gi.cpp 160 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152
  1. /**************************************************************************/
  2. /* gi.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "gi.h"
  31. #include "core/config/project_settings.h"
  32. #include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
  33. #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
  34. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  35. #include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h"
  36. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  37. #include "servers/rendering/rendering_server_default.h"
  38. using namespace RendererRD;
  39. const Vector3i GI::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  40. GI *GI::singleton = nullptr;
  41. ////////////////////////////////////////////////////////////////////////////////
  42. // VOXEL GI STORAGE
  43. RID GI::voxel_gi_allocate() {
  44. return voxel_gi_owner.allocate_rid();
  45. }
  46. void GI::voxel_gi_free(RID p_voxel_gi) {
  47. voxel_gi_allocate_data(p_voxel_gi, Transform3D(), AABB(), Vector3i(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<int>()); //deallocate
  48. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  49. voxel_gi->dependency.deleted_notify(p_voxel_gi);
  50. voxel_gi_owner.free(p_voxel_gi);
  51. }
  52. void GI::voxel_gi_initialize(RID p_voxel_gi) {
  53. voxel_gi_owner.initialize_rid(p_voxel_gi, VoxelGI());
  54. }
  55. void GI::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
  56. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  57. ERR_FAIL_NULL(voxel_gi);
  58. if (voxel_gi->octree_buffer.is_valid()) {
  59. RD::get_singleton()->free_rid(voxel_gi->octree_buffer);
  60. RD::get_singleton()->free_rid(voxel_gi->data_buffer);
  61. if (voxel_gi->sdf_texture.is_valid()) {
  62. RD::get_singleton()->free_rid(voxel_gi->sdf_texture);
  63. }
  64. voxel_gi->sdf_texture = RID();
  65. voxel_gi->octree_buffer = RID();
  66. voxel_gi->data_buffer = RID();
  67. voxel_gi->octree_buffer_size = 0;
  68. voxel_gi->data_buffer_size = 0;
  69. voxel_gi->cell_count = 0;
  70. }
  71. voxel_gi->to_cell_xform = p_to_cell_xform;
  72. voxel_gi->bounds = p_aabb;
  73. voxel_gi->octree_size = p_octree_size;
  74. voxel_gi->level_counts = p_level_counts;
  75. if (p_octree_cells.size()) {
  76. ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32
  77. uint32_t cell_count = p_octree_cells.size() / 32;
  78. ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches
  79. voxel_gi->cell_count = cell_count;
  80. voxel_gi->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells);
  81. voxel_gi->octree_buffer_size = p_octree_cells.size();
  82. voxel_gi->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells);
  83. voxel_gi->data_buffer_size = p_data_cells.size();
  84. if (p_distance_field.size()) {
  85. RD::TextureFormat tf;
  86. tf.format = RD::DATA_FORMAT_R8_UNORM;
  87. tf.width = voxel_gi->octree_size.x;
  88. tf.height = voxel_gi->octree_size.y;
  89. tf.depth = voxel_gi->octree_size.z;
  90. tf.texture_type = RD::TEXTURE_TYPE_3D;
  91. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  92. Vector<Vector<uint8_t>> s;
  93. s.push_back(p_distance_field);
  94. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s);
  95. RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
  96. }
  97. #if 0
  98. {
  99. RD::TextureFormat tf;
  100. tf.format = RD::DATA_FORMAT_R8_UNORM;
  101. tf.width = voxel_gi->octree_size.x;
  102. tf.height = voxel_gi->octree_size.y;
  103. tf.depth = voxel_gi->octree_size.z;
  104. tf.type = RD::TEXTURE_TYPE_3D;
  105. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  106. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM);
  107. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT);
  108. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  109. RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
  110. }
  111. RID shared_tex;
  112. {
  113. RD::TextureView tv;
  114. tv.format_override = RD::DATA_FORMAT_R8_UINT;
  115. shared_tex = RD::get_singleton()->texture_create_shared(tv, voxel_gi->sdf_texture);
  116. }
  117. //update SDF texture
  118. Vector<RD::Uniform> uniforms;
  119. {
  120. RD::Uniform u;
  121. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  122. u.binding = 1;
  123. u.append_id(voxel_gi->octree_buffer);
  124. uniforms.push_back(u);
  125. }
  126. {
  127. RD::Uniform u;
  128. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  129. u.binding = 2;
  130. u.append_id(voxel_gi->data_buffer);
  131. uniforms.push_back(u);
  132. }
  133. {
  134. RD::Uniform u;
  135. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  136. u.binding = 3;
  137. u.append_id(shared_tex);
  138. uniforms.push_back(u);
  139. }
  140. RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, voxel_gi_sdf_shader_version_shader, 0);
  141. {
  142. uint32_t push_constant[4] = { 0, 0, 0, 0 };
  143. for (int i = 0; i < voxel_gi->level_counts.size() - 1; i++) {
  144. push_constant[0] += voxel_gi->level_counts[i];
  145. }
  146. push_constant[1] = push_constant[0] + voxel_gi->level_counts[voxel_gi->level_counts.size() - 1];
  147. print_line("offset: " + itos(push_constant[0]));
