basisu_bc7enc.cpp 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986
  1. // File: basisu_bc7enc.cpp
  2. // Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
  3. //
  4. // Licensed under the Apache License, Version 2.0 (the "License");
  5. // you may not use this file except in compliance with the License.
  6. // You may obtain a copy of the License at
  7. //
  8. // http://www.apache.org/licenses/LICENSE-2.0
  9. //
  10. // Unless required by applicable law or agreed to in writing, software
  11. // distributed under the License is distributed on an "AS IS" BASIS,
  12. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. // See the License for the specific language governing permissions and
  14. // limitations under the License.
  15. #include "basisu_bc7enc.h"
  16. #ifdef _DEBUG
  17. #define BC7ENC_CHECK_OVERALL_ERROR 1
  18. #else
  19. #define BC7ENC_CHECK_OVERALL_ERROR 0
  20. #endif
  21. using namespace basist;
  22. namespace basisu
  23. {
  24. // Helpers
  25. static inline color_quad_u8 *color_quad_u8_set_clamped(color_quad_u8 *pRes, int32_t r, int32_t g, int32_t b, int32_t a) { pRes->m_c[0] = (uint8_t)clampi(r, 0, 255); pRes->m_c[1] = (uint8_t)clampi(g, 0, 255); pRes->m_c[2] = (uint8_t)clampi(b, 0, 255); pRes->m_c[3] = (uint8_t)clampi(a, 0, 255); return pRes; }
  26. static inline color_quad_u8 *color_quad_u8_set(color_quad_u8 *pRes, int32_t r, int32_t g, int32_t b, int32_t a) { assert((uint32_t)(r | g | b | a) <= 255); pRes->m_c[0] = (uint8_t)r; pRes->m_c[1] = (uint8_t)g; pRes->m_c[2] = (uint8_t)b; pRes->m_c[3] = (uint8_t)a; return pRes; }
  27. static inline bc7enc_bool color_quad_u8_notequals(const color_quad_u8 *pLHS, const color_quad_u8 *pRHS) { return (pLHS->m_c[0] != pRHS->m_c[0]) || (pLHS->m_c[1] != pRHS->m_c[1]) || (pLHS->m_c[2] != pRHS->m_c[2]) || (pLHS->m_c[3] != pRHS->m_c[3]); }
  28. static inline bc7enc_vec4F*vec4F_set_scalar(bc7enc_vec4F*pV, float x) { pV->m_c[0] = x; pV->m_c[1] = x; pV->m_c[2] = x; pV->m_c[3] = x; return pV; }
  29. static inline bc7enc_vec4F*vec4F_set(bc7enc_vec4F*pV, float x, float y, float z, float w) { pV->m_c[0] = x; pV->m_c[1] = y; pV->m_c[2] = z; pV->m_c[3] = w; return pV; }
  30. static inline bc7enc_vec4F*vec4F_saturate_in_place(bc7enc_vec4F*pV) { pV->m_c[0] = saturate(pV->m_c[0]); pV->m_c[1] = saturate(pV->m_c[1]); pV->m_c[2] = saturate(pV->m_c[2]); pV->m_c[3] = saturate(pV->m_c[3]); return pV; }
  31. static inline bc7enc_vec4F vec4F_saturate(const bc7enc_vec4F*pV) { bc7enc_vec4F res; res.m_c[0] = saturate(pV->m_c[0]); res.m_c[1] = saturate(pV->m_c[1]); res.m_c[2] = saturate(pV->m_c[2]); res.m_c[3] = saturate(pV->m_c[3]); return res; }
  32. static inline bc7enc_vec4F vec4F_from_color(const color_quad_u8 *pC) { bc7enc_vec4F res; vec4F_set(&res, pC->m_c[0], pC->m_c[1], pC->m_c[2], pC->m_c[3]); return res; }
  33. static inline bc7enc_vec4F vec4F_add(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] + pRHS->m_c[0], pLHS->m_c[1] + pRHS->m_c[1], pLHS->m_c[2] + pRHS->m_c[2], pLHS->m_c[3] + pRHS->m_c[3]); return res; }
  34. static inline bc7enc_vec4F vec4F_sub(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] - pRHS->m_c[0], pLHS->m_c[1] - pRHS->m_c[1], pLHS->m_c[2] - pRHS->m_c[2], pLHS->m_c[3] - pRHS->m_c[3]); return res; }
  35. static inline float vec4F_dot(const bc7enc_vec4F*pLHS, const bc7enc_vec4F*pRHS) { return pLHS->m_c[0] * pRHS->m_c[0] + pLHS->m_c[1] * pRHS->m_c[1] + pLHS->m_c[2] * pRHS->m_c[2] + pLHS->m_c[3] * pRHS->m_c[3]; }
  36. static inline bc7enc_vec4F vec4F_mul(const bc7enc_vec4F*pLHS, float s) { bc7enc_vec4F res; vec4F_set(&res, pLHS->m_c[0] * s, pLHS->m_c[1] * s, pLHS->m_c[2] * s, pLHS->m_c[3] * s); return res; }
  37. static inline bc7enc_vec4F* vec4F_normalize_in_place(bc7enc_vec4F*pV) { float s = pV->m_c[0] * pV->m_c[0] + pV->m_c[1] * pV->m_c[1] + pV->m_c[2] * pV->m_c[2] + pV->m_c[3] * pV->m_c[3]; if (s != 0.0f) { s = 1.0f / sqrtf(s); pV->m_c[0] *= s; pV->m_c[1] *= s; pV->m_c[2] *= s; pV->m_c[3] *= s; } return pV; }
  38. // Precomputed weight constants used during least fit determination. For each entry in g_bc7_weights[]: w * w, (1.0f - w) * w, (1.0f - w) * (1.0f - w), w
  39. const float g_bc7_weights1x[2 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  40. const float g_bc7_weights2x[4 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.107666f, 0.220459f, 0.451416f, 0.328125f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  41. const float g_bc7_weights3x[8 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.019775f, 0.120850f, 0.738525f, 0.140625f, 0.079102f, 0.202148f, 0.516602f, 0.281250f, 0.177979f, 0.243896f, 0.334229f, 0.421875f, 0.334229f, 0.243896f, 0.177979f, 0.578125f, 0.516602f, 0.202148f,
  42. 0.079102f, 0.718750f, 0.738525f, 0.120850f, 0.019775f, 0.859375f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  43. const float g_bc7_weights4x[16 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.019775f, 0.120850f, 0.738525f, 0.140625f, 0.041260f, 0.161865f, 0.635010f, 0.203125f, 0.070557f, 0.195068f, 0.539307f, 0.265625f, 0.107666f, 0.220459f,
  44. 0.451416f, 0.328125f, 0.165039f, 0.241211f, 0.352539f, 0.406250f, 0.219727f, 0.249023f, 0.282227f, 0.468750f, 0.282227f, 0.249023f, 0.219727f, 0.531250f, 0.352539f, 0.241211f, 0.165039f, 0.593750f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 0.539307f, 0.195068f, 0.070557f, 0.734375f,
  45. 0.635010f, 0.161865f, 0.041260f, 0.796875f, 0.738525f, 0.120850f, 0.019775f, 0.859375f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  46. const float g_astc_weights4x[16 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.015625f, 0.109375f, 0.765625f, 0.125000f, 0.035156f, 0.152344f, 0.660156f, 0.187500f, 0.070557f, 0.195068f, 0.539307f, 0.265625f, 0.107666f, 0.220459f,
  47. 0.451416f, 0.328125f, 0.152588f, 0.238037f, 0.371338f, 0.390625f, 0.205322f, 0.247803f, 0.299072f, 0.453125f, 0.299072f, 0.247803f, 0.205322f, 0.546875f, 0.371338f, 0.238037f, 0.152588f, 0.609375f, 0.451416f, 0.220459f, 0.107666f, 0.671875f, 0.539307f, 0.195068f, 0.070557f, 0.734375f,
  48. 0.660156f, 0.152344f, 0.035156f, 0.812500f, 0.765625f, 0.109375f, 0.015625f, 0.875000f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  49. const float g_astc_weights5x[32 * 4] = { 0.000000f, 0.000000f, 1.000000f, 0.000000f, 0.000977f, 0.030273f, 0.938477f, 0.031250f, 0.003906f, 0.058594f, 0.878906f, 0.062500f, 0.008789f, 0.084961f, 0.821289f,
  50. 0.093750f, 0.015625f, 0.109375f, 0.765625f, 0.125000f, 0.024414f, 0.131836f, 0.711914f, 0.156250f, 0.035156f, 0.152344f, 0.660156f, 0.187500f, 0.047852f, 0.170898f, 0.610352f, 0.218750f, 0.062500f, 0.187500f,
  51. 0.562500f, 0.250000f, 0.079102f, 0.202148f, 0.516602f, 0.281250f, 0.097656f, 0.214844f, 0.472656f, 0.312500f, 0.118164f, 0.225586f, 0.430664f, 0.343750f, 0.140625f, 0.234375f, 0.390625f, 0.375000f, 0.165039f,
  52. 0.241211f, 0.352539f, 0.406250f, 0.191406f, 0.246094f, 0.316406f, 0.437500f, 0.219727f, 0.249023f, 0.282227f, 0.468750f, 0.282227f, 0.249023f, 0.219727f, 0.531250f, 0.316406f, 0.246094f, 0.191406f, 0.562500f,
  53. 0.352539f, 0.241211f, 0.165039f, 0.593750f, 0.390625f, 0.234375f, 0.140625f, 0.625000f, 0.430664f, 0.225586f, 0.118164f, 0.656250f, 0.472656f, 0.214844f, 0.097656f, 0.687500f, 0.516602f, 0.202148f, 0.079102f,
  54. 0.718750f, 0.562500f, 0.187500f, 0.062500f, 0.750000f, 0.610352f, 0.170898f, 0.047852f, 0.781250f, 0.660156f, 0.152344f, 0.035156f, 0.812500f, 0.711914f, 0.131836f, 0.024414f, 0.843750f, 0.765625f, 0.109375f,
  55. 0.015625f, 0.875000f, 0.821289f, 0.084961f, 0.008789f, 0.906250f, 0.878906f, 0.058594f, 0.003906f, 0.937500f, 0.938477f, 0.030273f, 0.000977f, 0.968750f, 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  56. const float g_astc_weights_3levelsx[3 * 4] = {
  57. 0.000000f, 0.000000f, 1.000000f, 0.000000f,
  58. .5f * .5f, (1.0f - .5f) * .5f, (1.0f - .5f) * (1.0f - .5f), .5f,
  59. 1.000000f, 0.000000f, 0.000000f, 1.000000f };
  60. static endpoint_err g_bc7_mode_1_optimal_endpoints[256][2]; // [c][pbit]
  61. static const uint32_t BC7ENC_MODE_1_OPTIMAL_INDEX = 2;
  62. static endpoint_err g_astc_4bit_3bit_optimal_endpoints[256]; // [c]
  63. static const uint32_t BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX = 2;
  64. static endpoint_err g_astc_4bit_2bit_optimal_endpoints[256]; // [c]
  65. static const uint32_t BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX = 1;
  66. static endpoint_err g_astc_range7_2bit_optimal_endpoints[256]; // [c]
  67. static const uint32_t BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX = 1;
  68. static endpoint_err g_astc_range13_4bit_optimal_endpoints[256]; // [c]
  69. static const uint32_t BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX = 2;
  70. static endpoint_err g_astc_range13_2bit_optimal_endpoints[256]; // [c]
  71. static const uint32_t BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX = 1;
  72. static endpoint_err g_astc_range11_5bit_optimal_endpoints[256]; // [c]
