2
0

dsa_ossl.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /* crypto/dsa/dsa_ossl.c */
  2. /* Copyright (C) 1995-1998 Eric Young ([email protected])
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young ([email protected]).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson ([email protected]).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young ([email protected])"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson ([email protected])"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. /* Original version from Steven Schoch <[email protected]> */
  59. #include <stdio.h>
  60. #include "cryptlib.h"
  61. #include <openssl/bn.h>
  62. #include <openssl/sha.h>
  63. #include <openssl/dsa.h>
  64. #include <openssl/rand.h>
  65. #include <openssl/asn1.h>
  66. static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
  67. static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
  68. BIGNUM **rp);
  69. static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
  70. DSA_SIG *sig, DSA *dsa);
  71. static int dsa_init(DSA *dsa);
  72. static int dsa_finish(DSA *dsa);
  73. static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
  74. BN_CTX *ctx);
  75. static DSA_METHOD openssl_dsa_meth = {
  76. "OpenSSL DSA method",
  77. dsa_do_sign,
  78. dsa_sign_setup,
  79. dsa_do_verify,
  80. NULL, /* dsa_mod_exp, */
  81. NULL, /* dsa_bn_mod_exp, */
  82. dsa_init,
  83. dsa_finish,
  84. 0,
  85. NULL,
  86. NULL,
  87. NULL
  88. };
  89. /*-
  90. * These macro wrappers replace attempts to use the dsa_mod_exp() and
  91. * bn_mod_exp() handlers in the DSA_METHOD structure. We avoid the problem of
  92. * having a the macro work as an expression by bundling an "err_instr". So;
  93. *
  94. * if (!dsa->meth->bn_mod_exp(dsa, r,dsa->g,&k,dsa->p,ctx,
  95. * dsa->method_mont_p)) goto err;
  96. *
  97. * can be replaced by;
  98. *
  99. * DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, &k, dsa->p, ctx,
  100. * dsa->method_mont_p);
  101. */
  102. #define DSA_MOD_EXP(err_instr,dsa,rr,a1,p1,a2,p2,m,ctx,in_mont) \
  103. do { \
  104. int _tmp_res53; \
  105. if ((dsa)->meth->dsa_mod_exp) \
  106. _tmp_res53 = (dsa)->meth->dsa_mod_exp((dsa), (rr), (a1), (p1), \
  107. (a2), (p2), (m), (ctx), (in_mont)); \
  108. else \
  109. _tmp_res53 = BN_mod_exp2_mont((rr), (a1), (p1), (a2), (p2), \
  110. (m), (ctx), (in_mont)); \
  111. if (!_tmp_res53) err_instr; \
  112. } while(0)
  113. #define DSA_BN_MOD_EXP(err_instr,dsa,r,a,p,m,ctx,m_ctx) \
  114. do { \
  115. int _tmp_res53; \
  116. if ((dsa)->meth->bn_mod_exp) \
  117. _tmp_res53 = (dsa)->meth->bn_mod_exp((dsa), (r), (a), (p), \
  118. (m), (ctx), (m_ctx)); \
  119. else \
  120. _tmp_res53 = BN_mod_exp_mont((r), (a), (p), (m), (ctx), (m_ctx)); \
  121. if (!_tmp_res53) err_instr; \