  148. print_line("size: " + itos(push_constant[1]));
  149. //create SDF
  150. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  151. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, voxel_gi_sdf_shader_pipeline);
  152. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
  153. RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4);
  154. RD::get_singleton()->compute_list_dispatch(compute_list, voxel_gi->octree_size.x / 4, voxel_gi->octree_size.y / 4, voxel_gi->octree_size.z / 4);
  155. RD::get_singleton()->compute_list_end();
  156. }
  157. RD::get_singleton()->free(uniform_set);
  158. RD::get_singleton()->free(shared_tex);
  159. }
  160. #endif
  161. }
  162. voxel_gi->version++;
  163. voxel_gi->data_version++;
  164. voxel_gi->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  165. }
  166. AABB GI::voxel_gi_get_bounds(RID p_voxel_gi) const {
  167. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  168. ERR_FAIL_NULL_V(voxel_gi, AABB());
  169. return voxel_gi->bounds;
  170. }
  171. Vector3i GI::voxel_gi_get_octree_size(RID p_voxel_gi) const {
  172. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  173. ERR_FAIL_NULL_V(voxel_gi, Vector3i());
  174. return voxel_gi->octree_size;
  175. }
  176. Vector<uint8_t> GI::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
  177. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  178. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  179. if (voxel_gi->octree_buffer.is_valid()) {
  180. return RD::get_singleton()->buffer_get_data(voxel_gi->octree_buffer);
  181. }
  182. return Vector<uint8_t>();
  183. }
  184. Vector<uint8_t> GI::voxel_gi_get_data_cells(RID p_voxel_gi) const {
  185. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  186. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  187. if (voxel_gi->data_buffer.is_valid()) {
  188. return RD::get_singleton()->buffer_get_data(voxel_gi->data_buffer);
  189. }
  190. return Vector<uint8_t>();
  191. }
  192. Vector<uint8_t> GI::voxel_gi_get_distance_field(RID p_voxel_gi) const {
  193. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  194. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  195. if (voxel_gi->data_buffer.is_valid()) {
  196. return RD::get_singleton()->texture_get_data(voxel_gi->sdf_texture, 0);
  197. }
  198. return Vector<uint8_t>();
  199. }
  200. Vector<int> GI::voxel_gi_get_level_counts(RID p_voxel_gi) const {
  201. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  202. ERR_FAIL_NULL_V(voxel_gi, Vector<int>());
  203. return voxel_gi->level_counts;
  204. }
  205. Transform3D GI::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
  206. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  207. ERR_FAIL_NULL_V(voxel_gi, Transform3D());
  208. return voxel_gi->to_cell_xform;
  209. }
  210. void GI::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
  211. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  212. ERR_FAIL_NULL(voxel_gi);
  213. voxel_gi->dynamic_range = p_range;
  214. voxel_gi->version++;
  215. }
  216. float GI::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
  217. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  218. ERR_FAIL_NULL_V(voxel_gi, 0);
  219. return voxel_gi->dynamic_range;
  220. }
  221. void GI::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
  222. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  223. ERR_FAIL_NULL(voxel_gi);
  224. voxel_gi->propagation = p_range;
  225. voxel_gi->version++;
  226. }
  227. float GI::voxel_gi_get_propagation(RID p_voxel_gi) const {
  228. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  229. ERR_FAIL_NULL_V(voxel_gi, 0);
  230. return voxel_gi->propagation;
  231. }
  232. void GI::voxel_gi_set_energy(RID p_voxel_gi, float p_energy) {
  233. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  234. ERR_FAIL_NULL(voxel_gi);
  235. voxel_gi->energy = p_energy;
  236. }
  237. float GI::voxel_gi_get_energy(RID p_voxel_gi) const {
  238. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  239. ERR_FAIL_NULL_V(voxel_gi, 0);
  240. return voxel_gi->energy;
  241. }
  242. void GI::voxel_gi_set_baked_exposure_normalization(RID p_voxel_gi, float p_baked_exposure) {
  243. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  244. ERR_FAIL_NULL(voxel_gi);
  245. voxel_gi->baked_exposure = p_baked_exposure;
  246. }
  247. float GI::voxel_gi_get_baked_exposure_normalization(RID p_voxel_gi) const {
  248. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  249. ERR_FAIL_NULL_V(voxel_gi, 0);
  250. return voxel_gi->baked_exposure;
  251. }
  252. void GI::voxel_gi_set_bias(RID p_voxel_gi, float p_bias) {
  253. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  254. ERR_FAIL_NULL(voxel_gi);
  255. voxel_gi->bias = p_bias;
  256. }
  257. float GI::voxel_gi_get_bias(RID p_voxel_gi) const {
  258. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  259. ERR_FAIL_NULL_V(voxel_gi, 0);
  260. return voxel_gi->bias;
  261. }
  262. void GI::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_normal_bias) {
  263. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  264. ERR_FAIL_NULL(voxel_gi);
  265. voxel_gi->normal_bias = p_normal_bias;
  266. }
  267. float GI::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