  73. static const uint32_t BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX = 13; // not 1, which is optimal, because 26 losslessly maps to BC7 4-bit weights
  74. astc_quant_bin g_astc_sorted_order_unquant[BC7ENC_TOTAL_ASTC_RANGES][256]; // [sorted unquantized order]
  75. static uint8_t g_astc_nearest_sorted_index[BC7ENC_TOTAL_ASTC_RANGES][256];
  76. static void astc_init()
  77. {
  78. for (uint32_t range = 0; range < BC7ENC_TOTAL_ASTC_RANGES; range++)
  79. {
  80. if (!astc_is_valid_endpoint_range(range))
  81. continue;
  82. const uint32_t levels = astc_get_levels(range);
  83. uint32_t vals[256];
  84. // TODO
  85. for (uint32_t i = 0; i < levels; i++)
  86. vals[i] = (unquant_astc_endpoint_val(i, range) << 8) | i;
  87. std::sort(vals, vals + levels);
  88. for (uint32_t i = 0; i < levels; i++)
  89. {
  90. uint32_t order = vals[i] & 0xFF;
  91. uint32_t unq = vals[i] >> 8;
  92. g_astc_sorted_order_unquant[range][i].m_unquant = (uint8_t)unq;
  93. g_astc_sorted_order_unquant[range][i].m_index = (uint8_t)order;
  94. } // i
  95. #if 0
  96. if (g_astc_bise_range_table[range][1] || g_astc_bise_range_table[range][2])
  97. {
  98. printf("// Range: %u, Levels: %u, Bits: %u, Trits: %u, Quints: %u\n", range, levels, g_astc_bise_range_table[range][0], g_astc_bise_range_table[range][1], g_astc_bise_range_table[range][2]);
  99. printf("{");
  100. for (uint32_t i = 0; i < levels; i++)
  101. {
  102. printf("{%u,%u}", g_astc_sorted_order_unquant[range][i].m_index, g_astc_sorted_order_unquant[range][i].m_unquant);
  103. if (i != (levels - 1))
  104. printf(",");
  105. }
  106. printf("}\n");
  107. }
  108. #endif
  109. #if 0
  110. if (g_astc_bise_range_table[range][1] || g_astc_bise_range_table[range][2])
  111. {
  112. printf("// Range: %u, Levels: %u, Bits: %u, Trits: %u, Quints: %u\n", range, levels, g_astc_bise_range_table[range][0], g_astc_bise_range_table[range][1], g_astc_bise_range_table[range][2]);
  113. printf("{");
  114. for (uint32_t i = 0; i < levels; i++)
  115. {
  116. printf("{%u,%u}", g_astc_unquant[range][i].m_index, g_astc_unquant[range][i].m_unquant);
  117. if (i != (levels - 1))
  118. printf(",");
  119. }
  120. printf("}\n");
  121. }
  122. #endif
  123. for (uint32_t i = 0; i < 256; i++)
  124. {
  125. uint32_t best_index = 0;
  126. int best_err = INT32_MAX;
  127. for (uint32_t j = 0; j < levels; j++)
  128. {
  129. int err = g_astc_sorted_order_unquant[range][j].m_unquant - i;
  130. if (err < 0)
  131. err = -err;
  132. if (err < best_err)
  133. {
  134. best_err = err;
  135. best_index = j;
  136. }
  137. }
  138. g_astc_nearest_sorted_index[range][i] = (uint8_t)best_index;
  139. } // i
  140. } // range
  141. }
  142. static inline uint32_t astc_interpolate_linear(uint32_t l, uint32_t h, uint32_t w)
  143. {
  144. l = (l << 8) | l;
  145. h = (h << 8) | h;
  146. uint32_t k = (l * (64 - w) + h * w + 32) >> 6;
  147. return k >> 8;
  148. }
  149. // Initialize the lookup table used for optimal single color compression in mode 1. Must be called before encoding.
  150. void bc7enc_compress_block_init()
  151. {
  152. astc_init();
  153. // BC7 666.1
  154. for (int c = 0; c < 256; c++)
  155. {
  156. for (uint32_t lp = 0; lp < 2; lp++)
  157. {
  158. endpoint_err best;
  159. best.m_error = (uint16_t)UINT16_MAX;
  160. for (uint32_t l = 0; l < 64; l++)
  161. {
  162. uint32_t low = ((l << 1) | lp) << 1;
  163. low |= (low >> 7);
  164. for (uint32_t h = 0; h < 64; h++)
  165. {
  166. uint32_t high = ((h << 1) | lp) << 1;
  167. high |= (high >> 7);
  168. const int k = (low * (64 - g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX]) + high * g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX] + 32) >> 6;
  169. const int err = (k - c) * (k - c);
  170. if (err < best.m_error)
  171. {
  172. best.m_error = (uint16_t)err;
  173. best.m_lo = (uint8_t)l;
  174. best.m_hi = (uint8_t)h;
  175. }
  176. } // h
  177. } // l
  178. g_bc7_mode_1_optimal_endpoints[c][lp] = best;
  179. } // lp
  180. } // c
  181. // ASTC [0,15] 3-bit
  182. for (int c = 0; c < 256; c++)
  183. {
  184. endpoint_err best;
  185. best.m_error = (uint16_t)UINT16_MAX;
  186. for (uint32_t l = 0; l < 16; l++)
  187. {
  188. uint32_t low = (l << 4) | l;
  189. for (uint32_t h = 0; h < 16; h++)
  190. {
  191. uint32_t high = (h << 4) | h;
  192. const int k = astc_interpolate_linear(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]);
  193. const int err = (k - c) * (k - c);
  194. if (err < best.m_error)
  195. {
  196. best.m_error = (uint16_t)err;
  197. best.m_lo = (uint8_t)l;
  198. best.m_hi = (uint8_t)h;
  199. }
  200. } // h
  201. } // l
  202. g_astc_4bit_3bit_optimal_endpoints[c] = best;
  203. } // c
  204. // ASTC [0,15] 2-bit
  205. for (int c = 0; c < 256; c++)
  206. {
  207. endpoint_err best;
  208. best.m_error = (uint16_t)UINT16_MAX;
  209. for (uint32_t l = 0; l < 16; l++)
  210. {
  211. uint32_t low = (l << 4) | l;
  212. for (uint32_t h = 0; h < 16; h++)
  213. {
  214. uint32_t high = (h << 4) | h;
  215. const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]);
  216. const int err = (k - c) * (k - c);
  217. if (err < best.m_error)
  218. {
  219. best.m_error = (uint16_t)err;
  220. best.m_lo = (uint8_t)l;
  221. best.m_hi = (uint8_t)h;
  222. }
  223. } // h
  224. } // l
  225. g_astc_4bit_2bit_optimal_endpoints[c] = best;
  226. } // c
  227. // ASTC range 7 [0,11] 2-bit
  228. for (int c = 0; c < 256; c++)
  229. {
  230. endpoint_err best;
  231. best.m_error = (uint16_t)UINT16_MAX;
  232. for (uint32_t l = 0; l < 12; l++)
  233. {
  234. uint32_t low = g_astc_sorted_order_unquant[7][l].m_unquant;
  235. for (uint32_t h = 0; h < 12; h++)
  236. {
  237. uint32_t high = g_astc_sorted_order_unquant[7][h].m_unquant;
  238. const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]);
  239. const int err = (k - c) * (k - c);
  240. if (err < best.m_error)
  241. {
  242. best.m_error = (uint16_t)err;
  243. best.m_lo = (uint8_t)l;
  244. best.m_hi = (uint8_t)h;
  245. }
  246. } // h
  247. } // l
  248. g_astc_range7_2bit_optimal_endpoints[c] = best;
  249. } // c
  250. // ASTC range 13 [0,47] 4-bit
  251. for (int c = 0; c < 256; c++)
  252. {
  253. endpoint_err best;
  254. best.m_error = (uint16_t)UINT16_MAX;
  255. for (uint32_t l = 0; l < 48; l++)
  256. {
  257. uint32_t low = g_astc_sorted_order_unquant[13][l].m_unquant;
  258. for (uint32_t h = 0; h < 48; h++)
  259. {
  260. uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant;
  261. const int k = astc_interpolate_linear(low, high, g_astc_weights4[BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX]);
  262. const int err = (k - c) * (k - c);
  263. if (err < best.m_error)
  264. {
  265. best.m_error = (uint16_t)err;
  266. best.m_lo = (uint8_t)l;
  267. best.m_hi = (uint8_t)h;
  268. }
  269. } // h
  270. } // l
  271. g_astc_range13_4bit_optimal_endpoints[c] = best;
  272. } // c
  273. // ASTC range 13 [0,47] 2-bit
  274. for (int c = 0; c < 256; c++)
  275. {
  276. endpoint_err best;
  277. best.m_error = (uint16_t)UINT16_MAX;
  278. for (uint32_t l = 0; l < 48; l++)
  279. {
  280. uint32_t low = g_astc_sorted_order_unquant[13][l].m_unquant;
  281. for (uint32_t h = 0; h < 48; h++)
  282. {
  283. uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant;
  284. const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]);
  285. const int err = (k - c) * (k - c);
  286. if (err < best.m_error)
  287. {
  288. best.m_error = (uint16_t)err;
  289. best.m_lo = (uint8_t)l;
  290. best.m_hi = (uint8_t)h;
  291. }
  292. } // h
  293. } // l
  294. g_astc_range13_2bit_optimal_endpoints[c] = best;
  295. } // c
  296. // ASTC range 11 [0,31] 5-bit
  297. for (int c = 0; c < 256; c++)
  298. {
  299. endpoint_err best;
  300. best.m_error = (uint16_t)UINT16_MAX;
  301. for (uint32_t l = 0; l < 32; l++)
  302. {
  303. uint32_t low = g_astc_sorted_order_unquant[11][l].m_unquant;
  304. for (uint32_t h = 0; h < 32; h++)
  305. {
  306. uint32_t high = g_astc_sorted_order_unquant[11][h].m_unquant;
  307. const int k = astc_interpolate_linear(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]);
  308. const int err = (k - c) * (k - c);
  309. if (err < best.m_error)
  310. {
  311. best.m_error = (uint16_t)err;
  312. best.m_lo = (uint8_t)l;
  313. best.m_hi = (uint8_t)h;
  314. }
  315. } // h
  316. } // l
  317. g_astc_range11_5bit_optimal_endpoints[c] = best;
  318. } // c
  319. }
  320. static void compute_least_squares_endpoints_rgba(uint32_t N, const uint8_t *pSelectors, const bc7enc_vec4F* pSelector_weights, bc7enc_vec4F* pXl, bc7enc_vec4F* pXh, const color_quad_u8 *pColors)
  321. {
  322. // Least squares using normal equations: http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec10.pdf
  323. // https://web.archive.org/web/20150319232457/http://www.cs.cornell.edu/~bindel/class/cs3220-s12/notes/lec10.pdf
  324. // I did this in matrix form first, expanded out all the ops, then optimized it a bit.
  325. double z00 = 0.0f, z01 = 0.0f, z10 = 0.0f, z11 = 0.0f;
  326. double q00_r = 0.0f, q10_r = 0.0f, t_r = 0.0f;
  327. double q00_g = 0.0f, q10_g = 0.0f, t_g = 0.0f;
  328. double q00_b = 0.0f, q10_b = 0.0f, t_b = 0.0f;
  329. double q00_a = 0.0f, q10_a = 0.0f, t_a = 0.0f;
  330. for (uint32_t i = 0; i < N; i++)
  331. {
  332. const uint32_t sel = pSelectors[i];
  333. z00 += pSelector_weights[sel].m_c[0];
  334. z10 += pSelector_weights[sel].m_c[1];
  335. z11 += pSelector_weights[sel].m_c[2];
  336. float w = pSelector_weights[sel].m_c[3];
  337. q00_r += w * pColors[i].m_c[0]; t_r += pColors[i].m_c[0];
  338. q00_g += w * pColors[i].m_c[1]; t_g += pColors[i].m_c[1];
  339. q00_b += w * pColors[i].m_c[2]; t_b += pColors[i].m_c[2];
  340. q00_a += w * pColors[i].m_c[3]; t_a += pColors[i].m_c[3];
  341. }
  342. q10_r = t_r - q00_r;
  343. q10_g = t_g - q00_g;
  344. q10_b = t_b - q00_b;
  345. q10_a = t_a - q00_a;
  346. z01 = z10;
  347. double det = z00 * z11 - z01 * z10;
  348. if (det != 0.0f)
  349. det = 1.0f / det;
  350. double iz00, iz01, iz10, iz11;
  351. iz00 = z11 * det;
  352. iz01 = -z01 * det;
  353. iz10 = -z10 * det;
  354. iz11 = z00 * det;
  355. pXl->m_c[0] = (float)(iz00 * q00_r + iz01 * q10_r); pXh->m_c[0] = (float)(iz10 * q00_r + iz11 * q10_r);
  356. pXl->m_c[1] = (float)(iz00 * q00_g + iz01 * q10_g); pXh->m_c[1] = (float)(iz10 * q00_g + iz11 * q10_g);
  357. pXl->m_c[2] = (float)(iz00 * q00_b + iz01 * q10_b); pXh->m_c[2] = (float)(iz10 * q00_b + iz11 * q10_b);
  358. pXl->m_c[3] = (float)(iz00 * q00_a + iz01 * q10_a); pXh->m_c[3] = (float)(iz10 * q00_a + iz11 * q10_a);
  359. for (uint32_t c = 0; c < 4; c++)
  360. {
  361. if ((pXl->m_c[c] < 0.0f) || (pXh->m_c[c] > 255.0f))
  362. {
  363. uint32_t lo_v = UINT32_MAX, hi_v = 0;
  364. for (uint32_t i = 0; i < N; i++)
  365. {
  366. lo_v = minimumu(lo_v, pColors[i].m_c[c]);
  367. hi_v = maximumu(hi_v, pColors[i].m_c[c]);
  368. }
  369. if (lo_v == hi_v)
  370. {
  371. pXl->m_c[c] = (float)lo_v;
  372. pXh->m_c[c] = (float)hi_v;
  373. }
  374. }
  375. }
  376. }
  377. static void compute_least_squares_endpoints_rgb(uint32_t N, const uint8_t *pSelectors, const bc7enc_vec4F*pSelector_weights, bc7enc_vec4F*pXl, bc7enc_vec4F*pXh, const color_quad_u8 *pColors)
  378. {
  379. double z00 = 0.0f, z01 = 0.0f, z10 = 0.0f, z11 = 0.0f;
  380. double q00_r = 0.0f, q10_r = 0.0f, t_r = 0.0f;
  381. double q00_g = 0.0f, q10_g = 0.0f, t_g = 0.0f;
  382. double q00_b = 0.0f, q10_b = 0.0f, t_b = 0.0f;
  383. for (uint32_t i = 0; i < N; i++)
  384. {
  385. const uint32_t sel = pSelectors[i];
  386. z00 += pSelector_weights[sel].m_c[0];
  387. z10 += pSelector_weights[sel].m_c[1];
  388. z11 += pSelector_weights[sel].m_c[2];
  389. float w = pSelector_weights[sel].m_c[3];
  390. q00_r += w * pColors[i].m_c[0]; t_r += pColors[i].m_c[0];
  391. q00_g += w * pColors[i].m_c[1]; t_g += pColors[i].m_c[1];
  392. q00_b += w * pColors[i].m_c[2]; t_b += pColors[i].m_c[2];
  393. }
  394. q10_r = t_r - q00_r;
  395. q10_g = t_g - q00_g;
  396. q10_b = t_b - q00_b;
  397. z01 = z10;
  398. double det = z00 * z11 - z01 * z10;
  399. if (det != 0.0f)
  400. det = 1.0f / det;
  401. double iz00, iz01, iz10, iz11;
  402. iz00 = z11 * det;
  403. iz01 = -z01 * det;
  404. iz10 = -z10 * det;
  405. iz11 = z00 * det;
  406. pXl->m_c[0] = (float)(iz00 * q00_r + iz01 * q10_r); pXh->m_c[0] = (float)(iz10 * q00_r + iz11 * q10_r);
  407. pXl->m_c[1] = (float)(iz00 * q00_g + iz01 * q10_g); pXh->m_c[1] = (float)(iz10 * q00_g + iz11 * q10_g);
  408. pXl->m_c[2] = (float)(iz00 * q00_b + iz01 * q10_b); pXh->m_c[2] = (float)(iz10 * q00_b + iz11 * q10_b);
  409. pXl->m_c[3] = 255.0f; pXh->m_c[3] = 255.0f;
  410. for (uint32_t c = 0; c < 3; c++)
  411. {
  412. if ((pXl->m_c[c] < 0.0f) || (pXh->m_c[c] > 255.0f))
  413. {
  414. uint32_t lo_v = UINT32_MAX, hi_v = 0;
  415. for (uint32_t i = 0; i < N; i++)
  416. {
  417. lo_v = minimumu(lo_v, pColors[i].m_c[c]);
  418. hi_v = maximumu(hi_v, pColors[i].m_c[c]);
  419. }
  420. if (lo_v == hi_v)
  421. {
  422. pXl->m_c[c] = (float)lo_v;
  423. pXh->m_c[c] = (float)hi_v;
  424. }
  425. }
  426. }
  427. }
  428. static inline color_quad_u8 scale_color(const color_quad_u8* pC, const color_cell_compressor_params* pParams)
  429. {
  430. color_quad_u8 results;
  431. if (pParams->m_astc_endpoint_range)
  432. {
  433. for (uint32_t i = 0; i < 4; i++)
  434. {
  435. results.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pC->m_c[i]].m_unquant;
  436. }
  437. }
  438. else
  439. {
  440. const uint32_t n = pParams->m_comp_bits + (pParams->m_has_pbits ? 1 : 0);
  441. assert((n >= 4) && (n <= 8));
  442. for (uint32_t i = 0; i < 4; i++)
  443. {
  444. uint32_t v = pC->m_c[i] << (8 - n);
  445. v |= (v >> n);
  446. assert(v <= 255);
  447. results.m_c[i] = (uint8_t)(v);
  448. }
  449. }
  450. return results;
  451. }
  452. static inline uint64_t compute_color_distance_rgb(const color_quad_u8 *pE1, const color_quad_u8 *pE2, bc7enc_bool perceptual, const uint32_t weights[4])
  453. {
  454. int dr, dg, db;
  455. if (perceptual)
  456. {
  457. const int l1 = pE1->m_c[0] * 109 + pE1->m_c[1] * 366 + pE1->m_c[2] * 37;
  458. const int cr1 = ((int)pE1->m_c[0] << 9) - l1;
  459. const int cb1 = ((int)pE1->m_c[2] << 9) - l1;
  460. const int l2 = pE2->m_c[0] * 109 + pE2->m_c[1] * 366 + pE2->m_c[2] * 37;
  461. const int cr2 = ((int)pE2->m_c[0] << 9) - l2;
  462. const int cb2 = ((int)pE2->m_c[2] << 9) - l2;
  463. dr = (l1 - l2) >> 8;
  464. dg = (cr1 - cr2) >> 8;
  465. db = (cb1 - cb2) >> 8;
  466. }
  467. else
  468. {
  469. dr = (int)pE1->m_c[0] - (int)pE2->m_c[0];
  470. dg = (int)pE1->m_c[1] - (int)pE2->m_c[1];
  471. db = (int)pE1->m_c[2] - (int)pE2->m_c[2];
  472. }
  473. return weights[0] * (uint32_t)(dr * dr) + weights[1] * (uint32_t)(dg * dg) + weights[2] * (uint32_t)(db * db);
  474. }
  475. static inline uint64_t compute_color_distance_rgba(const color_quad_u8 *pE1, const color_quad_u8 *pE2, bc7enc_bool perceptual, const uint32_t weights[4])
  476. {
  477. int da = (int)pE1->m_c[3] - (int)pE2->m_c[3];
  478. return compute_color_distance_rgb(pE1, pE2, perceptual, weights) + (weights[3] * (uint32_t)(da * da));
  479. }
  480. static uint64_t pack_mode1_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors)
  481. {
  482. uint32_t best_err = UINT_MAX;
  483. uint32_t best_p = 0;
  484. for (uint32_t p = 0; p < 2; p++)
  485. {
  486. uint32_t err = g_bc7_mode_1_optimal_endpoints[r][p].m_error + g_bc7_mode_1_optimal_endpoints[g][p].m_error + g_bc7_mode_1_optimal_endpoints[b][p].m_error;
  487. if (err < best_err)
  488. {
  489. best_err = err;
  490. best_p = p;
  491. }
  492. }
  493. const endpoint_err *pEr = &g_bc7_mode_1_optimal_endpoints[r][best_p];
  494. const endpoint_err *pEg = &g_bc7_mode_1_optimal_endpoints[g][best_p];
  495. const endpoint_err *pEb = &g_bc7_mode_1_optimal_endpoints[b][best_p];
  496. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0);
  497. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0);
  498. pResults->m_pbits[0] = best_p;
  499. pResults->m_pbits[1] = 0;
  500. memset(pSelectors, BC7ENC_MODE_1_OPTIMAL_INDEX, pParams->m_num_pixels);
  501. color_quad_u8 p;
  502. for (uint32_t i = 0; i < 3; i++)
  503. {
  504. uint32_t low = ((pResults->m_low_endpoint.m_c[i] << 1) | pResults->m_pbits[0]) << 1;
  505. low |= (low >> 7);
  506. uint32_t high = ((pResults->m_high_endpoint.m_c[i] << 1) | pResults->m_pbits[0]) << 1;
  507. high |= (high >> 7);
  508. p.m_c[i] = (uint8_t)((low * (64 - g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX]) + high * g_bc7_weights3[BC7ENC_MODE_1_OPTIMAL_INDEX] + 32) >> 6);
  509. }
  510. p.m_c[3] = 255;
  511. uint64_t total_err = 0;
  512. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  513. total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  514. pResults->m_best_overall_err = total_err;
  515. return total_err;
  516. }
  517. static uint64_t pack_astc_4bit_3bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors)
  518. {
  519. const endpoint_err *pEr = &g_astc_4bit_3bit_optimal_endpoints[r];
  520. const endpoint_err *pEg = &g_astc_4bit_3bit_optimal_endpoints[g];
  521. const endpoint_err *pEb = &g_astc_4bit_3bit_optimal_endpoints[b];
  522. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0);
  523. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0);
  524. pResults->m_pbits[0] = 0;
  525. pResults->m_pbits[1] = 0;
  526. for (uint32_t i = 0; i < 4; i++)
  527. {
  528. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  529. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  530. }
  531. memset(pSelectors, BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX, pParams->m_num_pixels);
  532. color_quad_u8 p;
  533. for (uint32_t i = 0; i < 3; i++)
  534. {
  535. uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i];
  536. uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i];
  537. p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]);
  538. }
  539. p.m_c[3] = 255;
  540. uint64_t total_err = 0;
  541. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  542. total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  543. pResults->m_best_overall_err = total_err;