  122. } while(0)
  123. const DSA_METHOD *DSA_OpenSSL(void)
  124. {
  125. return &openssl_dsa_meth;
  126. }
  127. static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
  128. {
  129. BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
  130. BIGNUM *m, *blind, *blindm, *tmp;
  131. BN_CTX *ctx = NULL;
  132. int reason = ERR_R_BN_LIB;
  133. DSA_SIG *ret = NULL;
  134. int noredo = 0;
  135. if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
  136. reason = DSA_R_MISSING_PARAMETERS;
  137. goto err;
  138. }
  139. s = BN_new();
  140. if (s == NULL)
  141. goto err;
  142. ctx = BN_CTX_new();
  143. if (ctx == NULL)
  144. goto err;
  145. m = BN_CTX_get(ctx);
  146. blind = BN_CTX_get(ctx);
  147. blindm = BN_CTX_get(ctx);
  148. tmp = BN_CTX_get(ctx);
  149. if (tmp == NULL)
  150. goto err;
  151. redo:
  152. if ((dsa->kinv == NULL) || (dsa->r == NULL)) {
  153. if (!DSA_sign_setup(dsa, ctx, &kinv, &r))
  154. goto err;
  155. } else {
  156. kinv = dsa->kinv;
  157. dsa->kinv = NULL;
  158. r = dsa->r;
  159. dsa->r = NULL;
  160. noredo = 1;
  161. }
  162. if (dlen > BN_num_bytes(dsa->q))
  163. /*
  164. * if the digest length is greater than the size of q use the
  165. * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
  166. * 4.2
  167. */
  168. dlen = BN_num_bytes(dsa->q);
  169. if (BN_bin2bn(dgst, dlen, m) == NULL)
  170. goto err;
  171. /*
  172. * The normal signature calculation is:
  173. *
  174. * s := k^-1 * (m + r * priv_key) mod q
  175. *
  176. * We will blind this to protect against side channel attacks
  177. *
  178. * s := blind^-1 * k^-1 * (blind * m + blind * r * priv_key) mod q
  179. */
  180. /* Generate a blinding value */
  181. do {
  182. if (!BN_rand(blind, BN_num_bits(dsa->q) - 1, -1, 0))
  183. goto err;
  184. } while (BN_is_zero(blind));
  185. BN_set_flags(blind, BN_FLG_CONSTTIME);
  186. BN_set_flags(blindm, BN_FLG_CONSTTIME);
  187. BN_set_flags(tmp, BN_FLG_CONSTTIME);
  188. /* tmp := blind * priv_key * r mod q */
  189. if (!BN_mod_mul(tmp, blind, dsa->priv_key, dsa->q, ctx))
  190. goto err;
  191. if (!BN_mod_mul(tmp, tmp, r, dsa->q, ctx))
  192. goto err;
  193. /* blindm := blind * m mod q */
  194. if (!BN_mod_mul(blindm, blind, m, dsa->q, ctx))
  195. goto err;
  196. /* s : = (blind * priv_key * r) + (blind * m) mod q */
  197. if (!BN_mod_add_quick(s, tmp, blindm, dsa->q))
  198. goto err;
  199. /* s := s * k^-1 mod q */
  200. if (!BN_mod_mul(s, s, kinv, dsa->q, ctx))
  201. goto err;
  202. /* s:= s * blind^-1 mod q */
  203. if (BN_mod_inverse(blind, blind, dsa->q, ctx) == NULL)
  204. goto err;
  205. if (!BN_mod_mul(s, s, blind, dsa->q, ctx))
  206. goto err;
  207. /*
  208. * Redo if r or s is zero as required by FIPS 186-3: this is very
  209. * unlikely.
  210. */
  211. if (BN_is_zero(r) || BN_is_zero(s)) {
  212. if (noredo) {
  213. reason = DSA_R_NEED_NEW_SETUP_VALUES;
  214. goto err;
  215. }
  216. goto redo;
  217. }
  218. ret = DSA_SIG_new();
  219. if (ret == NULL)
  220. goto err;
  221. ret->r = r;
  222. ret->s = s;
  223. err:
  224. if (ret == NULL) {
  225. DSAerr(DSA_F_DSA_DO_SIGN, reason);
  226. BN_free(r);
  227. BN_free(s);
  228. }
  229. BN_CTX_free(ctx);
  230. BN_clear_free(kinv);
  231. return ret;
  232. }
  233. static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
  234. BIGNUM **rp)
  235. {
  236. BN_CTX *ctx;
  237. BIGNUM k, kq, *K, *kinv = NULL, *r = NULL;
  238. BIGNUM l, m;
  239. int ret = 0;
  240. int q_bits;
  241. if (!dsa->p || !dsa->q || !dsa->g) {
  242. DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PARAMETERS);
  243. return 0;
  244. }
  245. BN_init(&k);
  246. BN_init(&kq);
  247. BN_init(&l);
  248. BN_init(&m);
  249. if (ctx_in == NULL) {
  250. if ((ctx = BN_CTX_new()) == NULL)
  251. goto err;
  252. } else
  253. ctx = ctx_in;
  254. if ((r = BN_new()) == NULL)
  255. goto err;
  256. /* Preallocate space */
  257. q_bits = BN_num_bits(dsa->q) + sizeof(dsa->q->d[0]) * 16;
  258. if (!BN_set_bit(&k, q_bits)
  259. || !BN_set_bit(&l, q_bits)
  260. || !BN_set_bit(&m, q_bits))
  261. goto err;
  262. /* Get random k */
  263. do
  264. if (!BN_rand_range(&k, dsa->q))
  265. goto err;
  266. while (BN_is_zero(&k));
  267. if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {
  268. BN_set_flags(&k, BN_FLG_CONSTTIME);
  269. BN_set_flags(&l, BN_FLG_CONSTTIME);
  270. }
  271. if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
  272. if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,
  273. CRYPTO_LOCK_DSA, dsa->p, ctx))
  274. goto err;
  275. }
  276. /* Compute r = (g^k mod p) mod q */
  277. if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0) {
  278. /*
  279. * We do not want timing information to leak the length of k, so we
  280. * compute G^k using an equivalent scalar of fixed bit-length.
  281. *
  282. * We unconditionally perform both of these additions to prevent a
  283. * small timing information leakage. We then choose the sum that is
  284. * one bit longer than the modulus.
  285. *
  286. * TODO: revisit the BN_copy aiming for a memory access agnostic
  287. * conditional copy.
  288. */
  289. if (!BN_add(&l, &k, dsa->q)
  290. || !BN_add(&m, &l, dsa->q)
  291. || !BN_copy(&kq, BN_num_bits(&l) > q_bits ? &l : &m))
  292. goto err;
  293. BN_set_flags(&kq, BN_FLG_CONSTTIME);
  294. K = &kq;
  295. } else {
  296. K = &k;
  297. }
  298. DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,
  299. dsa->method_mont_p);
  300. if (!BN_mod(r, r, dsa->q, ctx))
  301. goto err;
  302. /* Compute part of 's = inv(k) (m + xr) mod q' */
  303. if ((kinv = dsa_mod_inverse_fermat(&k, dsa->q, ctx)) == NULL)
  304. goto err;
  305. if (*kinvp != NULL)
  306. BN_clear_free(*kinvp);
  307. *kinvp = kinv;
  308. kinv = NULL;
  309. if (*rp != NULL)
  310. BN_clear_free(*rp);
  311. *rp = r;
  312. ret = 1;
  313. err:
  314. if (!ret) {
  315. DSAerr(DSA_F_DSA_SIGN_SETUP, ERR_R_BN_LIB);
  316. if (r != NULL)
  317. BN_clear_free(r);
  318. }
  319. if (ctx_in == NULL)
  320. BN_CTX_free(ctx);
  321. BN_clear_free(&k);
  322. BN_clear_free(&kq);
  323. BN_clear_free(&l);
  324. BN_clear_free(&m);
  325. return ret;
  326. }
  327. static int dsa_do_verify(const unsigned char *dgst, int dgst_len,
  328. DSA_SIG *sig, DSA *dsa)
  329. {
  330. BN_CTX *ctx;
  331. BIGNUM u1, u2, t1;
  332. BN_MONT_CTX *mont = NULL;
  333. int ret = -1, i;
  334. if (!dsa->p || !dsa->q || !dsa->g) {
  335. DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS);
  336. return -1;
  337. }
  338. i = BN_num_bits(dsa->q);
  339. /* fips 186-3 allows only different sizes for q */
  340. if (i != 160 && i != 224 && i != 256) {
  341. DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE);
  342. return -1;
  343. }
  344. if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
  345. DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE);
  346. return -1;
  347. }
  348. BN_init(&u1);
  349. BN_init(&u2);
  350. BN_init(&t1);
  351. if ((ctx = BN_CTX_new()) == NULL)
  352. goto err;
  353. if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
  354. BN_ucmp(sig->r, dsa->q) >= 0) {
  355. ret = 0;
  356. goto err;
  357. }
  358. if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
  359. BN_ucmp(sig->s, dsa->q) >= 0) {
  360. ret = 0;
  361. goto err;
  362. }
  363. /*
  364. * Calculate W = inv(S) mod Q save W in u2
  365. */
  366. if ((BN_mod_inverse(&u2, sig->s, dsa->q, ctx)) == NULL)
  367. goto err;
  368. /* save M in u1 */
  369. if (dgst_len > (i >> 3))
  370. /*
  371. * if the digest length is greater than the size of q use the
  372. * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3,
  373. * 4.2
  374. */
  375. dgst_len = (i >> 3);
  376. if (BN_bin2bn(dgst, dgst_len, &u1) == NULL)
  377. goto err;
  378. /* u1 = M * w mod q */
  379. if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx))
  380. goto err;
  381. /* u2 = r * w mod q */
  382. if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx))
  383. goto err;
  384. if (dsa->flags & DSA_FLAG_CACHE_MONT_P) {
  385. mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
  386. CRYPTO_LOCK_DSA, dsa->p, ctx);
  387. if (!mont)
  388. goto err;
  389. }
  390. DSA_MOD_EXP(goto err, dsa, &t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p,
  391. ctx, mont);
  392. /* BN_copy(&u1,&t1); */
  393. /* let u1 = u1 mod q */
  394. if (!BN_mod(&u1, &t1, dsa->q, ctx))
  395. goto err;
  396. /*
  397. * V is now in u1. If the signature is correct, it will be equal to R.
  398. */
  399. ret = (BN_ucmp(&u1, sig->r) == 0);
  400. err:
  401. if (ret < 0)
  402. DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB);
  403. if (ctx != NULL)
  404. BN_CTX_free(ctx);
  405. BN_free(&u1);
  406. BN_free(&u2);
  407. BN_free(&t1);
  408. return (ret);
  409. }
  410. static int dsa_init(DSA *dsa)
  411. {
  412. dsa->flags |= DSA_FLAG_CACHE_MONT_P;
  413. return (1);
  414. }
  415. static int dsa_finish(DSA *dsa)
  416. {
  417. if (dsa->method_mont_p)
  418. BN_MONT_CTX_free(dsa->method_mont_p);
  419. return (1);
  420. }
  421. /*
  422. * Compute the inverse of k modulo q.
  423. * Since q is prime, Fermat's Little Theorem applies, which reduces this to
  424. * mod-exp operation. Both the exponent and modulus are public information
  425. * so a mod-exp that doesn't leak the base is sufficient. A newly allocated
  426. * BIGNUM is returned which the caller must free.
  427. */
  428. static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q,
  429. BN_CTX *ctx)
  430. {
  431. BIGNUM *res = NULL;
  432. BIGNUM *r, e;
  433. if ((r = BN_new()) == NULL)
  434. return NULL;
  435. BN_init(&e);
  436. if (BN_set_word(r, 2)
  437. && BN_sub(&e, q, r)
  438. && BN_mod_exp_mont(r, k, &e, q, ctx, NULL))
  439. res = r;
  440. else
  441. BN_free(r);
  442. BN_free(&e);
  443. return res;
  444. }