  268. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  269. ERR_FAIL_NULL_V(voxel_gi, 0);
  270. return voxel_gi->normal_bias;
  271. }
  272. void GI::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
  273. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  274. ERR_FAIL_NULL(voxel_gi);
  275. voxel_gi->interior = p_enable;
  276. }
  277. void GI::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
  278. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  279. ERR_FAIL_NULL(voxel_gi);
  280. voxel_gi->use_two_bounces = p_enable;
  281. voxel_gi->version++;
  282. }
  283. bool GI::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
  284. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  285. ERR_FAIL_NULL_V(voxel_gi, false);
  286. return voxel_gi->use_two_bounces;
  287. }
  288. bool GI::voxel_gi_is_interior(RID p_voxel_gi) const {
  289. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  290. ERR_FAIL_NULL_V(voxel_gi, false);
  291. return voxel_gi->interior;
  292. }
  293. uint32_t GI::voxel_gi_get_version(RID p_voxel_gi) const {
  294. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  295. ERR_FAIL_NULL_V(voxel_gi, 0);
  296. return voxel_gi->version;
  297. }
  298. uint32_t GI::voxel_gi_get_data_version(RID p_voxel_gi) {
  299. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  300. ERR_FAIL_NULL_V(voxel_gi, 0);
  301. return voxel_gi->data_version;
  302. }
  303. RID GI::voxel_gi_get_octree_buffer(RID p_voxel_gi) const {
  304. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  305. ERR_FAIL_NULL_V(voxel_gi, RID());
  306. return voxel_gi->octree_buffer;
  307. }
  308. RID GI::voxel_gi_get_data_buffer(RID p_voxel_gi) const {
  309. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  310. ERR_FAIL_NULL_V(voxel_gi, RID());
  311. return voxel_gi->data_buffer;
  312. }
  313. RID GI::voxel_gi_get_sdf_texture(RID p_voxel_gi) {
  314. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  315. ERR_FAIL_NULL_V(voxel_gi, RID());
  316. return voxel_gi->sdf_texture;
  317. }
  318. Dependency *GI::voxel_gi_get_dependency(RID p_voxel_gi) const {
  319. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  320. ERR_FAIL_NULL_V(voxel_gi, nullptr);
  321. return &voxel_gi->dependency;
  322. }
  323. void GI::sdfgi_reset() {
  324. sdfgi_current_version++;
  325. }
  326. ////////////////////////////////////////////////////////////////////////////////
  327. // SDFGI
  328. static RID create_clear_texture(const RD::TextureFormat &p_format, const String &p_name) {
  329. RID texture = RD::get_singleton()->texture_create(p_format, RD::TextureView());
  330. ERR_FAIL_COND_V_MSG(texture.is_null(), RID(), String("Cannot create texture: ") + p_name);
  331. RD::get_singleton()->set_resource_name(texture, p_name);
  332. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, p_format.mipmaps, 0, p_format.array_layers);
  333. return texture;
  334. }
  335. void GI::SDFGI::create(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size, GI *p_gi) {
  336. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  337. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  338. gi = p_gi;
  339. num_cascades = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_cascades(p_env);
  340. min_cell_size = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_min_cell_size(p_env);
  341. uses_occlusion = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_use_occlusion(p_env);
  342. y_scale_mode = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_y_scale(p_env);
  343. static const float y_scale[3] = { 2.0, 1.5, 1.0 };
  344. y_mult = y_scale[y_scale_mode];
  345. version = gi->sdfgi_current_version;
  346. cascades.resize(num_cascades);
  347. probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  348. solid_cell_ratio = gi->sdfgi_solid_cell_ratio;
  349. solid_cell_count = uint32_t(float(cascade_size * cascade_size * cascade_size) * solid_cell_ratio);
  350. float base_cell_size = min_cell_size;
  351. RD::TextureFormat tf_sdf;
  352. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  353. tf_sdf.width = cascade_size; // Always 64x64
  354. tf_sdf.height = cascade_size;
  355. tf_sdf.depth = cascade_size;
  356. tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
  357. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  358. {
  359. RD::TextureFormat tf_render = tf_sdf;
  360. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  361. render_albedo = create_clear_texture(tf_render, "SDFGI Render Albedo");
  362. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  363. render_emission = create_clear_texture(tf_render, "SDFGI Render Emission");
  364. render_emission_aniso = create_clear_texture(tf_render, "SDFGI Render Emission Aniso");
  365. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  366. for (int i = 0; i < 8; i++) {
  367. render_occlusion[i] = create_clear_texture(tf_render, String("SDFGI Render Occlusion ") + itos(i));
  368. }
  369. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  370. render_geom_facing = create_clear_texture(tf_render, "SDFGI Render Geometry Facing");
  371. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  372. render_sdf[0] = create_clear_texture(tf_render, "SDFGI Render SDF 0");
