }