v3_addr.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352
  1. /*
  2. * Contributed to the OpenSSL Project by the American Registry for
  3. * Internet Numbers ("ARIN").
  4. */
  5. /* ====================================================================
  6. * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. *
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. *
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in
  17. * the documentation and/or other materials provided with the
  18. * distribution.
  19. *
  20. * 3. All advertising materials mentioning features or use of this
  21. * software must display the following acknowledgment:
  22. * "This product includes software developed by the OpenSSL Project
  23. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  24. *
  25. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  26. * endorse or promote products derived from this software without
  27. * prior written permission. For written permission, please contact
  28. * [email protected].
  29. *
  30. * 5. Products derived from this software may not be called "OpenSSL"
  31. * nor may "OpenSSL" appear in their names without prior written
  32. * permission of the OpenSSL Project.
  33. *
  34. * 6. Redistributions of any form whatsoever must retain the following
  35. * acknowledgment:
  36. * "This product includes software developed by the OpenSSL Project
  37. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  40. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  41. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  42. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  43. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  44. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  45. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  48. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  49. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  50. * OF THE POSSIBILITY OF SUCH DAMAGE.
  51. * ====================================================================
  52. *
  53. * This product includes cryptographic software written by Eric Young
  54. * ([email protected]). This product includes software written by Tim
  55. * Hudson ([email protected]).
  56. */
  57. /*
  58. * Implementation of RFC 3779 section 2.2.
  59. */
  60. #include <stdio.h>
  61. #include <stdlib.h>
  62. #include "cryptlib.h"
  63. #include <openssl/conf.h>
  64. #include <openssl/asn1.h>
  65. #include <openssl/asn1t.h>
  66. #include <openssl/buffer.h>
  67. #include <openssl/x509v3.h>
  68. #ifndef OPENSSL_NO_RFC3779
  69. /*
  70. * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
  71. */
  72. ASN1_SEQUENCE(IPAddressRange) = {
  73. ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  74. ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
  75. } ASN1_SEQUENCE_END(IPAddressRange)
  76. ASN1_CHOICE(IPAddressOrRange) = {
  77. ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  78. ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
  79. } ASN1_CHOICE_END(IPAddressOrRange)
  80. ASN1_CHOICE(IPAddressChoice) = {
  81. ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
  82. ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
  83. } ASN1_CHOICE_END(IPAddressChoice)
  84. ASN1_SEQUENCE(IPAddressFamily) = {
  85. ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
  86. ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
  87. } ASN1_SEQUENCE_END(IPAddressFamily)
  88. ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
  89. ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
  90. IPAddrBlocks, IPAddressFamily)
  91. ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
  92. IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
  93. IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
  94. IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
  95. IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
  96. /*
  97. * How much buffer space do we need for a raw address?
  98. */
  99. # define ADDR_RAW_BUF_LEN 16
  100. /*
  101. * What's the address length associated with this AFI?
  102. */
  103. static int length_from_afi(const unsigned afi)
  104. {
  105. switch (afi) {
  106. case IANA_AFI_IPV4:
  107. return 4;
  108. case IANA_AFI_IPV6:
  109. return 16;
  110. default:
  111. return 0;
  112. }
  113. }
  114. /*
  115. * Extract the AFI from an IPAddressFamily.
  116. */
  117. unsigned int v3_addr_get_afi(const IPAddressFamily *f)
  118. {
  119. if (f == NULL
  120. || f->addressFamily == NULL
  121. || f->addressFamily->data == NULL
  122. || f->addressFamily->length < 2)
  123. return 0;
  124. return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
  125. }
  126. /*
  127. * Expand the bitstring form of an address into a raw byte array.
  128. * At the moment this is coded for simplicity, not speed.
  129. */
  130. static int addr_expand(unsigned char *addr,
  131. const ASN1_BIT_STRING *bs,
  132. const int length, const unsigned char fill)
  133. {
  134. if (bs->length < 0 || bs->length > length)
  135. return 0;
  136. if (bs->length > 0) {
  137. memcpy(addr, bs->data, bs->length);
  138. if ((bs->flags & 7) != 0) {
  139. unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
  140. if (fill == 0)
  141. addr[bs->length - 1] &= ~mask;
  142. else
  143. addr[bs->length - 1] |= mask;
  144. }
  145. }
  146. memset(addr + bs->length, fill, length - bs->length);
  147. return 1;
  148. }
  149. /*
  150. * Extract the prefix length from a bitstring.
  151. */
  152. # define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
  153. /*
  154. * i2r handler for one address bitstring.
  155. */
  156. static int i2r_address(BIO *out,
  157. const unsigned afi,
  158. const unsigned char fill, const ASN1_BIT_STRING *bs)
  159. {
  160. unsigned char addr[ADDR_RAW_BUF_LEN];
  161. int i, n;
  162. if (bs->length < 0)
  163. return 0;
  164. switch (afi) {
  165. case IANA_AFI_IPV4:
  166. if (!addr_expand(addr, bs, 4, fill))
  167. return 0;
  168. BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
  169. break;
  170. case IANA_AFI_IPV6:
  171. if (!addr_expand(addr, bs, 16, fill))
  172. return 0;
  173. for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
  174. n -= 2) ;
  175. for (i = 0; i < n; i += 2)
  176. BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
  177. (i < 14 ? ":" : ""));
  178. if (i < 16)
  179. BIO_puts(out, ":");
  180. if (i == 0)
  181. BIO_puts(out, ":");
  182. break;
  183. default:
  184. for (i = 0; i < bs->length; i++)
  185. BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
  186. BIO_printf(out, "[%d]", (int)(bs->flags & 7));
  187. break;
  188. }
  189. return 1;
  190. }
  191. /*
  192. * i2r handler for a sequence of addresses and ranges.
  193. */
  194. static int i2r_IPAddressOrRanges(BIO *out,
  195. const int indent,
  196. const IPAddressOrRanges *aors,
  197. const unsigned afi)
  198. {
  199. int i;
  200. for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
  201. const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
  202. BIO_printf(out, "%*s", indent, "");
  203. switch (aor->type) {
  204. case IPAddressOrRange_addressPrefix:
  205. if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
  206. return 0;
  207. BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
  208. continue;
  209. case IPAddressOrRange_addressRange:
  210. if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
  211. return 0;
  212. BIO_puts(out, "-");
  213. if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
  214. return 0;
  215. BIO_puts(out, "\n");
  216. continue;
  217. }
  218. }
  219. return 1;
  220. }
  221. /*
  222. * i2r handler for an IPAddrBlocks extension.
  223. */
  224. static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
  225. void *ext, BIO *out, int indent)
  226. {
  227. const IPAddrBlocks *addr = ext;
  228. int i;
  229. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  230. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  231. const unsigned int afi = v3_addr_get_afi(f);
  232. switch (afi) {
  233. case IANA_AFI_IPV4:
  234. BIO_printf(out, "%*sIPv4", indent, "");
  235. break;
  236. case IANA_AFI_IPV6:
  237. BIO_printf(out, "%*sIPv6", indent, "");
  238. break;
  239. default:
  240. BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
  241. break;
  242. }
  243. if (f->addressFamily->length > 2) {
  244. switch (f->addressFamily->data[2]) {
  245. case 1:
  246. BIO_puts(out, " (Unicast)");
  247. break;
  248. case 2:
  249. BIO_puts(out, " (Multicast)");
  250. break;
  251. case 3:
  252. BIO_puts(out, " (Unicast/Multicast)");
  253. break;
  254. case 4:
  255. BIO_puts(out, " (MPLS)");
  256. break;
  257. case 64:
  258. BIO_puts(out, " (Tunnel)");
  259. break;
  260. case 65:
  261. BIO_puts(out, " (VPLS)");
  262. break;
  263. case 66:
  264. BIO_puts(out, " (BGP MDT)");
  265. break;
  266. case 128:
  267. BIO_puts(out, " (MPLS-labeled VPN)");
  268. break;
  269. default:
  270. BIO_printf(out, " (Unknown SAFI %u)",
  271. (unsigned)f->addressFamily->data[2]);
  272. break;
  273. }
  274. }
  275. switch (f->ipAddressChoice->type) {
  276. case IPAddressChoice_inherit:
  277. BIO_puts(out, ": inherit\n");
  278. break;
  279. case IPAddressChoice_addressesOrRanges:
  280. BIO_puts(out, ":\n");
  281. if (!i2r_IPAddressOrRanges(out,
  282. indent + 2,
  283. f->ipAddressChoice->
  284. u.addressesOrRanges, afi))
  285. return 0;
  286. break;
  287. }
  288. }
  289. return 1;
  290. }
  291. /*
  292. * Sort comparison function for a sequence of IPAddressOrRange
  293. * elements.
  294. *
  295. * There's no sane answer we can give if addr_expand() fails, and an
  296. * assertion failure on externally supplied data is seriously uncool,
  297. * so we just arbitrarily declare that if given invalid inputs this
  298. * function returns -1. If this messes up your preferred sort order
  299. * for garbage input, tough noogies.
  300. */
  301. static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
  302. const IPAddressOrRange *b, const int length)
  303. {
  304. unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  305. int prefixlen_a = 0, prefixlen_b = 0;
  306. int r;
  307. switch (a->type) {
  308. case IPAddressOrRange_addressPrefix:
  309. if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
  310. return -1;
  311. prefixlen_a = addr_prefixlen(a->u.addressPrefix);
  312. break;
  313. case IPAddressOrRange_addressRange:
  314. if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
  315. return -1;
  316. prefixlen_a = length * 8;
  317. break;
  318. }
  319. switch (b->type) {
  320. case IPAddressOrRange_addressPrefix:
  321. if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
  322. return -1;
  323. prefixlen_b = addr_prefixlen(b->u.addressPrefix);
  324. break;
  325. case IPAddressOrRange_addressRange:
  326. if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
  327. return -1;
  328. prefixlen_b = length * 8;
  329. break;
  330. }
  331. if ((r = memcmp(addr_a, addr_b, length)) != 0)
  332. return r;
  333. else
  334. return prefixlen_a - prefixlen_b;
  335. }
  336. /*
  337. * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
  338. * comparision routines are only allowed two arguments.
  339. */
  340. static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  341. const IPAddressOrRange *const *b)
  342. {
  343. return IPAddressOrRange_cmp(*a, *b, 4);
  344. }
  345. /*
  346. * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
  347. * comparision routines are only allowed two arguments.
  348. */
  349. static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  350. const IPAddressOrRange *const *b)
  351. {
  352. return IPAddressOrRange_cmp(*a, *b, 16);
  353. }
  354. /*
  355. * Calculate whether a range collapses to a prefix.
  356. * See last paragraph of RFC 3779 2.2.3.7.
  357. */
  358. static int range_should_be_prefix(const unsigned char *min,
  359. const unsigned char *max, const int length)
  360. {
  361. unsigned char mask;
  362. int i, j;
  363. OPENSSL_assert(memcmp(min, max, length) <= 0);
  364. for (i = 0; i < length && min[i] == max[i]; i++) ;
  365. for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
  366. if (i < j)
  367. return -1;
  368. if (i > j)
  369. return i * 8;
  370. mask = min[i] ^ max[i];
  371. switch (mask) {
  372. case 0x01:
  373. j = 7;
  374. break;
  375. case 0x03:
  376. j = 6;
  377. break;
  378. case 0x07:
  379. j = 5;
  380. break;
  381. case 0x0F:
  382. j = 4;
  383. break;
  384. case 0x1F:
  385. j = 3;
  386. break;
  387. case 0x3F:
  388. j = 2;
  389. break;
  390. case 0x7F:
  391. j = 1;
  392. break;
  393. default:
  394. return -1;
  395. }
  396. if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
  397. return -1;
  398. else
  399. return i * 8 + j;
  400. }
  401. /*
  402. * Construct a prefix.
  403. */
  404. static int make_addressPrefix(IPAddressOrRange **result,
  405. unsigned char *addr, const int prefixlen)
  406. {
  407. int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  408. IPAddressOrRange *aor = IPAddressOrRange_new();
  409. if (aor == NULL)
  410. return 0;
  411. aor->type = IPAddressOrRange_addressPrefix;
  412. if (aor->u.addressPrefix == NULL &&
  413. (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
  414. goto err;
  415. if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
  416. goto err;
  417. aor->u.addressPrefix->flags &= ~7;
  418. aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  419. if (bitlen > 0) {
  420. aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
  421. aor->u.addressPrefix->flags |= 8 - bitlen;
  422. }
  423. *result = aor;
  424. return 1;
  425. err:
  426. IPAddressOrRange_free(aor);
  427. return 0;
  428. }
  429. /*
  430. * Construct a range. If it can be expressed as a prefix,
  431. * return a prefix instead. Doing this here simplifies
  432. * the rest of the code considerably.
  433. */
  434. static int make_addressRange(IPAddressOrRange **result,
  435. unsigned char *min,
  436. unsigned char *max, const int length)
  437. {
  438. IPAddressOrRange *aor;
  439. int i, prefixlen;
  440. if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
  441. return make_addressPrefix(result, min, prefixlen);
  442. if ((aor = IPAddressOrRange_new()) == NULL)
  443. return 0;
  444. aor->type = IPAddressOrRange_addressRange;
  445. OPENSSL_assert(aor->u.addressRange == NULL);
  446. if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
  447. goto err;
  448. if (aor->u.addressRange->min == NULL &&
  449. (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
  450. goto err;
  451. if (aor->u.addressRange->max == NULL &&
  452. (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
  453. goto err;
  454. for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
  455. if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
  456. goto err;
  457. aor->u.addressRange->min->flags &= ~7;
  458. aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  459. if (i > 0) {
  460. unsigned char b = min[i - 1];
  461. int j = 1;
  462. while ((b & (0xFFU >> j)) != 0)
  463. ++j;
  464. aor->u.addressRange->min->flags |= 8 - j;
  465. }
  466. for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
  467. if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
  468. goto err;
  469. aor->u.addressRange->max->flags &= ~7;
  470. aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  471. if (i > 0) {
  472. unsigned char b = max[i - 1];
  473. int j = 1;
  474. while ((b & (0xFFU >> j)) != (0xFFU >> j))
  475. ++j;
  476. aor->u.addressRange->max->flags |= 8 - j;
  477. }
  478. *result = aor;
  479. return 1;
  480. err:
  481. IPAddressOrRange_free(aor);
  482. return 0;
  483. }
  484. /*
  485. * Construct a new address family or find an existing one.
  486. */
  487. static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
  488. const unsigned afi,
  489. const unsigned *safi)
  490. {
  491. IPAddressFamily *f;
  492. unsigned char key[3];
  493. unsigned keylen;
  494. int i;
  495. key[0] = (afi >> 8) & 0xFF;
  496. key[1] = afi & 0xFF;
  497. if (safi != NULL) {
  498. key[2] = *safi & 0xFF;
  499. keylen = 3;
  500. } else {
  501. keylen = 2;
  502. }
  503. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  504. f = sk_IPAddressFamily_value(addr, i);
  505. OPENSSL_assert(f->addressFamily->data != NULL);
  506. if (f->addressFamily->length == keylen &&
  507. !memcmp(f->addressFamily->data, key, keylen))
  508. return f;
  509. }
  510. if ((f = IPAddressFamily_new()) == NULL)
  511. goto err;
  512. if (f->ipAddressChoice == NULL &&
  513. (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
  514. goto err;
  515. if (f->addressFamily == NULL &&
  516. (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
  517. goto err;
  518. if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
  519. goto err;
  520. if (!sk_IPAddressFamily_push(addr, f))
  521. goto err;
  522. return f;
  523. err:
  524. IPAddressFamily_free(f);
  525. return NULL;
  526. }
  527. /*
  528. * Add an inheritance element.
  529. */
  530. int v3_addr_add_inherit(IPAddrBlocks *addr,
  531. const unsigned afi, const unsigned *safi)
  532. {
  533. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  534. if (f == NULL ||
  535. f->ipAddressChoice == NULL ||
  536. (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  537. f->ipAddressChoice->u.addressesOrRanges != NULL))
  538. return 0;
  539. if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  540. f->ipAddressChoice->u.inherit != NULL)
  541. return 1;
  542. if (f->ipAddressChoice->u.inherit == NULL &&
  543. (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
  544. return 0;
  545. f->ipAddressChoice->type = IPAddressChoice_inherit;
  546. return 1;
  547. }
  548. /*
  549. * Construct an IPAddressOrRange sequence, or return an existing one.
  550. */
  551. static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
  552. const unsigned afi,
  553. const unsigned *safi)
  554. {
  555. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  556. IPAddressOrRanges *aors = NULL;
  557. if (f == NULL ||
  558. f->ipAddressChoice == NULL ||
  559. (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  560. f->ipAddressChoice->u.inherit != NULL))
  561. return NULL;
  562. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
  563. aors = f->ipAddressChoice->u.addressesOrRanges;
  564. if (aors != NULL)
  565. return aors;
  566. if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
  567. return NULL;
  568. switch (afi) {
  569. case IANA_AFI_IPV4:
  570. (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
  571. break;
  572. case IANA_AFI_IPV6:
  573. (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
  574. break;
  575. }
  576. f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  577. f->ipAddressChoice->u.addressesOrRanges = aors;
  578. return aors;
  579. }
  580. /*
  581. * Add a prefix.
  582. */
  583. int v3_addr_add_prefix(IPAddrBlocks *addr,
  584. const unsigned afi,
  585. const unsigned *safi,
  586. unsigned char *a, const int prefixlen)
  587. {
  588. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  589. IPAddressOrRange *aor;
  590. if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
  591. return 0;
  592. if (sk_IPAddressOrRange_push(aors, aor))
  593. return 1;
  594. IPAddressOrRange_free(aor);
  595. return 0;
  596. }
  597. /*
  598. * Add a range.
  599. */
  600. int v3_addr_add_range(IPAddrBlocks *addr,
  601. const unsigned afi,
  602. const unsigned *safi,
  603. unsigned char *min, unsigned char *max)
  604. {
  605. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  606. IPAddressOrRange *aor;
  607. int length = length_from_afi(afi);
  608. if (aors == NULL)
  609. return 0;
  610. if (!make_addressRange(&aor, min, max, length))
  611. return 0;
  612. if (sk_IPAddressOrRange_push(aors, aor))
  613. return 1;
  614. IPAddressOrRange_free(aor);
  615. return 0;
  616. }
  617. /*
  618. * Extract min and max values from an IPAddressOrRange.
  619. */
  620. static int extract_min_max(IPAddressOrRange *aor,
  621. unsigned char *min, unsigned char *max, int length)
  622. {
  623. if (aor == NULL || min == NULL || max == NULL)
  624. return 0;
  625. switch (aor->type) {
  626. case IPAddressOrRange_addressPrefix:
  627. return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
  628. addr_expand(max, aor->u.addressPrefix, length, 0xFF));
  629. case IPAddressOrRange_addressRange:
  630. return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
  631. addr_expand(max, aor->u.addressRange->max, length, 0xFF));
  632. }
  633. return 0;
  634. }
  635. /*
  636. * Public wrapper for extract_min_max().
  637. */
  638. int v3_addr_get_range(IPAddressOrRange *aor,
  639. const unsigned afi,
  640. unsigned char *min,
  641. unsigned char *max, const int length)
  642. {
  643. int afi_length = length_from_afi(afi);
  644. if (aor == NULL || min == NULL || max == NULL ||
  645. afi_length == 0 || length < afi_length ||
  646. (aor->type != IPAddressOrRange_addressPrefix &&
  647. aor->type != IPAddressOrRange_addressRange) ||
  648. !extract_min_max(aor, min, max, afi_length))
  649. return 0;
  650. return afi_length;
  651. }
  652. /*
  653. * Sort comparision function for a sequence of IPAddressFamily.
  654. *
  655. * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
  656. * the ordering: I can read it as meaning that IPv6 without a SAFI
  657. * comes before IPv4 with a SAFI, which seems pretty weird. The
  658. * examples in appendix B suggest that the author intended the
  659. * null-SAFI rule to apply only within a single AFI, which is what I
  660. * would have expected and is what the following code implements.
  661. */
  662. static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
  663. const IPAddressFamily *const *b_)
  664. {
  665. const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  666. const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  667. int len = ((a->length <= b->length) ? a->length : b->length);
  668. int cmp = memcmp(a->data, b->data, len);
  669. return cmp ? cmp : a->length - b->length;
  670. }
  671. /*
  672. * Check whether an IPAddrBLocks is in canonical form.
  673. */
  674. int v3_addr_is_canonical(IPAddrBlocks *addr)
  675. {
  676. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  677. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  678. IPAddressOrRanges *aors;
  679. int i, j, k;
  680. /*
  681. * Empty extension is cannonical.
  682. */
  683. if (addr == NULL)
  684. return 1;
  685. /*
  686. * Check whether the top-level list is in order.
  687. */
  688. for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
  689. const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
  690. const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
  691. if (IPAddressFamily_cmp(&a, &b) >= 0)
  692. return 0;
  693. }
  694. /*
  695. * Top level's ok, now check each address family.
  696. */
  697. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  698. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  699. int length = length_from_afi(v3_addr_get_afi(f));
  700. /*
  701. * Inheritance is canonical. Anything other than inheritance or
  702. * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
  703. */
  704. if (f == NULL || f->ipAddressChoice == NULL)
  705. return 0;
  706. switch (f->ipAddressChoice->type) {
  707. case IPAddressChoice_inherit:
  708. continue;
  709. case IPAddressChoice_addressesOrRanges:
  710. break;
  711. default:
  712. return 0;
  713. }
  714. /*
  715. * It's an IPAddressOrRanges sequence, check it.
  716. */
  717. aors = f->ipAddressChoice->u.addressesOrRanges;
  718. if (sk_IPAddressOrRange_num(aors) == 0)
  719. return 0;
  720. for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
  721. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  722. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
  723. if (!extract_min_max(a, a_min, a_max, length) ||
  724. !extract_min_max(b, b_min, b_max, length))
  725. return 0;
  726. /*
  727. * Punt misordered list, overlapping start, or inverted range.
  728. */
  729. if (memcmp(a_min, b_min, length) >= 0 ||
  730. memcmp(a_min, a_max, length) > 0 ||
  731. memcmp(b_min, b_max, length) > 0)
  732. return 0;
  733. /*
  734. * Punt if adjacent or overlapping. Check for adjacency by
  735. * subtracting one from b_min first.
  736. */
  737. for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
  738. if (memcmp(a_max, b_min, length) >= 0)
  739. return 0;
  740. /*
  741. * Check for range that should be expressed as a prefix.
  742. */
  743. if (a->type == IPAddressOrRange_addressRange &&
  744. range_should_be_prefix(a_min, a_max, length) >= 0)
  745. return 0;
  746. }
  747. /*
  748. * Check range to see if it's inverted or should be a
  749. * prefix.
  750. */
  751. j = sk_IPAddressOrRange_num(aors) - 1;
  752. {
  753. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  754. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  755. if (!extract_min_max(a, a_min, a_max, length))
  756. return 0;
  757. if (memcmp(a_min, a_max, length) > 0 ||
  758. range_should_be_prefix(a_min, a_max, length) >= 0)
  759. return 0;
  760. }
  761. }
  762. }
  763. /*
  764. * If we made it through all that, we're happy.
  765. */
  766. return 1;
  767. }
  768. /*
  769. * Whack an IPAddressOrRanges into canonical form.
  770. */
  771. static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
  772. const unsigned afi)
  773. {
  774. int i, j, length = length_from_afi(afi);
  775. /*
  776. * Sort the IPAddressOrRanges sequence.
  777. */
  778. sk_IPAddressOrRange_sort(aors);
  779. /*
  780. * Clean up representation issues, punt on duplicates or overlaps.
  781. */
  782. for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
  783. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
  784. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
  785. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  786. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  787. if (!extract_min_max(a, a_min, a_max, length) ||
  788. !extract_min_max(b, b_min, b_max, length))
  789. return 0;
  790. /*
  791. * Punt inverted ranges.
  792. */
  793. if (memcmp(a_min, a_max, length) > 0 ||
  794. memcmp(b_min, b_max, length) > 0)
  795. return 0;
  796. /*
  797. * Punt overlaps.
  798. */
  799. if (memcmp(a_max, b_min, length) >= 0)
  800. return 0;
  801. /*
  802. * Merge if a and b are adjacent. We check for
  803. * adjacency by subtracting one from b_min first.
  804. */
  805. for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
  806. if (memcmp(a_max, b_min, length) == 0) {
  807. IPAddressOrRange *merged;
  808. if (!make_addressRange(&merged, a_min, b_max, length))
  809. return 0;
  810. (void)sk_IPAddressOrRange_set(aors, i, merged);
  811. (void)sk_IPAddressOrRange_delete(aors, i + 1);
  812. IPAddressOrRange_free(a);
  813. IPAddressOrRange_free(b);
  814. --i;
  815. continue;
  816. }
  817. }
  818. /*
  819. * Check for inverted final range.
  820. */
  821. j = sk_IPAddressOrRange_num(aors) - 1;
  822. {
  823. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  824. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  825. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  826. extract_min_max(a, a_min, a_max, length);
  827. if (memcmp(a_min, a_max, length) > 0)
  828. return 0;
  829. }
  830. }
  831. return 1;
  832. }
  833. /*
  834. * Whack an IPAddrBlocks extension into canonical form.
  835. */
  836. int v3_addr_canonize(IPAddrBlocks *addr)
  837. {
  838. int i;
  839. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  840. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  841. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  842. !IPAddressOrRanges_canonize(f->ipAddressChoice->
  843. u.addressesOrRanges,
  844. v3_addr_get_afi(f)))
  845. return 0;
  846. }
  847. (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
  848. sk_IPAddressFamily_sort(addr);
  849. OPENSSL_assert(v3_addr_is_canonical(addr));
  850. return 1;
  851. }
  852. /*
  853. * v2i handler for the IPAddrBlocks extension.
  854. */
  855. static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
  856. struct v3_ext_ctx *ctx,
  857. STACK_OF(CONF_VALUE) *values)
  858. {
  859. static const char v4addr_chars[] = "0123456789.";
  860. static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  861. IPAddrBlocks *addr = NULL;
  862. char *s = NULL, *t;
  863. int i;
  864. if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
  865. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  866. return NULL;
  867. }
  868. for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
  869. CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
  870. unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
  871. unsigned afi, *safi = NULL, safi_;
  872. const char *addr_chars;
  873. int prefixlen, i1, i2, delim, length;
  874. if (!name_cmp(val->name, "IPv4")) {
  875. afi = IANA_AFI_IPV4;
  876. } else if (!name_cmp(val->name, "IPv6")) {
  877. afi = IANA_AFI_IPV6;
  878. } else if (!name_cmp(val->name, "IPv4-SAFI")) {
  879. afi = IANA_AFI_IPV4;
  880. safi = &safi_;
  881. } else if (!name_cmp(val->name, "IPv6-SAFI")) {
  882. afi = IANA_AFI_IPV6;
  883. safi = &safi_;
  884. } else {
  885. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  886. X509V3_R_EXTENSION_NAME_ERROR);
  887. X509V3_conf_err(val);
  888. goto err;
  889. }
  890. switch (afi) {
  891. case IANA_AFI_IPV4:
  892. addr_chars = v4addr_chars;
  893. break;
  894. case IANA_AFI_IPV6:
  895. addr_chars = v6addr_chars;
  896. break;
  897. }
  898. length = length_from_afi(afi);
  899. /*
  900. * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
  901. * the other input values.
  902. */
  903. if (safi != NULL) {
  904. *safi = strtoul(val->value, &t, 0);
  905. t += strspn(t, " \t");
  906. if (*safi > 0xFF || *t++ != ':') {
  907. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
  908. X509V3_conf_err(val);
  909. goto err;
  910. }
  911. t += strspn(t, " \t");
  912. s = BUF_strdup(t);
  913. } else {
  914. s = BUF_strdup(val->value);
  915. }
  916. if (s == NULL) {
  917. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  918. goto err;
  919. }
  920. /*
  921. * Check for inheritance. Not worth additional complexity to
  922. * optimize this (seldom-used) case.
  923. */
  924. if (!strcmp(s, "inherit")) {
  925. if (!v3_addr_add_inherit(addr, afi, safi)) {
  926. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  927. X509V3_R_INVALID_INHERITANCE);
  928. X509V3_conf_err(val);
  929. goto err;
  930. }
  931. OPENSSL_free(s);
  932. s = NULL;
  933. continue;
  934. }
  935. i1 = strspn(s, addr_chars);
  936. i2 = i1 + strspn(s + i1, " \t");
  937. delim = s[i2++];
  938. s[i1] = '\0';
  939. if (a2i_ipadd(min, s) != length) {
  940. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  941. X509V3_conf_err(val);
  942. goto err;
  943. }
  944. switch (delim) {
  945. case '/':
  946. prefixlen = (int)strtoul(s + i2, &t, 10);
  947. if (t == s + i2 || *t != '\0') {
  948. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  949. X509V3_R_EXTENSION_VALUE_ERROR);
  950. X509V3_conf_err(val);
  951. goto err;
  952. }
  953. if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
  954. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  955. goto err;
  956. }
  957. break;
  958. case '-':
  959. i1 = i2 + strspn(s + i2, " \t");
  960. i2 = i1 + strspn(s + i1, addr_chars);
  961. if (i1 == i2 || s[i2] != '\0') {
  962. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  963. X509V3_R_EXTENSION_VALUE_ERROR);
  964. X509V3_conf_err(val);
  965. goto err;
  966. }
  967. if (a2i_ipadd(max, s + i1) != length) {
  968. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  969. X509V3_R_INVALID_IPADDRESS);
  970. X509V3_conf_err(val);
  971. goto err;
  972. }
  973. if (memcmp(min, max, length_from_afi(afi)) > 0) {
  974. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  975. X509V3_R_EXTENSION_VALUE_ERROR);
  976. X509V3_conf_err(val);
  977. goto err;
  978. }
  979. if (!v3_addr_add_range(addr, afi, safi, min, max)) {
  980. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  981. goto err;
  982. }
  983. break;
  984. case '\0':
  985. if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
  986. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  987. goto err;
  988. }
  989. break;
  990. default:
  991. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  992. X509V3_R_EXTENSION_VALUE_ERROR);
  993. X509V3_conf_err(val);
  994. goto err;
  995. }
  996. OPENSSL_free(s);
  997. s = NULL;
  998. }
  999. /*
  1000. * Canonize the result, then we're done.
  1001. */
  1002. if (!v3_addr_canonize(addr))
  1003. goto err;
  1004. return addr;
  1005. err:
  1006. OPENSSL_free(s);
  1007. sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  1008. return NULL;
  1009. }
  1010. /*
  1011. * OpenSSL dispatch
  1012. */
  1013. const X509V3_EXT_METHOD v3_addr = {
  1014. NID_sbgp_ipAddrBlock, /* nid */
  1015. 0, /* flags */
  1016. ASN1_ITEM_ref(IPAddrBlocks), /* template */
  1017. 0, 0, 0, 0, /* old functions, ignored */
  1018. 0, /* i2s */
  1019. 0, /* s2i */
  1020. 0, /* i2v */
  1021. v2i_IPAddrBlocks, /* v2i */
  1022. i2r_IPAddrBlocks, /* i2r */
  1023. 0, /* r2i */
  1024. NULL /* extension-specific data */
  1025. };
  1026. /*
  1027. * Figure out whether extension sues inheritance.
  1028. */
  1029. int v3_addr_inherits(IPAddrBlocks *addr)
  1030. {
  1031. int i;
  1032. if (addr == NULL)
  1033. return 0;
  1034. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  1035. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  1036. if (f->ipAddressChoice->type == IPAddressChoice_inherit)
  1037. return 1;
  1038. }
  1039. return 0;
  1040. }
  1041. /*
  1042. * Figure out whether parent contains child.
  1043. */
  1044. static int addr_contains(IPAddressOrRanges *parent,
  1045. IPAddressOrRanges *child, int length)
  1046. {
  1047. unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  1048. unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  1049. int p, c;
  1050. if (child == NULL || parent == child)
  1051. return 1;
  1052. if (parent == NULL)
  1053. return 0;
  1054. p = 0;
  1055. for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
  1056. if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
  1057. c_min, c_max, length))
  1058. return -1;
  1059. for (;; p++) {
  1060. if (p >= sk_IPAddressOrRange_num(parent))
  1061. return 0;
  1062. if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
  1063. p_min, p_max, length))
  1064. return 0;
  1065. if (memcmp(p_max, c_max, length) < 0)
  1066. continue;
  1067. if (memcmp(p_min, c_min, length) > 0)
  1068. return 0;
  1069. break;
  1070. }
  1071. }
  1072. return 1;
  1073. }
  1074. /*
  1075. * Test whether a is a subset of b.
  1076. */
  1077. int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
  1078. {
  1079. int i;
  1080. if (a == NULL || a == b)
  1081. return 1;
  1082. if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
  1083. return 0;
  1084. (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  1085. for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
  1086. IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
  1087. int j = sk_IPAddressFamily_find(b, fa);
  1088. IPAddressFamily *fb;
  1089. fb = sk_IPAddressFamily_value(b, j);
  1090. if (fb == NULL)
  1091. return 0;
  1092. if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
  1093. fa->ipAddressChoice->u.addressesOrRanges,
  1094. length_from_afi(v3_addr_get_afi(fb))))
  1095. return 0;
  1096. }
  1097. return 1;
  1098. }
  1099. /*
  1100. * Validation error handling via callback.
  1101. */
  1102. # define validation_err(_err_) \
  1103. do { \
  1104. if (ctx != NULL) { \
  1105. ctx->error = _err_; \
  1106. ctx->error_depth = i; \
  1107. ctx->current_cert = x; \
  1108. ret = ctx->verify_cb(0, ctx); \
  1109. } else { \
  1110. ret = 0; \
  1111. } \
  1112. if (!ret) \
  1113. goto done; \
  1114. } while (0)
  1115. /*
  1116. * Core code for RFC 3779 2.3 path validation.
  1117. *
  1118. * Returns 1 for success, 0 on error.
  1119. *
  1120. * When returning 0, ctx->error MUST be set to an appropriate value other than
  1121. * X509_V_OK.
  1122. */
  1123. static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
  1124. STACK_OF(X509) *chain,
  1125. IPAddrBlocks *ext)
  1126. {
  1127. IPAddrBlocks *child = NULL;
  1128. int i, j, ret = 1;
  1129. X509 *x;
  1130. OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
  1131. OPENSSL_assert(ctx != NULL || ext != NULL);
  1132. OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);
  1133. /*
  1134. * Figure out where to start. If we don't have an extension to
  1135. * check, we're done. Otherwise, check canonical form and
  1136. * set up for walking up the chain.
  1137. */
  1138. if (ext != NULL) {
  1139. i = -1;
  1140. x = NULL;
  1141. } else {
  1142. i = 0;
  1143. x = sk_X509_value(chain, i);
  1144. OPENSSL_assert(x != NULL);
  1145. if ((ext = x->rfc3779_addr) == NULL)
  1146. goto done;
  1147. }
  1148. if (!v3_addr_is_canonical(ext))
  1149. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1150. (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  1151. if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
  1152. X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL,
  1153. ERR_R_MALLOC_FAILURE);
  1154. ctx->error = X509_V_ERR_OUT_OF_MEM;
  1155. ret = 0;
  1156. goto done;
  1157. }
  1158. /*
  1159. * Now walk up the chain. No cert may list resources that its
  1160. * parent doesn't list.
  1161. */
  1162. for (i++; i < sk_X509_num(chain); i++) {
  1163. x = sk_X509_value(chain, i);
  1164. OPENSSL_assert(x != NULL);
  1165. if (!v3_addr_is_canonical(x->rfc3779_addr))
  1166. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1167. if (x->rfc3779_addr == NULL) {
  1168. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1169. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1170. if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
  1171. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1172. break;
  1173. }
  1174. }
  1175. continue;
  1176. }
  1177. (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
  1178. IPAddressFamily_cmp);
  1179. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1180. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1181. int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
  1182. IPAddressFamily *fp =
  1183. sk_IPAddressFamily_value(x->rfc3779_addr, k);
  1184. if (fp == NULL) {
  1185. if (fc->ipAddressChoice->type ==
  1186. IPAddressChoice_addressesOrRanges) {
  1187. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1188. break;
  1189. }
  1190. continue;
  1191. }
  1192. if (fp->ipAddressChoice->type ==
  1193. IPAddressChoice_addressesOrRanges) {
  1194. if (fc->ipAddressChoice->type == IPAddressChoice_inherit
  1195. || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
  1196. fc->ipAddressChoice->u.addressesOrRanges,
  1197. length_from_afi(v3_addr_get_afi(fc))))
  1198. sk_IPAddressFamily_set(child, j, fp);
  1199. else
  1200. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1201. }
  1202. }
  1203. }
  1204. /*
  1205. * Trust anchor can't inherit.
  1206. */
  1207. OPENSSL_assert(x != NULL);
  1208. if (x->rfc3779_addr != NULL) {
  1209. for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
  1210. IPAddressFamily *fp =
  1211. sk_IPAddressFamily_value(x->rfc3779_addr, j);
  1212. if (fp->ipAddressChoice->type == IPAddressChoice_inherit
  1213. && sk_IPAddressFamily_find(child, fp) >= 0)
  1214. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1215. }
  1216. }
  1217. done:
  1218. sk_IPAddressFamily_free(child);
  1219. return ret;
  1220. }
  1221. # undef validation_err
  1222. /*
  1223. * RFC 3779 2.3 path validation -- called from X509_verify_cert().
  1224. */
  1225. int v3_addr_validate_path(X509_STORE_CTX *ctx)
  1226. {
  1227. return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
  1228. }
  1229. /*
  1230. * RFC 3779 2.3 path validation of an extension.
  1231. * Test whether chain covers extension.
  1232. */
  1233. int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
  1234. IPAddrBlocks *ext, int allow_inheritance)
  1235. {
  1236. if (ext == NULL)
  1237. return 1;
  1238. if (chain == NULL || sk_X509_num(chain) == 0)
  1239. return 0;
  1240. if (!allow_inheritance && v3_addr_inherits(ext))
  1241. return 0;
  1242. return v3_addr_validate_path_internal(NULL, chain, ext);
  1243. }
  1244. #endif /* OPENSSL_NO_RFC3779 */