  373. render_sdf[1] = create_clear_texture(tf_render, "SDFGI Render SDF 1");
  374. tf_render.width /= 2;
  375. tf_render.height /= 2;
  376. tf_render.depth /= 2;
  377. render_sdf_half[0] = create_clear_texture(tf_render, "SDFGI Render SDF Half 0");
  378. render_sdf_half[1] = create_clear_texture(tf_render, "SDFGI Render SDF Half 1");
  379. }
  380. RD::TextureFormat tf_occlusion = tf_sdf;
  381. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  382. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  383. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  384. tf_occlusion.depth *= cascades.size(); //use depth for occlusion slices
  385. tf_occlusion.width *= 2; //use width for the other half
  386. RD::TextureFormat tf_light = tf_sdf;
  387. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  388. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  389. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  390. RD::TextureFormat tf_aniso0 = tf_sdf;
  391. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  392. RD::TextureFormat tf_aniso1 = tf_sdf;
  393. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  394. int passes = nearest_shift(cascade_size) - 1;
  395. //store lightprobe SH
  396. RD::TextureFormat tf_probes;
  397. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  398. tf_probes.width = probe_axis_count * probe_axis_count;
  399. tf_probes.height = probe_axis_count * SDFGI::SH_SIZE;
  400. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  401. tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  402. history_size = p_requested_history_size;
  403. RD::TextureFormat tf_probe_history = tf_probes;
  404. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  405. tf_probe_history.array_layers = history_size;
  406. RD::TextureFormat tf_probe_average = tf_probes;
  407. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  408. tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
  409. lightprobe_history_scroll = create_clear_texture(tf_probe_history, "SDFGI LightProbe History Scroll");
  410. lightprobe_average_scroll = create_clear_texture(tf_probe_average, "SDFGI LightProbe Average Scroll");
  411. {
  412. //octahedral lightprobes
  413. RD::TextureFormat tf_octprobes = tf_probes;
  414. tf_octprobes.array_layers = cascades.size() * 2;
  415. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  416. tf_octprobes.width = probe_axis_count * probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  417. tf_octprobes.height = probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  418. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  419. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  420. //lightprobe texture is an octahedral texture
  421. lightprobe_data = create_clear_texture(tf_octprobes, "SDFGI LightProbe Data");
  422. RD::TextureView tv;
  423. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  424. lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, lightprobe_data);
  425. //texture handling ambient data, to integrate with volumetric foc
  426. RD::TextureFormat tf_ambient = tf_probes;
  427. tf_ambient.array_layers = cascades.size();
  428. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  429. tf_ambient.width = probe_axis_count * probe_axis_count;
  430. tf_ambient.height = probe_axis_count;
  431. tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  432. //lightprobe texture is an octahedral texture
  433. ambient_texture = create_clear_texture(tf_ambient, "SDFGI Ambient Texture");
  434. }
  435. cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  436. occlusion_data = create_clear_texture(tf_occlusion, "SDFGI Occlusion Data");
  437. {
  438. RD::TextureView tv;
  439. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  440. occlusion_texture = RD::get_singleton()->texture_create_shared(tv, occlusion_data);
  441. }
  442. for (SDFGI::Cascade &cascade : cascades) {
  443. /* 3D Textures */
  444. cascade.sdf_tex = create_clear_texture(tf_sdf, "SDFGI Cascade SDF Texture");
  445. cascade.light_data = create_clear_texture(tf_light, "SDFGI Cascade Light Data");
  446. cascade.light_aniso_0_tex = create_clear_texture(tf_aniso0, "SDFGI Cascade Light Aniso 0 Texture");
  447. cascade.light_aniso_1_tex = create_clear_texture(tf_aniso1, "SDFGI Cascade Light Aniso 1 Texture");
  448. {
  449. RD::TextureView tv;
  450. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  451. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  452. }
  453. cascade.cell_size = base_cell_size;
  454. Vector3 world_position = p_world_position;
  455. world_position.y *= y_mult;
  456. int32_t probe_cells = cascade_size / SDFGI::PROBE_DIVISOR;
  457. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  458. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  459. cascade.position = probe_pos * probe_cells;
  460. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  461. base_cell_size *= 2.0;
  462. /* Probe History */
  463. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  464. RD::get_singleton()->set_resource_name(cascade.lightprobe_history_tex, "SDFGI Cascade LightProbe History Texture");
  465. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  466. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  467. RD::get_singleton()->set_resource_name(cascade.lightprobe_average_tex, "SDFGI Cascade LightProbe Average Texture");
  468. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  469. /* Buffers */
  470. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * solid_cell_count);
  471. cascade.solid_cell_dispatch_buffer_storage = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>());
  472. cascade.solid_cell_dispatch_buffer_call = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  473. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  474. {
  475. Vector<RD::Uniform> uniforms;
  476. {
  477. RD::Uniform u;
  478. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  479. u.binding = 1;
  480. u.append_id(render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  481. uniforms.push_back(u);
  482. }
  483. {
  484. RD::Uniform u;
  485. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  486. u.binding = 2;
  487. u.append_id(render_albedo);
  488. uniforms.push_back(u);
  489. }
  490. {
  491. RD::Uniform u;
  492. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  493. u.binding = 3;
  494. for (int j = 0; j < 8; j++) {
  495. u.append_id(render_occlusion[j]);
  496. }
  497. uniforms.push_back(u);
  498. }
  499. {
  500. RD::Uniform u;
  501. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  502. u.binding = 4;
  503. u.append_id(render_emission);
  504. uniforms.push_back(u);
  505. }
  506. {
  507. RD::Uniform u;
  508. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  509. u.binding = 5;
  510. u.append_id(render_emission_aniso);
  511. uniforms.push_back(u);
  512. }
  513. {
  514. RD::Uniform u;
  515. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  516. u.binding = 6;
  517. u.append_id(render_geom_facing);
  518. uniforms.push_back(u);
  519. }
  520. {
  521. RD::Uniform u;
  522. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  523. u.binding = 7;
  524. u.append_id(cascade.sdf_tex);
  525. uniforms.push_back(u);
  526. }
  527. {
  528. RD::Uniform u;
  529. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  530. u.binding = 8;
  531. u.append_id(occlusion_data);
  532. uniforms.push_back(u);
  533. }
  534. {
  535. RD::Uniform u;
  536. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  537. u.binding = 10;
  538. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  539. uniforms.push_back(u);
  540. }
  541. {
  542. RD::Uniform u;
  543. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  544. u.binding = 11;
  545. u.append_id(cascade.solid_cell_buffer);
  546. uniforms.push_back(u);
  547. }
  548. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_STORE), 0);
  549. }
  550. {
  551. Vector<RD::Uniform> uniforms;
  552. {
  553. RD::Uniform u;
  554. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  555. u.binding = 1;
  556. u.append_id(render_albedo);
  557. uniforms.push_back(u);
  558. }
  559. {
  560. RD::Uniform u;
  561. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  562. u.binding = 2;
  563. u.append_id(render_geom_facing);
  564. uniforms.push_back(u);
  565. }
  566. {
  567. RD::Uniform u;
  568. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  569. u.binding = 3;
  570. u.append_id(render_emission);
  571. uniforms.push_back(u);
  572. }
  573. {
  574. RD::Uniform u;
  575. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  576. u.binding = 4;
  577. u.append_id(render_emission_aniso);
  578. uniforms.push_back(u);
  579. }
  580. {
  581. RD::Uniform u;
  582. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  583. u.binding = 5;
  584. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  585. uniforms.push_back(u);
  586. }
  587. {
  588. RD::Uniform u;
  589. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  590. u.binding = 6;
  591. u.append_id(cascade.solid_cell_buffer);
  592. uniforms.push_back(u);
  593. }
  594. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL), 0);
  595. }
  596. {
  597. Vector<RD::Uniform> uniforms;
  598. {
  599. RD::Uniform u;
  600. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  601. u.binding = 1;
  602. for (int j = 0; j < 8; j++) {
  603. u.append_id(render_occlusion[j]);
  604. }
  605. uniforms.push_back(u);
  606. }
  607. {
  608. RD::Uniform u;
  609. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  610. u.binding = 2;
  611. u.append_id(occlusion_data);
  612. uniforms.push_back(u);
  613. }
  614. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  615. }
  616. }
  617. //direct light
  618. for (SDFGI::Cascade &cascade : cascades) {
  619. Vector<RD::Uniform> uniforms;
  620. {
  621. RD::Uniform u;
  622. u.binding = 1;
  623. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  624. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  625. if (j < cascades.size()) {
  626. u.append_id(cascades[j].sdf_tex);
  627. } else {
  628. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  629. }
  630. }
  631. uniforms.push_back(u);
  632. }
  633. {
  634. RD::Uniform u;
  635. u.binding = 2;
  636. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  637. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  638. uniforms.push_back(u);
  639. }
  640. {
  641. RD::Uniform u;
  642. u.binding = 3;
  643. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  644. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  645. uniforms.push_back(u);
  646. }
  647. {
  648. RD::Uniform u;
  649. u.binding = 4;
  650. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  651. u.append_id(cascade.solid_cell_buffer);
  652. uniforms.push_back(u);
  653. }
  654. {
  655. RD::Uniform u;
  656. u.binding = 5;
  657. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  658. u.append_id(cascade.light_data);
  659. uniforms.push_back(u);
  660. }
  661. {
  662. RD::Uniform u;
  663. u.binding = 6;
  664. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  665. u.append_id(cascade.light_aniso_0_tex);
  666. uniforms.push_back(u);
  667. }
  668. {
  669. RD::Uniform u;
  670. u.binding = 7;
  671. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  672. u.append_id(cascade.light_aniso_1_tex);
  673. uniforms.push_back(u);
  674. }
  675. {
  676. RD::Uniform u;
  677. u.binding = 8;
  678. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  679. u.append_id(cascades_ubo);
  680. uniforms.push_back(u);
  681. }
  682. {
  683. RD::Uniform u;
  684. u.binding = 9;
  685. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  686. u.append_id(cascade.lights_buffer);
  687. uniforms.push_back(u);
  688. }
  689. {
  690. RD::Uniform u;
  691. u.binding = 10;
  692. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  693. u.append_id(lightprobe_texture);
  694. uniforms.push_back(u);
  695. }
  696. {
  697. RD::Uniform u;
  698. u.binding = 11;
  699. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  700. u.append_id(occlusion_texture);
  701. uniforms.push_back(u);
  702. }
  703. cascade.sdf_direct_light_static_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_STATIC), 0);
  704. cascade.sdf_direct_light_dynamic_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC), 0);
  705. }
  706. //preprocess initialize uniform set
  707. {
  708. Vector<RD::Uniform> uniforms;
  709. {
  710. RD::Uniform u;
  711. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  712. u.binding = 1;
  713. u.append_id(render_albedo);
  714. uniforms.push_back(u);
  715. }
  716. {
  717. RD::Uniform u;
  718. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  719. u.binding = 2;
  720. u.append_id(render_sdf[0]);
  721. uniforms.push_back(u);
  722. }
  723. sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  724. }
  725. {
  726. Vector<RD::Uniform> uniforms;
  727. {
  728. RD::Uniform u;
  729. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  730. u.binding = 1;
  731. u.append_id(render_albedo);
  732. uniforms.push_back(u);
  733. }
  734. {
  735. RD::Uniform u;
  736. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  737. u.binding = 2;
  738. u.append_id(render_sdf_half[0]);
  739. uniforms.push_back(u);
  740. }
  741. sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  742. }
  743. //jump flood uniform set
  744. {
  745. Vector<RD::Uniform> uniforms;
  746. {
  747. RD::Uniform u;
  748. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  749. u.binding = 1;
  750. u.append_id(render_sdf[0]);
  751. uniforms.push_back(u);
  752. }
  753. {
  754. RD::Uniform u;
  755. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  756. u.binding = 2;
  757. u.append_id(render_sdf[1]);
  758. uniforms.push_back(u);
  759. }
  760. jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  761. RID aux0 = uniforms.write[0].get_id(0);
  762. RID aux1 = uniforms.write[1].get_id(0);
  763. uniforms.write[0].set_id(0, aux1);
  764. uniforms.write[1].set_id(0, aux0);
  765. jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  766. }
  767. //jump flood half uniform set
  768. {
  769. Vector<RD::Uniform> uniforms;
  770. {
  771. RD::Uniform u;
  772. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  773. u.binding = 1;
  774. u.append_id(render_sdf_half[0]);
  775. uniforms.push_back(u);
  776. }
  777. {
  778. RD::Uniform u;
  779. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  780. u.binding = 2;
  781. u.append_id(render_sdf_half[1]);
  782. uniforms.push_back(u);
  783. }
  784. jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  785. RID aux0 = uniforms.write[0].get_id(0);
  786. RID aux1 = uniforms.write[1].get_id(0);
  787. uniforms.write[0].set_id(0, aux1);
  788. uniforms.write[1].set_id(0, aux0);
  789. jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  790. }
  791. //upscale half size sdf
  792. {
  793. Vector<RD::Uniform> uniforms;
  794. {
  795. RD::Uniform u;
  796. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  797. u.binding = 1;
  798. u.append_id(render_albedo);
  799. uniforms.push_back(u);
  800. }
  801. {
  802. RD::Uniform u;
  803. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  804. u.binding = 2;
  805. u.append_id(render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  806. uniforms.push_back(u);
  807. }
  808. {
  809. RD::Uniform u;
  810. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  811. u.binding = 3;
  812. u.append_id(render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  813. uniforms.push_back(u);
  814. }
  815. upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  816. sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  817. }
  818. //occlusion uniform set
  819. {
  820. Vector<RD::Uniform> uniforms;
  821. {
  822. RD::Uniform u;
  823. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  824. u.binding = 1;
  825. u.append_id(render_albedo);
  826. uniforms.push_back(u);
  827. }
  828. {
  829. RD::Uniform u;
  830. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  831. u.binding = 2;
  832. for (int i = 0; i < 8; i++) {
  833. u.append_id(render_occlusion[i]);
  834. }
  835. uniforms.push_back(u);
  836. }
  837. {
  838. RD::Uniform u;
  839. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  840. u.binding = 3;
  841. u.append_id(render_geom_facing);
  842. uniforms.push_back(u);
  843. }
  844. occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_OCCLUSION), 0);
  845. }
  846. for (uint32_t i = 0; i < cascades.size(); i++) {
  847. //integrate uniform
  848. Vector<RD::Uniform> uniforms;
  849. {
  850. RD::Uniform u;
  851. u.binding = 1;
  852. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  853. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  854. if (j < cascades.size()) {
  855. u.append_id(cascades[j].sdf_tex);
  856. } else {
  857. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  858. }
  859. }
  860. uniforms.push_back(u);
  861. }
  862. {
  863. RD::Uniform u;
  864. u.binding = 2;
  865. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  866. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  867. if (j < cascades.size()) {
  868. u.append_id(cascades[j].light_tex);
  869. } else {
  870. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  871. }
  872. }
  873. uniforms.push_back(u);
  874. }
  875. {
  876. RD::Uniform u;
  877. u.binding = 3;
  878. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  879. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  880. if (j < cascades.size()) {
  881. u.append_id(cascades[j].light_aniso_0_tex);
  882. } else {
  883. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  884. }
  885. }
  886. uniforms.push_back(u);
  887. }
  888. {
  889. RD::Uniform u;
  890. u.binding = 4;
  891. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  892. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  893. if (j < cascades.size()) {
  894. u.append_id(cascades[j].light_aniso_1_tex);
  895. } else {
  896. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  897. }
  898. }
  899. uniforms.push_back(u);
  900. }
  901. {
  902. RD::Uniform u;
  903. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  904. u.binding = 6;
  905. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  906. uniforms.push_back(u);
  907. }
  908. {
  909. RD::Uniform u;
  910. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  911. u.binding = 7;
  912. u.append_id(cascades_ubo);
  913. uniforms.push_back(u);
  914. }
  915. {
  916. RD::Uniform u;
  917. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  918. u.binding = 8;
  919. u.append_id(lightprobe_data);
  920. uniforms.push_back(u);
  921. }
  922. {
  923. RD::Uniform u;
  924. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  925. u.binding = 9;
  926. u.append_id(cascades[i].lightprobe_history_tex);
  927. uniforms.push_back(u);
  928. }
  929. {
  930. RD::Uniform u;
  931. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  932. u.binding = 10;
  933. u.append_id(cascades[i].lightprobe_average_tex);
  934. uniforms.push_back(u);
  935. }
  936. {
  937. RD::Uniform u;
  938. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  939. u.binding = 11;
  940. u.append_id(lightprobe_history_scroll);
  941. uniforms.push_back(u);
  942. }
  943. {
  944. RD::Uniform u;
  945. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  946. u.binding = 12;
  947. u.append_id(lightprobe_average_scroll);
  948. uniforms.push_back(u);
  949. }
  950. {
  951. RD::Uniform u;
  952. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  953. u.binding = 13;
  954. RID parent_average;
  955. if (cascades.size() == 1) {
  956. // If there is only one SDFGI cascade, we can't use the previous cascade for blending.
  957. parent_average = cascades[i].lightprobe_average_tex;
  958. } else if (i < cascades.size() - 1) {
  959. parent_average = cascades[i + 1].lightprobe_average_tex;
  960. } else {
  961. parent_average = cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  962. }
  963. u.append_id(parent_average);
  964. uniforms.push_back(u);
  965. }
  966. {
  967. RD::Uniform u;
  968. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  969. u.binding = 14;
  970. u.append_id(ambient_texture);
  971. uniforms.push_back(u);
  972. }
  973. cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 0);
  974. }
  975. bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
  976. energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
  977. normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
  978. probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
  979. reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
  980. }
  981. void GI::SDFGI::free_data() {
  982. // we don't free things here, we handle SDFGI differently at the moment destructing the object when it needs to change.