  544. return total_err;
  545. }
  546. static uint64_t pack_astc_4bit_2bit_to_one_color_rgba(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint32_t a, uint8_t *pSelectors)
  547. {
  548. const endpoint_err *pEr = &g_astc_4bit_2bit_optimal_endpoints[r];
  549. const endpoint_err *pEg = &g_astc_4bit_2bit_optimal_endpoints[g];
  550. const endpoint_err *pEb = &g_astc_4bit_2bit_optimal_endpoints[b];
  551. const endpoint_err *pEa = &g_astc_4bit_2bit_optimal_endpoints[a];
  552. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, pEa->m_lo);
  553. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, pEa->m_hi);
  554. pResults->m_pbits[0] = 0;
  555. pResults->m_pbits[1] = 0;
  556. for (uint32_t i = 0; i < 4; i++)
  557. {
  558. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  559. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  560. }
  561. memset(pSelectors, BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels);
  562. color_quad_u8 p;
  563. for (uint32_t i = 0; i < 4; i++)
  564. {
  565. uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i];
  566. uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i];
  567. p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]);
  568. }
  569. uint64_t total_err = 0;
  570. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  571. total_err += compute_color_distance_rgba(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  572. pResults->m_best_overall_err = total_err;
  573. return total_err;
  574. }
  575. static uint64_t pack_astc_range7_2bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors)
  576. {
  577. assert(pParams->m_astc_endpoint_range == 7 && pParams->m_num_selector_weights == 4);
  578. const endpoint_err *pEr = &g_astc_range7_2bit_optimal_endpoints[r];
  579. const endpoint_err *pEg = &g_astc_range7_2bit_optimal_endpoints[g];
  580. const endpoint_err *pEb = &g_astc_range7_2bit_optimal_endpoints[b];
  581. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 0);
  582. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 0);
  583. pResults->m_pbits[0] = 0;
  584. pResults->m_pbits[1] = 0;
  585. for (uint32_t i = 0; i < 4; i++)
  586. {
  587. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  588. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  589. }
  590. memset(pSelectors, BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels);
  591. color_quad_u8 p;
  592. for (uint32_t i = 0; i < 3; i++)
  593. {
  594. uint32_t low = g_astc_sorted_order_unquant[7][pResults->m_low_endpoint.m_c[i]].m_unquant;
  595. uint32_t high = g_astc_sorted_order_unquant[7][pResults->m_high_endpoint.m_c[i]].m_unquant;
  596. p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]);
  597. }
  598. p.m_c[3] = 255;
  599. uint64_t total_err = 0;
  600. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  601. total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  602. pResults->m_best_overall_err = total_err;
  603. return total_err;
  604. }
  605. static uint64_t pack_astc_range13_2bit_to_one_color(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t *pSelectors)
  606. {
  607. assert(pParams->m_astc_endpoint_range == 13 && pParams->m_num_selector_weights == 4 && !pParams->m_has_alpha);
  608. const endpoint_err *pEr = &g_astc_range13_2bit_optimal_endpoints[r];
  609. const endpoint_err *pEg = &g_astc_range13_2bit_optimal_endpoints[g];
  610. const endpoint_err *pEb = &g_astc_range13_2bit_optimal_endpoints[b];
  611. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 47);
  612. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 47);
  613. pResults->m_pbits[0] = 0;
  614. pResults->m_pbits[1] = 0;
  615. for (uint32_t i = 0; i < 4; i++)
  616. {
  617. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  618. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  619. }
  620. memset(pSelectors, BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX, pParams->m_num_pixels);
  621. color_quad_u8 p;
  622. for (uint32_t i = 0; i < 4; i++)
  623. {
  624. uint32_t low = g_astc_sorted_order_unquant[13][pResults->m_low_endpoint.m_c[i]].m_unquant;
  625. uint32_t high = g_astc_sorted_order_unquant[13][pResults->m_high_endpoint.m_c[i]].m_unquant;
  626. p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]);
  627. }
  628. uint64_t total_err = 0;
  629. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  630. total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  631. pResults->m_best_overall_err = total_err;
  632. return total_err;
  633. }
  634. static uint64_t pack_astc_range11_5bit_to_one_color(const color_cell_compressor_params* pParams, color_cell_compressor_results* pResults, uint32_t r, uint32_t g, uint32_t b, uint8_t* pSelectors)
  635. {
  636. assert(pParams->m_astc_endpoint_range == 11 && pParams->m_num_selector_weights == 32 && !pParams->m_has_alpha);
  637. const endpoint_err* pEr = &g_astc_range11_5bit_optimal_endpoints[r];
  638. const endpoint_err* pEg = &g_astc_range11_5bit_optimal_endpoints[g];
  639. const endpoint_err* pEb = &g_astc_range11_5bit_optimal_endpoints[b];
  640. color_quad_u8_set(&pResults->m_low_endpoint, pEr->m_lo, pEg->m_lo, pEb->m_lo, 31);
  641. color_quad_u8_set(&pResults->m_high_endpoint, pEr->m_hi, pEg->m_hi, pEb->m_hi, 31);
  642. pResults->m_pbits[0] = 0;
  643. pResults->m_pbits[1] = 0;
  644. for (uint32_t i = 0; i < 4; i++)
  645. {
  646. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  647. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  648. }
  649. memset(pSelectors, BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX, pParams->m_num_pixels);
  650. color_quad_u8 p;
  651. for (uint32_t i = 0; i < 4; i++)
  652. {
  653. uint32_t low = g_astc_sorted_order_unquant[11][pResults->m_low_endpoint.m_c[i]].m_unquant;
  654. uint32_t high = g_astc_sorted_order_unquant[11][pResults->m_high_endpoint.m_c[i]].m_unquant;
  655. p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]);
  656. }
  657. uint64_t total_err = 0;
  658. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  659. total_err += compute_color_distance_rgb(&p, &pParams->m_pPixels[i], pParams->m_perceptual, pParams->m_weights);
  660. pResults->m_best_overall_err = total_err;
  661. return total_err;
  662. }
  663. static uint64_t evaluate_solution(const color_quad_u8 *pLow, const color_quad_u8 *pHigh, const uint32_t pbits[2], const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults)
  664. {
  665. color_quad_u8 quantMinColor = *pLow;
  666. color_quad_u8 quantMaxColor = *pHigh;
  667. if (pParams->m_has_pbits)
  668. {
  669. uint32_t minPBit, maxPBit;
  670. if (pParams->m_endpoints_share_pbit)
  671. maxPBit = minPBit = pbits[0];
  672. else
  673. {
  674. minPBit = pbits[0];
  675. maxPBit = pbits[1];
  676. }
  677. quantMinColor.m_c[0] = (uint8_t)((pLow->m_c[0] << 1) | minPBit);
  678. quantMinColor.m_c[1] = (uint8_t)((pLow->m_c[1] << 1) | minPBit);
  679. quantMinColor.m_c[2] = (uint8_t)((pLow->m_c[2] << 1) | minPBit);
  680. quantMinColor.m_c[3] = (uint8_t)((pLow->m_c[3] << 1) | minPBit);
  681. quantMaxColor.m_c[0] = (uint8_t)((pHigh->m_c[0] << 1) | maxPBit);
  682. quantMaxColor.m_c[1] = (uint8_t)((pHigh->m_c[1] << 1) | maxPBit);
  683. quantMaxColor.m_c[2] = (uint8_t)((pHigh->m_c[2] << 1) | maxPBit);
  684. quantMaxColor.m_c[3] = (uint8_t)((pHigh->m_c[3] << 1) | maxPBit);
  685. }
  686. color_quad_u8 actualMinColor = scale_color(&quantMinColor, pParams);
  687. color_quad_u8 actualMaxColor = scale_color(&quantMaxColor, pParams);
  688. const uint32_t N = pParams->m_num_selector_weights;
  689. assert(N >= 1 && N <= 32);
  690. color_quad_u8 weightedColors[32];
  691. weightedColors[0] = actualMinColor;
  692. weightedColors[N - 1] = actualMaxColor;
  693. const uint32_t nc = pParams->m_has_alpha ? 4 : 3;
  694. if (pParams->m_astc_endpoint_range)
  695. {
  696. for (uint32_t i = 1; i < (N - 1); i++)
  697. {
  698. for (uint32_t j = 0; j < nc; j++)
  699. weightedColors[i].m_c[j] = (uint8_t)(astc_interpolate_linear(actualMinColor.m_c[j], actualMaxColor.m_c[j], pParams->m_pSelector_weights[i]));
  700. }
  701. }
  702. else
  703. {
  704. for (uint32_t i = 1; i < (N - 1); i++)
  705. for (uint32_t j = 0; j < nc; j++)
  706. weightedColors[i].m_c[j] = (uint8_t)((actualMinColor.m_c[j] * (64 - pParams->m_pSelector_weights[i]) + actualMaxColor.m_c[j] * pParams->m_pSelector_weights[i] + 32) >> 6);
  707. }
  708. const int lr = actualMinColor.m_c[0];
  709. const int lg = actualMinColor.m_c[1];
  710. const int lb = actualMinColor.m_c[2];
  711. const int dr = actualMaxColor.m_c[0] - lr;
  712. const int dg = actualMaxColor.m_c[1] - lg;
  713. const int db = actualMaxColor.m_c[2] - lb;
  714. uint64_t total_err = 0;
  715. if (pParams->m_pForce_selectors)
  716. {
  717. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  718. {
  719. const color_quad_u8* pC = &pParams->m_pPixels[i];
  720. const uint8_t sel = pParams->m_pForce_selectors[i];
  721. assert(sel < N);
  722. total_err += (pParams->m_has_alpha ? compute_color_distance_rgba : compute_color_distance_rgb)(&weightedColors[sel], pC, pParams->m_perceptual, pParams->m_weights);
  723. pResults->m_pSelectors_temp[i] = sel;
  724. }
  725. }
  726. else if (!pParams->m_perceptual)
  727. {
  728. if (pParams->m_has_alpha)
  729. {
  730. const int la = actualMinColor.m_c[3];
  731. const int da = actualMaxColor.m_c[3] - la;
  732. const float f = N / (float)(squarei(dr) + squarei(dg) + squarei(db) + squarei(da) + .00000125f);
  733. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  734. {
  735. const color_quad_u8 *pC = &pParams->m_pPixels[i];
  736. int r = pC->m_c[0];
  737. int g = pC->m_c[1];
  738. int b = pC->m_c[2];
  739. int a = pC->m_c[3];
  740. int best_sel = (int)((float)((r - lr) * dr + (g - lg) * dg + (b - lb) * db + (a - la) * da) * f + .5f);
  741. best_sel = clampi(best_sel, 1, N - 1);
  742. uint64_t err0 = compute_color_distance_rgba(&weightedColors[best_sel - 1], pC, BC7ENC_FALSE, pParams->m_weights);
  743. uint64_t err1 = compute_color_distance_rgba(&weightedColors[best_sel], pC, BC7ENC_FALSE, pParams->m_weights);
  744. if (err0 == err1)
  745. {
  746. // Prefer non-interpolation
  747. if ((best_sel - 1) == 0)
  748. best_sel = 0;
  749. }
  750. else if (err1 > err0)
  751. {
  752. err1 = err0;
  753. --best_sel;
  754. }
  755. total_err += err1;
  756. pResults->m_pSelectors_temp[i] = (uint8_t)best_sel;
  757. }
  758. }
  759. else
  760. {
  761. const float f = N / (float)(squarei(dr) + squarei(dg) + squarei(db) + .00000125f);
  762. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  763. {
  764. const color_quad_u8 *pC = &pParams->m_pPixels[i];
  765. int r = pC->m_c[0];
  766. int g = pC->m_c[1];
  767. int b = pC->m_c[2];
  768. int sel = (int)((float)((r - lr) * dr + (g - lg) * dg + (b - lb) * db) * f + .5f);
  769. sel = clampi(sel, 1, N - 1);
  770. uint64_t err0 = compute_color_distance_rgb(&weightedColors[sel - 1], pC, BC7ENC_FALSE, pParams->m_weights);
  771. uint64_t err1 = compute_color_distance_rgb(&weightedColors[sel], pC, BC7ENC_FALSE, pParams->m_weights);
  772. int best_sel = sel;
  773. uint64_t best_err = err1;
  774. if (err0 == err1)
  775. {
  776. // Prefer non-interpolation
  777. if ((best_sel - 1) == 0)
  778. best_sel = 0;
  779. }
  780. else if (err0 < best_err)
  781. {
  782. best_err = err0;
  783. best_sel = sel - 1;
  784. }
  785. total_err += best_err;
  786. pResults->m_pSelectors_temp[i] = (uint8_t)best_sel;
  787. }
  788. }
  789. }
  790. else
  791. {
  792. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  793. {
  794. uint64_t best_err = UINT64_MAX;
  795. uint32_t best_sel = 0;
  796. if (pParams->m_has_alpha)
  797. {
  798. for (uint32_t j = 0; j < N; j++)
  799. {
  800. uint64_t err = compute_color_distance_rgba(&weightedColors[j], &pParams->m_pPixels[i], BC7ENC_TRUE, pParams->m_weights);
  801. if (err < best_err)
  802. {
  803. best_err = err;
  804. best_sel = j;
  805. }
  806. // Prefer non-interpolation
  807. else if ((err == best_err) && (j == (N - 1)))
  808. best_sel = j;
  809. }
  810. }
  811. else
  812. {
  813. for (uint32_t j = 0; j < N; j++)
  814. {
  815. uint64_t err = compute_color_distance_rgb(&weightedColors[j], &pParams->m_pPixels[i], BC7ENC_TRUE, pParams->m_weights);
  816. if (err < best_err)
  817. {
  818. best_err = err;
  819. best_sel = j;
  820. }
  821. // Prefer non-interpolation
  822. else if ((err == best_err) && (j == (N - 1)))
  823. best_sel = j;
  824. }
  825. }
  826. total_err += best_err;
  827. pResults->m_pSelectors_temp[i] = (uint8_t)best_sel;
  828. }
  829. }
  830. if (total_err < pResults->m_best_overall_err)
  831. {
  832. pResults->m_best_overall_err = total_err;
  833. pResults->m_low_endpoint = *pLow;
  834. pResults->m_high_endpoint = *pHigh;
  835. pResults->m_pbits[0] = pbits[0];
  836. pResults->m_pbits[1] = pbits[1];
  837. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  838. }
  839. return total_err;
  840. }
  841. static bool areDegenerateEndpoints(color_quad_u8* pTrialMinColor, color_quad_u8* pTrialMaxColor, const bc7enc_vec4F* pXl, const bc7enc_vec4F* pXh)
  842. {
  843. for (uint32_t i = 0; i < 3; i++)
  844. {
  845. if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i])
  846. {
  847. if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.0f)
  848. return true;
  849. }
  850. }
  851. return false;
  852. }
  853. static void fixDegenerateEndpoints(uint32_t mode, color_quad_u8 *pTrialMinColor, color_quad_u8 *pTrialMaxColor, const bc7enc_vec4F*pXl, const bc7enc_vec4F*pXh, uint32_t iscale, int flags)
  854. {
  855. if (mode == 255)
  856. {
  857. for (uint32_t i = 0; i < 3; i++)
  858. {
  859. if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i])
  860. {
  861. if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.000125f)
  862. {
  863. if (flags & 1)
  864. {
  865. if (pTrialMinColor->m_c[i] > 0)
  866. pTrialMinColor->m_c[i]--;
  867. }
  868. if (flags & 2)
  869. {
  870. if (pTrialMaxColor->m_c[i] < iscale)
  871. pTrialMaxColor->m_c[i]++;
  872. }
  873. }
  874. }
  875. }
  876. }
  877. else if (mode == 1)
  878. {
  879. // fix degenerate case where the input collapses to a single colorspace voxel, and we loose all freedom (test with grayscale ramps)
  880. for (uint32_t i = 0; i < 3; i++)
  881. {
  882. if (pTrialMinColor->m_c[i] == pTrialMaxColor->m_c[i])
  883. {
  884. if (fabs(pXl->m_c[i] - pXh->m_c[i]) > 0.000125f)
  885. {
  886. if (pTrialMinColor->m_c[i] > (iscale >> 1))
  887. {
  888. if (pTrialMinColor->m_c[i] > 0)
  889. pTrialMinColor->m_c[i]--;
  890. else
  891. if (pTrialMaxColor->m_c[i] < iscale)
  892. pTrialMaxColor->m_c[i]++;
  893. }
  894. else
  895. {
  896. if (pTrialMaxColor->m_c[i] < iscale)
  897. pTrialMaxColor->m_c[i]++;
  898. else if (pTrialMinColor->m_c[i] > 0)
  899. pTrialMinColor->m_c[i]--;
  900. }
  901. }
  902. }
  903. }
  904. }
  905. }
  906. static uint64_t find_optimal_solution(uint32_t mode, bc7enc_vec4F xl, bc7enc_vec4F xh, const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults)
  907. {
  908. vec4F_saturate_in_place(&xl); vec4F_saturate_in_place(&xh);
  909. if (pParams->m_astc_endpoint_range)
  910. {
  911. const uint32_t levels = astc_get_levels(pParams->m_astc_endpoint_range);
  912. const float scale = 255.0f;
  913. color_quad_u8 trialMinColor8Bit, trialMaxColor8Bit;
  914. color_quad_u8_set_clamped(&trialMinColor8Bit, (int)(xl.m_c[0] * scale + .5f), (int)(xl.m_c[1] * scale + .5f), (int)(xl.m_c[2] * scale + .5f), (int)(xl.m_c[3] * scale + .5f));
  915. color_quad_u8_set_clamped(&trialMaxColor8Bit, (int)(xh.m_c[0] * scale + .5f), (int)(xh.m_c[1] * scale + .5f), (int)(xh.m_c[2] * scale + .5f), (int)(xh.m_c[3] * scale + .5f));
  916. color_quad_u8 trialMinColor, trialMaxColor;
  917. for (uint32_t i = 0; i < 4; i++)
  918. {
  919. trialMinColor.m_c[i] = g_astc_nearest_sorted_index[pParams->m_astc_endpoint_range][trialMinColor8Bit.m_c[i]];
  920. trialMaxColor.m_c[i] = g_astc_nearest_sorted_index[pParams->m_astc_endpoint_range][trialMaxColor8Bit.m_c[i]];
  921. }
  922. if (areDegenerateEndpoints(&trialMinColor, &trialMaxColor, &xl, &xh))
  923. {
  924. color_quad_u8 trialMinColorOrig(trialMinColor), trialMaxColorOrig(trialMaxColor);
  925. fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 1);
  926. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  927. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  928. trialMinColor = trialMinColorOrig;
  929. trialMaxColor = trialMaxColorOrig;
  930. fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 0);
  931. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  932. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  933. trialMinColor = trialMinColorOrig;
  934. trialMaxColor = trialMaxColorOrig;
  935. fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 2);
  936. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  937. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  938. trialMinColor = trialMinColorOrig;
  939. trialMaxColor = trialMaxColorOrig;
  940. fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, levels - 1, 3);
  941. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  942. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  943. }
  944. else
  945. {
  946. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  947. {
  948. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  949. }
  950. }
  951. for (uint32_t i = 0; i < 4; i++)
  952. {
  953. pResults->m_astc_low_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[i]].m_index;
  954. pResults->m_astc_high_endpoint.m_c[i] = g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[i]].m_index;
  955. }
  956. }
  957. else if (pParams->m_has_pbits)
  958. {
  959. const int iscalep = (1 << (pParams->m_comp_bits + 1)) - 1;
  960. const float scalep = (float)iscalep;
  961. const int32_t totalComps = pParams->m_has_alpha ? 4 : 3;
  962. uint32_t best_pbits[2];
  963. color_quad_u8 bestMinColor, bestMaxColor;
  964. if (!pParams->m_endpoints_share_pbit)
  965. {
  966. float best_err0 = 1e+9;
  967. float best_err1 = 1e+9;
  968. for (int p = 0; p < 2; p++)
  969. {
  970. color_quad_u8 xMinColor, xMaxColor;
  971. // Notes: The pbit controls which quantization intervals are selected.
  972. // total_levels=2^(comp_bits+1), where comp_bits=4 for mode 0, etc.
  973. // pbit 0: v=(b*2)/(total_levels-1), pbit 1: v=(b*2+1)/(total_levels-1) where b is the component bin from [0,total_levels/2-1] and v is the [0,1] component value
  974. // rearranging you get for pbit 0: b=floor(v*(total_levels-1)/2+.5)
  975. // rearranging you get for pbit 1: b=floor((v*(total_levels-1)-1)/2+.5)
  976. for (uint32_t c = 0; c < 4; c++)
  977. {
  978. xMinColor.m_c[c] = (uint8_t)(clampi(((int)((xl.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p));
  979. xMaxColor.m_c[c] = (uint8_t)(clampi(((int)((xh.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p));
  980. }
  981. color_quad_u8 scaledLow = scale_color(&xMinColor, pParams);
  982. color_quad_u8 scaledHigh = scale_color(&xMaxColor, pParams);
  983. float err0 = 0, err1 = 0;
  984. for (int i = 0; i < totalComps; i++)
  985. {
  986. err0 += squaref(scaledLow.m_c[i] - xl.m_c[i] * 255.0f);
  987. err1 += squaref(scaledHigh.m_c[i] - xh.m_c[i] * 255.0f);
  988. }
  989. if (err0 < best_err0)
  990. {
  991. best_err0 = err0;
  992. best_pbits[0] = p;
  993. bestMinColor.m_c[0] = xMinColor.m_c[0] >> 1;
  994. bestMinColor.m_c[1] = xMinColor.m_c[1] >> 1;
  995. bestMinColor.m_c[2] = xMinColor.m_c[2] >> 1;
  996. bestMinColor.m_c[3] = xMinColor.m_c[3] >> 1;
  997. }
  998. if (err1 < best_err1)
  999. {
  1000. best_err1 = err1;
  1001. best_pbits[1] = p;
  1002. bestMaxColor.m_c[0] = xMaxColor.m_c[0] >> 1;
  1003. bestMaxColor.m_c[1] = xMaxColor.m_c[1] >> 1;
  1004. bestMaxColor.m_c[2] = xMaxColor.m_c[2] >> 1;
  1005. bestMaxColor.m_c[3] = xMaxColor.m_c[3] >> 1;
  1006. }
  1007. }
  1008. }
  1009. else
  1010. {
  1011. // Endpoints share pbits
  1012. float best_err = 1e+9;
  1013. for (int p = 0; p < 2; p++)
  1014. {
  1015. color_quad_u8 xMinColor, xMaxColor;
  1016. for (uint32_t c = 0; c < 4; c++)
  1017. {
  1018. xMinColor.m_c[c] = (uint8_t)(clampi(((int)((xl.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p));
  1019. xMaxColor.m_c[c] = (uint8_t)(clampi(((int)((xh.m_c[c] * scalep - p) / 2.0f + .5f)) * 2 + p, p, iscalep - 1 + p));
  1020. }
  1021. color_quad_u8 scaledLow = scale_color(&xMinColor, pParams);
  1022. color_quad_u8 scaledHigh = scale_color(&xMaxColor, pParams);
  1023. float err = 0;
  1024. for (int i = 0; i < totalComps; i++)
  1025. err += squaref((scaledLow.m_c[i] / 255.0f) - xl.m_c[i]) + squaref((scaledHigh.m_c[i] / 255.0f) - xh.m_c[i]);
  1026. if (err < best_err)
  1027. {
  1028. best_err = err;
  1029. best_pbits[0] = p;
  1030. best_pbits[1] = p;
  1031. for (uint32_t j = 0; j < 4; j++)
  1032. {
  1033. bestMinColor.m_c[j] = xMinColor.m_c[j] >> 1;
  1034. bestMaxColor.m_c[j] = xMaxColor.m_c[j] >> 1;
  1035. }
  1036. }
  1037. }
  1038. }
  1039. fixDegenerateEndpoints(mode, &bestMinColor, &bestMaxColor, &xl, &xh, iscalep >> 1, 0);
  1040. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&bestMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&bestMaxColor, &pResults->m_high_endpoint) || (best_pbits[0] != pResults->m_pbits[0]) || (best_pbits[1] != pResults->m_pbits[1]))
  1041. evaluate_solution(&bestMinColor, &bestMaxColor, best_pbits, pParams, pResults);
  1042. }
  1043. else
  1044. {
  1045. const int iscale = (1 << pParams->m_comp_bits) - 1;
  1046. const float scale = (float)iscale;
  1047. color_quad_u8 trialMinColor, trialMaxColor;
  1048. color_quad_u8_set_clamped(&trialMinColor, (int)(xl.m_c[0] * scale + .5f), (int)(xl.m_c[1] * scale + .5f), (int)(xl.m_c[2] * scale + .5f), (int)(xl.m_c[3] * scale + .5f));
  1049. color_quad_u8_set_clamped(&trialMaxColor, (int)(xh.m_c[0] * scale + .5f), (int)(xh.m_c[1] * scale + .5f), (int)(xh.m_c[2] * scale + .5f), (int)(xh.m_c[3] * scale + .5f));
  1050. fixDegenerateEndpoints(mode, &trialMinColor, &trialMaxColor, &xl, &xh, iscale, 0);
  1051. if ((pResults->m_best_overall_err == UINT64_MAX) || color_quad_u8_notequals(&trialMinColor, &pResults->m_low_endpoint) || color_quad_u8_notequals(&trialMaxColor, &pResults->m_high_endpoint))
  1052. evaluate_solution(&trialMinColor, &trialMaxColor, pResults->m_pbits, pParams, pResults);
  1053. }
  1054. return pResults->m_best_overall_err;
  1055. }
  1056. void check_best_overall_error(const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults)
  1057. {
  1058. const uint32_t n = pParams->m_num_selector_weights;
  1059. assert(n <= 32);
  1060. color_quad_u8 colors[32];
  1061. for (uint32_t c = 0; c < 4; c++)
  1062. {
  1063. colors[0].m_c[c] = g_astc_unquant[pParams->m_astc_endpoint_range][pResults->m_astc_low_endpoint.m_c[c]].m_unquant;
  1064. assert(colors[0].m_c[c] == g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_low_endpoint.m_c[c]].m_unquant);
  1065. colors[n-1].m_c[c] = g_astc_unquant[pParams->m_astc_endpoint_range][pResults->m_astc_high_endpoint.m_c[c]].m_unquant;
  1066. assert(colors[n-1].m_c[c] == g_astc_sorted_order_unquant[pParams->m_astc_endpoint_range][pResults->m_high_endpoint.m_c[c]].m_unquant);
  1067. }
  1068. for (uint32_t i = 1; i < pParams->m_num_selector_weights - 1; i++)
  1069. for (uint32_t c = 0; c < 4; c++)
  1070. colors[i].m_c[c] = (uint8_t)astc_interpolate_linear(colors[0].m_c[c], colors[n - 1].m_c[c], pParams->m_pSelector_weights[i]);
  1071. #ifdef _DEBUG
  1072. uint64_t total_err = 0;
  1073. for (uint32_t p = 0; p < pParams->m_num_pixels; p++)
  1074. {
  1075. const color_quad_u8 &orig = pParams->m_pPixels[p];
  1076. const color_quad_u8 &packed = colors[pResults->m_pSelectors[p]];
  1077. if (pParams->m_has_alpha)
  1078. total_err += compute_color_distance_rgba(&orig, &packed, pParams->m_perceptual, pParams->m_weights);
  1079. else
  1080. total_err += compute_color_distance_rgb(&orig, &packed, pParams->m_perceptual, pParams->m_weights);
  1081. }
  1082. assert(total_err == pResults->m_best_overall_err);
  1083. #endif
  1084. // HACK HACK
  1085. //if (total_err != pResults->m_best_overall_err)
  1086. // printf("X");
  1087. }
  1088. static bool is_solid_rgb(const color_cell_compressor_params *pParams, uint32_t &r, uint32_t &g, uint32_t &b)
  1089. {
  1090. r = pParams->m_pPixels[0].m_c[0];
  1091. g = pParams->m_pPixels[0].m_c[1];
  1092. b = pParams->m_pPixels[0].m_c[2];
  1093. bool allSame = true;
  1094. for (uint32_t i = 1; i < pParams->m_num_pixels; i++)
  1095. {
  1096. if ((r != pParams->m_pPixels[i].m_c[0]) || (g != pParams->m_pPixels[i].m_c[1]) || (b != pParams->m_pPixels[i].m_c[2]))
  1097. {
  1098. allSame = false;
  1099. break;
  1100. }
  1101. }
  1102. return allSame;
  1103. }
  1104. static bool is_solid_rgba(const color_cell_compressor_params *pParams, uint32_t &r, uint32_t &g, uint32_t &b, uint32_t &a)
  1105. {
  1106. r = pParams->m_pPixels[0].m_c[0];
  1107. g = pParams->m_pPixels[0].m_c[1];
  1108. b = pParams->m_pPixels[0].m_c[2];
  1109. a = pParams->m_pPixels[0].m_c[3];
  1110. bool allSame = true;
  1111. for (uint32_t i = 1; i < pParams->m_num_pixels; i++)
  1112. {
  1113. if ((r != pParams->m_pPixels[i].m_c[0]) || (g != pParams->m_pPixels[i].m_c[1]) || (b != pParams->m_pPixels[i].m_c[2]) || (a != pParams->m_pPixels[i].m_c[3]))
  1114. {
  1115. allSame = false;
  1116. break;
  1117. }
  1118. }
  1119. return allSame;
  1120. }
  1121. uint64_t color_cell_compression(uint32_t mode, const color_cell_compressor_params *pParams, color_cell_compressor_results *pResults, const bc7enc_compress_block_params *pComp_params)
  1122. {
  1123. if (!pParams->m_astc_endpoint_range)
  1124. {
  1125. assert((mode == 6) || (!pParams->m_has_alpha));
  1126. }
  1127. assert(pParams->m_num_selector_weights >= 1 && pParams->m_num_selector_weights <= 32);
  1128. assert(pParams->m_pSelector_weights[0] == 0);
  1129. assert(pParams->m_pSelector_weights[pParams->m_num_selector_weights - 1] == 64);
  1130. pResults->m_best_overall_err = UINT64_MAX;
  1131. uint32_t cr, cg, cb, ca;
  1132. // If the partition's colors are all the same, then just pack them as a single color.
  1133. if (!pParams->m_pForce_selectors)
  1134. {
  1135. if (mode == 1)
  1136. {
  1137. if (is_solid_rgb(pParams, cr, cg, cb))
  1138. return pack_mode1_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors);
  1139. }
  1140. else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 8) && (!pParams->m_has_alpha))
  1141. {
  1142. if (is_solid_rgb(pParams, cr, cg, cb))
  1143. return pack_astc_4bit_3bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors);
  1144. }
  1145. else if ((pParams->m_astc_endpoint_range == 7) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha))
  1146. {
  1147. if (is_solid_rgb(pParams, cr, cg, cb))
  1148. return pack_astc_range7_2bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors);
  1149. }
  1150. else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 4) && (pParams->m_has_alpha))
  1151. {
  1152. if (is_solid_rgba(pParams, cr, cg, cb, ca))
  1153. return pack_astc_4bit_2bit_to_one_color_rgba(pParams, pResults, cr, cg, cb, ca, pResults->m_pSelectors);
  1154. }
  1155. else if ((pParams->m_astc_endpoint_range == 13) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha))
  1156. {
  1157. if (is_solid_rgb(pParams, cr, cg, cb))
  1158. return pack_astc_range13_2bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors);
  1159. }
  1160. else if ((pParams->m_astc_endpoint_range == 11) && (pParams->m_num_selector_weights == 32) && (!pParams->m_has_alpha))
  1161. {
  1162. if (is_solid_rgb(pParams, cr, cg, cb))
  1163. return pack_astc_range11_5bit_to_one_color(pParams, pResults, cr, cg, cb, pResults->m_pSelectors);
  1164. }
  1165. }
  1166. // Compute partition's mean color and principle axis.
  1167. bc7enc_vec4F meanColor, axis;
  1168. vec4F_set_scalar(&meanColor, 0.0f);
  1169. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1170. {
  1171. bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]);
  1172. meanColor = vec4F_add(&meanColor, &color);
  1173. }
  1174. bc7enc_vec4F meanColorScaled = vec4F_mul(&meanColor, 1.0f / (float)(pParams->m_num_pixels));
  1175. meanColor = vec4F_mul(&meanColor, 1.0f / (float)(pParams->m_num_pixels * 255.0f));
  1176. vec4F_saturate_in_place(&meanColor);
  1177. if (pParams->m_has_alpha)
  1178. {
  1179. // Use incremental PCA for RGBA PCA, because it's simple.
  1180. vec4F_set_scalar(&axis, 0.0f);
  1181. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1182. {
  1183. bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]);
  1184. color = vec4F_sub(&color, &meanColorScaled);
  1185. bc7enc_vec4F a = vec4F_mul(&color, color.m_c[0]);
  1186. bc7enc_vec4F b = vec4F_mul(&color, color.m_c[1]);
  1187. bc7enc_vec4F c = vec4F_mul(&color, color.m_c[2]);
  1188. bc7enc_vec4F d = vec4F_mul(&color, color.m_c[3]);
  1189. bc7enc_vec4F n = i ? axis : color;
  1190. vec4F_normalize_in_place(&n);
  1191. axis.m_c[0] += vec4F_dot(&a, &n);
  1192. axis.m_c[1] += vec4F_dot(&b, &n);
  1193. axis.m_c[2] += vec4F_dot(&c, &n);
  1194. axis.m_c[3] += vec4F_dot(&d, &n);
  1195. }
  1196. vec4F_normalize_in_place(&axis);
  1197. }
  1198. else
  1199. {
  1200. // Use covar technique for RGB PCA, because it doesn't require per-pixel normalization.
  1201. float cov[6] = { 0, 0, 0, 0, 0, 0 };
  1202. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1203. {
  1204. const color_quad_u8 *pV = &pParams->m_pPixels[i];
  1205. float r = pV->m_c[0] - meanColorScaled.m_c[0];
  1206. float g = pV->m_c[1] - meanColorScaled.m_c[1];
  1207. float b = pV->m_c[2] - meanColorScaled.m_c[2];
  1208. cov[0] += r*r; cov[1] += r*g; cov[2] += r*b; cov[3] += g*g; cov[4] += g*b; cov[5] += b*b;
  1209. }
  1210. float xr = .9f, xg = 1.0f, xb = .7f;
  1211. for (uint32_t iter = 0; iter < 3; iter++)
  1212. {
  1213. float r = xr * cov[0] + xg * cov[1] + xb * cov[2];
  1214. float g = xr * cov[1] + xg * cov[3] + xb * cov[4];
  1215. float b = xr * cov[2] + xg * cov[4] + xb * cov[5];
  1216. float m = maximumf(maximumf(fabsf(r), fabsf(g)), fabsf(b));
  1217. if (m > 1e-10f)
  1218. {
  1219. m = 1.0f / m;
  1220. r *= m; g *= m; b *= m;
  1221. }
  1222. xr = r; xg = g; xb = b;
  1223. }
  1224. float len = xr * xr + xg * xg + xb * xb;
  1225. if (len < 1e-10f)
  1226. vec4F_set_scalar(&axis, 0.0f);
  1227. else
  1228. {
  1229. len = 1.0f / sqrtf(len);
  1230. xr *= len; xg *= len; xb *= len;
  1231. vec4F_set(&axis, xr, xg, xb, 0);
  1232. }
  1233. }
  1234. if (vec4F_dot(&axis, &axis) < .5f)
  1235. {
  1236. if (pParams->m_perceptual)
  1237. vec4F_set(&axis, .213f, .715f, .072f, pParams->m_has_alpha ? .715f : 0);
  1238. else
  1239. vec4F_set(&axis, 1.0f, 1.0f, 1.0f, pParams->m_has_alpha ? 1.0f : 0);
  1240. vec4F_normalize_in_place(&axis);
  1241. }
  1242. bc7enc_vec4F minColor, maxColor;
  1243. float l = 1e+9f, h = -1e+9f;
  1244. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1245. {
  1246. bc7enc_vec4F color = vec4F_from_color(&pParams->m_pPixels[i]);
  1247. bc7enc_vec4F q = vec4F_sub(&color, &meanColorScaled);
  1248. float d = vec4F_dot(&q, &axis);
  1249. l = minimumf(l, d);
  1250. h = maximumf(h, d);
  1251. }
  1252. l *= (1.0f / 255.0f);
  1253. h *= (1.0f / 255.0f);
  1254. bc7enc_vec4F b0 = vec4F_mul(&axis, l);
  1255. bc7enc_vec4F b1 = vec4F_mul(&axis, h);
  1256. bc7enc_vec4F c0 = vec4F_add(&meanColor, &b0);
  1257. bc7enc_vec4F c1 = vec4F_add(&meanColor, &b1);
  1258. minColor = vec4F_saturate(&c0);
  1259. maxColor = vec4F_saturate(&c1);
  1260. bc7enc_vec4F whiteVec;
  1261. vec4F_set_scalar(&whiteVec, 1.0f);
  1262. if (vec4F_dot(&minColor, &whiteVec) > vec4F_dot(&maxColor, &whiteVec))
  1263. {
  1264. #if 1
  1265. std::swap(minColor.m_c[0], maxColor.m_c[0]);
  1266. std::swap(minColor.m_c[1], maxColor.m_c[1]);
  1267. std::swap(minColor.m_c[2], maxColor.m_c[2]);
  1268. std::swap(minColor.m_c[3], maxColor.m_c[3]);
  1269. #elif 0
  1270. // Fails to compile correctly with MSVC 2019 (code generation bug)
  1271. std::swap(minColor, maxColor);
  1272. #else
  1273. // Fails with MSVC 2019
  1274. bc7enc_vec4F temp = minColor;
  1275. minColor = maxColor;
  1276. maxColor = temp;
  1277. #endif
  1278. }
  1279. // First find a solution using the block's PCA.
  1280. if (!find_optimal_solution(mode, minColor, maxColor, pParams, pResults))
  1281. return 0;
  1282. for (uint32_t i = 0; i < pComp_params->m_least_squares_passes; i++)
  1283. {
  1284. // Now try to refine the solution using least squares by computing the optimal endpoints from the current selectors.
  1285. bc7enc_vec4F xl, xh;
  1286. vec4F_set_scalar(&xl, 0.0f);
  1287. vec4F_set_scalar(&xh, 0.0f);
  1288. if (pParams->m_has_alpha)
  1289. compute_least_squares_endpoints_rgba(pParams->m_num_pixels, pResults->m_pSelectors, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1290. else
  1291. compute_least_squares_endpoints_rgb(pParams->m_num_pixels, pResults->m_pSelectors, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1292. xl = vec4F_mul(&xl, (1.0f / 255.0f));
  1293. xh = vec4F_mul(&xh, (1.0f / 255.0f));
  1294. if (!find_optimal_solution(mode, xl, xh, pParams, pResults))
  1295. return 0;
  1296. }
  1297. if ((!pParams->m_pForce_selectors) && (pComp_params->m_uber_level > 0))
  1298. {
  1299. // In uber level 1, try varying the selectors a little, somewhat like cluster fit would. First try incrementing the minimum selectors,
  1300. // then try decrementing the selectrors, then try both.
  1301. uint8_t selectors_temp[16], selectors_temp1[16];
  1302. memcpy(selectors_temp, pResults->m_pSelectors, pParams->m_num_pixels);
  1303. const int max_selector = pParams->m_num_selector_weights - 1;
  1304. uint32_t min_sel = 256;
  1305. uint32_t max_sel = 0;
  1306. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1307. {
  1308. uint32_t sel = selectors_temp[i];
  1309. min_sel = minimumu(min_sel, sel);
  1310. max_sel = maximumu(max_sel, sel);
  1311. }
  1312. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1313. {
  1314. uint32_t sel = selectors_temp[i];
  1315. if ((sel == min_sel) && (sel < (pParams->m_num_selector_weights - 1)))
  1316. sel++;
  1317. selectors_temp1[i] = (uint8_t)sel;
  1318. }
  1319. bc7enc_vec4F xl, xh;
  1320. vec4F_set_scalar(&xl, 0.0f);
  1321. vec4F_set_scalar(&xh, 0.0f);
  1322. if (pParams->m_has_alpha)
  1323. compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1324. else
  1325. compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1326. xl = vec4F_mul(&xl, (1.0f / 255.0f));
  1327. xh = vec4F_mul(&xh, (1.0f / 255.0f));
  1328. if (!find_optimal_solution(mode, xl, xh, pParams, pResults))
  1329. return 0;
  1330. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1331. {
  1332. uint32_t sel = selectors_temp[i];
  1333. if ((sel == max_sel) && (sel > 0))
  1334. sel--;
  1335. selectors_temp1[i] = (uint8_t)sel;
  1336. }
  1337. if (pParams->m_has_alpha)
  1338. compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1339. else
  1340. compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1341. xl = vec4F_mul(&xl, (1.0f / 255.0f));
  1342. xh = vec4F_mul(&xh, (1.0f / 255.0f));
  1343. if (!find_optimal_solution(mode, xl, xh, pParams, pResults))
  1344. return 0;
  1345. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1346. {
  1347. uint32_t sel = selectors_temp[i];
  1348. if ((sel == min_sel) && (sel < (pParams->m_num_selector_weights - 1)))
  1349. sel++;
  1350. else if ((sel == max_sel) && (sel > 0))
  1351. sel--;
  1352. selectors_temp1[i] = (uint8_t)sel;
  1353. }
  1354. if (pParams->m_has_alpha)
  1355. compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1356. else
  1357. compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1358. xl = vec4F_mul(&xl, (1.0f / 255.0f));
  1359. xh = vec4F_mul(&xh, (1.0f / 255.0f));
  1360. if (!find_optimal_solution(mode, xl, xh, pParams, pResults))
  1361. return 0;
  1362. // In uber levels 2+, try taking more advantage of endpoint extrapolation by scaling the selectors in one direction or another.
  1363. const uint32_t uber_err_thresh = (pParams->m_num_pixels * 56) >> 4;
  1364. if ((pComp_params->m_uber_level >= 2) && (pResults->m_best_overall_err > uber_err_thresh))
  1365. {
  1366. const int Q = (pComp_params->m_uber_level >= 4) ? (pComp_params->m_uber_level - 2) : 1;
  1367. for (int ly = -Q; ly <= 1; ly++)
  1368. {
  1369. for (int hy = max_selector - 1; hy <= (max_selector + Q); hy++)
  1370. {
  1371. if ((ly == 0) && (hy == max_selector))
  1372. continue;
  1373. for (uint32_t i = 0; i < pParams->m_num_pixels; i++)
  1374. selectors_temp1[i] = (uint8_t)clampf(floorf((float)max_selector * ((float)selectors_temp[i] - (float)ly) / ((float)hy - (float)ly) + .5f), 0, (float)max_selector);
  1375. //bc7enc_vec4F xl, xh;
  1376. vec4F_set_scalar(&xl, 0.0f);
  1377. vec4F_set_scalar(&xh, 0.0f);
  1378. if (pParams->m_has_alpha)
  1379. compute_least_squares_endpoints_rgba(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1380. else
  1381. compute_least_squares_endpoints_rgb(pParams->m_num_pixels, selectors_temp1, pParams->m_pSelector_weightsx, &xl, &xh, pParams->m_pPixels);
  1382. xl = vec4F_mul(&xl, (1.0f / 255.0f));
  1383. xh = vec4F_mul(&xh, (1.0f / 255.0f));
  1384. if (!find_optimal_solution(mode, xl, xh, pParams, pResults))
  1385. return 0;
  1386. }
  1387. }
  1388. }
  1389. }
  1390. if (!pParams->m_pForce_selectors)
  1391. {
  1392. // Try encoding the partition as a single color by using the optimal single colors tables to encode the block to its mean.
  1393. if (mode == 1)
  1394. {
  1395. color_cell_compressor_results avg_results = *pResults;
  1396. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f);
  1397. uint64_t avg_err = pack_mode1_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp);
  1398. if (avg_err < pResults->m_best_overall_err)
  1399. {
  1400. *pResults = avg_results;
  1401. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1402. pResults->m_best_overall_err = avg_err;
  1403. }
  1404. }
  1405. else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 8) && (!pParams->m_has_alpha))
  1406. {
  1407. color_cell_compressor_results avg_results = *pResults;
  1408. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f);
  1409. uint64_t avg_err = pack_astc_4bit_3bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp);
  1410. if (avg_err < pResults->m_best_overall_err)
  1411. {
  1412. *pResults = avg_results;
  1413. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1414. pResults->m_best_overall_err = avg_err;
  1415. }
  1416. }
  1417. else if ((pParams->m_astc_endpoint_range == 7) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha))
  1418. {
  1419. color_cell_compressor_results avg_results = *pResults;
  1420. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f);
  1421. uint64_t avg_err = pack_astc_range7_2bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp);
  1422. if (avg_err < pResults->m_best_overall_err)
  1423. {
  1424. *pResults = avg_results;
  1425. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1426. pResults->m_best_overall_err = avg_err;
  1427. }
  1428. }
  1429. else if ((pParams->m_astc_endpoint_range == 8) && (pParams->m_num_selector_weights == 4) && (pParams->m_has_alpha))
  1430. {
  1431. color_cell_compressor_results avg_results = *pResults;
  1432. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f), a = (int)(.5f + meanColor.m_c[3] * 255.0f);
  1433. uint64_t avg_err = pack_astc_4bit_2bit_to_one_color_rgba(pParams, &avg_results, r, g, b, a, pResults->m_pSelectors_temp);
  1434. if (avg_err < pResults->m_best_overall_err)
  1435. {
  1436. *pResults = avg_results;
  1437. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1438. pResults->m_best_overall_err = avg_err;
  1439. }
  1440. }
  1441. else if ((pParams->m_astc_endpoint_range == 13) && (pParams->m_num_selector_weights == 4) && (!pParams->m_has_alpha))
  1442. {
  1443. color_cell_compressor_results avg_results = *pResults;
  1444. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f);
  1445. uint64_t avg_err = pack_astc_range13_2bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp);
  1446. if (avg_err < pResults->m_best_overall_err)
  1447. {
  1448. *pResults = avg_results;
  1449. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1450. pResults->m_best_overall_err = avg_err;
  1451. }
  1452. }
  1453. else if ((pParams->m_astc_endpoint_range == 11) && (pParams->m_num_selector_weights == 32) && (!pParams->m_has_alpha))
  1454. {
  1455. color_cell_compressor_results avg_results = *pResults;
  1456. const uint32_t r = (int)(.5f + meanColor.m_c[0] * 255.0f), g = (int)(.5f + meanColor.m_c[1] * 255.0f), b = (int)(.5f + meanColor.m_c[2] * 255.0f);
  1457. uint64_t avg_err = pack_astc_range11_5bit_to_one_color(pParams, &avg_results, r, g, b, pResults->m_pSelectors_temp);
  1458. if (avg_err < pResults->m_best_overall_err)
  1459. {
  1460. *pResults = avg_results;
  1461. memcpy(pResults->m_pSelectors, pResults->m_pSelectors_temp, sizeof(pResults->m_pSelectors[0]) * pParams->m_num_pixels);
  1462. pResults->m_best_overall_err = avg_err;
  1463. }
  1464. }
  1465. }
  1466. #if BC7ENC_CHECK_OVERALL_ERROR
  1467. check_best_overall_error(pParams, pResults);
  1468. #endif
  1469. return pResults->m_best_overall_err;
  1470. }
  1471. uint64_t color_cell_compression_est_astc(
  1472. uint32_t num_weights, uint32_t num_comps, const uint32_t *pWeight_table,
  1473. uint32_t num_pixels, const color_quad_u8* pPixels,
  1474. uint64_t best_err_so_far, const uint32_t weights[4])
  1475. {
  1476. assert(num_comps == 3 || num_comps == 4);
  1477. assert(num_weights >= 1 && num_weights <= 32);
  1478. assert(pWeight_table[0] == 0 && pWeight_table[num_weights - 1] == 64);
  1479. // Find RGB bounds as an approximation of the block's principle axis
  1480. uint32_t lr = 255, lg = 255, lb = 255, la = 255;
  1481. uint32_t hr = 0, hg = 0, hb = 0, ha = 0;
  1482. if (num_comps == 4)
  1483. {
  1484. for (uint32_t i = 0; i < num_pixels; i++)
  1485. {
  1486. const color_quad_u8* pC = &pPixels[i];
  1487. if (pC->m_c[0] < lr) lr = pC->m_c[0];
  1488. if (pC->m_c[1] < lg) lg = pC->m_c[1];
  1489. if (pC->m_c[2] < lb) lb = pC->m_c[2];
  1490. if (pC->m_c[3] < la) la = pC->m_c[3];
  1491. if (pC->m_c[0] > hr) hr = pC->m_c[0];
  1492. if (pC->m_c[1] > hg) hg = pC->m_c[1];
  1493. if (pC->m_c[2] > hb) hb = pC->m_c[2];
  1494. if (pC->m_c[3] > ha) ha = pC->m_c[3];
  1495. }
  1496. }
  1497. else
  1498. {
  1499. for (uint32_t i = 0; i < num_pixels; i++)
  1500. {
  1501. const color_quad_u8* pC = &pPixels[i];
  1502. if (pC->m_c[0] < lr) lr = pC->m_c[0];
  1503. if (pC->m_c[1] < lg) lg = pC->m_c[1];
  1504. if (pC->m_c[2] < lb) lb = pC->m_c[2];
  1505. if (pC->m_c[0] > hr) hr = pC->m_c[0];
  1506. if (pC->m_c[1] > hg) hg = pC->m_c[1];
  1507. if (pC->m_c[2] > hb) hb = pC->m_c[2];
  1508. }
  1509. la = 255;
  1510. ha = 255;
  1511. }
  1512. color_quad_u8 lowColor, highColor;
  1513. color_quad_u8_set(&lowColor, lr, lg, lb, la);
  1514. color_quad_u8_set(&highColor, hr, hg, hb, ha);
  1515. // Place endpoints at bbox diagonals and compute interpolated colors
  1516. color_quad_u8 weightedColors[32];
  1517. weightedColors[0] = lowColor;
  1518. weightedColors[num_weights - 1] = highColor;
  1519. for (uint32_t i = 1; i < (num_weights - 1); i++)
  1520. {
  1521. weightedColors[i].m_c[0] = (uint8_t)astc_interpolate_linear(lowColor.m_c[0], highColor.m_c[0], pWeight_table[i]);
  1522. weightedColors[i].m_c[1] = (uint8_t)astc_interpolate_linear(lowColor.m_c[1], highColor.m_c[1], pWeight_table[i]);
  1523. weightedColors[i].m_c[2] = (uint8_t)astc_interpolate_linear(lowColor.m_c[2], highColor.m_c[2], pWeight_table[i]);
  1524. weightedColors[i].m_c[3] = (num_comps == 4) ? (uint8_t)astc_interpolate_linear(lowColor.m_c[3], highColor.m_c[3], pWeight_table[i]) : 255;
  1525. }
  1526. // Compute dots and thresholds
  1527. const int ar = highColor.m_c[0] - lowColor.m_c[0];
  1528. const int ag = highColor.m_c[1] - lowColor.m_c[1];
  1529. const int ab = highColor.m_c[2] - lowColor.m_c[2];
  1530. const int aa = highColor.m_c[3] - lowColor.m_c[3];
  1531. int dots[32];
  1532. if (num_comps == 4)
  1533. {
  1534. for (uint32_t i = 0; i < num_weights; i++)
  1535. dots[i] = weightedColors[i].m_c[0] * ar + weightedColors[i].m_c[1] * ag + weightedColors[i].m_c[2] * ab + weightedColors[i].m_c[3] * aa;
  1536. }
  1537. else
  1538. {
  1539. assert(aa == 0);
  1540. for (uint32_t i = 0; i < num_weights; i++)
  1541. dots[i] = weightedColors[i].m_c[0] * ar + weightedColors[i].m_c[1] * ag + weightedColors[i].m_c[2] * ab;
  1542. }
  1543. int thresh[32 - 1];
  1544. for (uint32_t i = 0; i < (num_weights - 1); i++)
  1545. thresh[i] = (dots[i] + dots[i + 1] + 1) >> 1;
  1546. uint64_t total_err = 0;
  1547. if ((weights[0] | weights[1] | weights[2] | weights[3]) == 1)
  1548. {
  1549. if (num_comps == 4)
  1550. {
  1551. for (uint32_t i = 0; i < num_pixels; i++)
  1552. {
  1553. const color_quad_u8* pC = &pPixels[i];
  1554. int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2] + aa * pC->m_c[3];
  1555. // Find approximate selector
  1556. uint32_t s = 0;
  1557. for (int j = num_weights - 2; j >= 0; j--)
  1558. {
  1559. if (d >= thresh[j])
  1560. {
  1561. s = j + 1;
  1562. break;
  1563. }
  1564. }
  1565. // Compute error
  1566. const color_quad_u8* pE1 = &weightedColors[s];
  1567. int dr = (int)pE1->m_c[0] - (int)pC->m_c[0];
  1568. int dg = (int)pE1->m_c[1] - (int)pC->m_c[1];
  1569. int db = (int)pE1->m_c[2] - (int)pC->m_c[2];
  1570. int da = (int)pE1->m_c[3] - (int)pC->m_c[3];
  1571. total_err += (dr * dr) + (dg * dg) + (db * db) + (da * da);
  1572. if (total_err > best_err_so_far)
  1573. break;
  1574. }
  1575. }
  1576. else
  1577. {
  1578. for (uint32_t i = 0; i < num_pixels; i++)
  1579. {
  1580. const color_quad_u8* pC = &pPixels[i];
  1581. int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2];
  1582. // Find approximate selector
  1583. uint32_t s = 0;
  1584. for (int j = num_weights - 2; j >= 0; j--)
  1585. {
  1586. if (d >= thresh[j])
  1587. {
  1588. s = j + 1;
  1589. break;
  1590. }
  1591. }
  1592. // Compute error
  1593. const color_quad_u8* pE1 = &weightedColors[s];
  1594. int dr = (int)pE1->m_c[0] - (int)pC->m_c[0];
  1595. int dg = (int)pE1->m_c[1] - (int)pC->m_c[1];
  1596. int db = (int)pE1->m_c[2] - (int)pC->m_c[2];
  1597. total_err += (dr * dr) + (dg * dg) + (db * db);
  1598. if (total_err > best_err_so_far)
  1599. break;
  1600. }
  1601. }
  1602. }
  1603. else
  1604. {
  1605. if (num_comps == 4)
  1606. {
  1607. for (uint32_t i = 0; i < num_pixels; i++)
  1608. {
  1609. const color_quad_u8* pC = &pPixels[i];
  1610. int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2] + aa * pC->m_c[3];
  1611. // Find approximate selector
  1612. uint32_t s = 0;
  1613. for (int j = num_weights - 2; j >= 0; j--)
  1614. {
  1615. if (d >= thresh[j])
  1616. {
  1617. s = j + 1;
  1618. break;
  1619. }
  1620. }
  1621. // Compute error
  1622. const color_quad_u8* pE1 = &weightedColors[s];
  1623. int dr = (int)pE1->m_c[0] - (int)pC->m_c[0];
  1624. int dg = (int)pE1->m_c[1] - (int)pC->m_c[1];
  1625. int db = (int)pE1->m_c[2] - (int)pC->m_c[2];
  1626. int da = (int)pE1->m_c[3] - (int)pC->m_c[3];
  1627. total_err += weights[0] * (dr * dr) + weights[1] * (dg * dg) + weights[2] * (db * db) + weights[3] * (da * da);
  1628. if (total_err > best_err_so_far)
  1629. break;
  1630. }
  1631. }
  1632. else
  1633. {
  1634. for (uint32_t i = 0; i < num_pixels; i++)
  1635. {
  1636. const color_quad_u8* pC = &pPixels[i];
  1637. int d = ar * pC->m_c[0] + ag * pC->m_c[1] + ab * pC->m_c[2];
  1638. // Find approximate selector
  1639. uint32_t s = 0;
  1640. for (int j = num_weights - 2; j >= 0; j--)
  1641. {
  1642. if (d >= thresh[j])
  1643. {
  1644. s = j + 1;
  1645. break;
  1646. }
  1647. }
  1648. // Compute error
  1649. const color_quad_u8* pE1 = &weightedColors[s];
  1650. int dr = (int)pE1->m_c[0] - (int)pC->m_c[0];
  1651. int dg = (int)pE1->m_c[1] - (int)pC->m_c[1];
  1652. int db = (int)pE1->m_c[2] - (int)pC->m_c[2];
  1653. total_err += weights[0] * (dr * dr) + weights[1] * (dg * dg) + weights[2] * (db * db);
  1654. if (total_err > best_err_so_far)
  1655. break;
  1656. }
  1657. }
  1658. }
  1659. return total_err;
  1660. }
  1661. } // namespace basisu