  983. }
  984. GI::SDFGI::~SDFGI() {
  985. for (const SDFGI::Cascade &c : cascades) {
  986. RD::get_singleton()->free_rid(c.light_data);
  987. RD::get_singleton()->free_rid(c.light_aniso_0_tex);
  988. RD::get_singleton()->free_rid(c.light_aniso_1_tex);
  989. RD::get_singleton()->free_rid(c.sdf_tex);
  990. RD::get_singleton()->free_rid(c.solid_cell_dispatch_buffer_storage);
  991. RD::get_singleton()->free_rid(c.solid_cell_dispatch_buffer_call);
  992. RD::get_singleton()->free_rid(c.solid_cell_buffer);
  993. RD::get_singleton()->free_rid(c.lightprobe_history_tex);
  994. RD::get_singleton()->free_rid(c.lightprobe_average_tex);
  995. RD::get_singleton()->free_rid(c.lights_buffer);
  996. }
  997. RD::get_singleton()->free_rid(render_albedo);
  998. RD::get_singleton()->free_rid(render_emission);
  999. RD::get_singleton()->free_rid(render_emission_aniso);
  1000. RD::get_singleton()->free_rid(render_sdf[0]);
  1001. RD::get_singleton()->free_rid(render_sdf[1]);
  1002. RD::get_singleton()->free_rid(render_sdf_half[0]);
  1003. RD::get_singleton()->free_rid(render_sdf_half[1]);
  1004. for (int i = 0; i < 8; i++) {
  1005. RD::get_singleton()->free_rid(render_occlusion[i]);
  1006. }
  1007. RD::get_singleton()->free_rid(render_geom_facing);
  1008. RD::get_singleton()->free_rid(lightprobe_data);
  1009. RD::get_singleton()->free_rid(lightprobe_history_scroll);
  1010. RD::get_singleton()->free_rid(lightprobe_average_scroll);
  1011. RD::get_singleton()->free_rid(occlusion_data);
  1012. RD::get_singleton()->free_rid(ambient_texture);
  1013. RD::get_singleton()->free_rid(cascades_ubo);
  1014. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  1015. if (RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  1016. RD::get_singleton()->free_rid(debug_uniform_set[v]);
  1017. }
  1018. debug_uniform_set[v] = RID();
  1019. }
  1020. if (RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  1021. RD::get_singleton()->free_rid(debug_probes_uniform_set);
  1022. }
  1023. debug_probes_uniform_set = RID();
  1024. if (debug_probes_scene_data_ubo.is_valid()) {
  1025. RD::get_singleton()->free_rid(debug_probes_scene_data_ubo);
  1026. debug_probes_scene_data_ubo = RID();
  1027. }
  1028. }
  1029. void GI::SDFGI::update(RID p_env, const Vector3 &p_world_position) {
  1030. bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
  1031. energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
  1032. normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
  1033. probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
  1034. reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
  1035. int32_t drag_margin = (cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  1036. for (SDFGI::Cascade &cascade : cascades) {
  1037. cascade.dirty_regions = Vector3i();
  1038. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  1039. probe_half_size = Vector3(0, 0, 0);
  1040. Vector3 world_position = p_world_position;
  1041. world_position.y *= y_mult;
  1042. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  1043. for (int j = 0; j < 3; j++) {
  1044. if (pos_in_cascade[j] < cascade.position[j]) {
  1045. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  1046. cascade.position[j] -= drag_margin * 2;
  1047. cascade.dirty_regions[j] += drag_margin * 2;
  1048. }
  1049. } else if (pos_in_cascade[j] > cascade.position[j]) {
  1050. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  1051. cascade.position[j] += drag_margin * 2;
  1052. cascade.dirty_regions[j] -= drag_margin * 2;
  1053. }
  1054. }
  1055. if (cascade.dirty_regions[j] == 0) {
  1056. continue; // not dirty
  1057. } else if (uint32_t(Math::abs(cascade.dirty_regions[j])) >= cascade_size) {
  1058. //moved too much, just redraw everything (make all dirty)
  1059. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1060. break;
  1061. }
  1062. }
  1063. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1064. //see how much the total dirty volume represents from the total volume
  1065. uint32_t total_volume = cascade_size * cascade_size * cascade_size;
  1066. uint32_t safe_volume = 1;
  1067. for (int j = 0; j < 3; j++) {
  1068. safe_volume *= cascade_size - Math::abs(cascade.dirty_regions[j]);
  1069. }
  1070. uint32_t dirty_volume = total_volume - safe_volume;
  1071. if (dirty_volume > (safe_volume / 2)) {
  1072. //more than half the volume is dirty, make all dirty so its only rendered once
  1073. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1074. }
  1075. }
  1076. }
  1077. }
  1078. void GI::SDFGI::update_light() {
  1079. RD::get_singleton()->draw_command_begin_label("SDFGI Update Dynamic Light");
  1080. for (uint32_t i = 0; i < cascades.size(); i++) {
  1081. RD::get_singleton()->buffer_copy(cascades[i].solid_cell_dispatch_buffer_storage, cascades[i].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  1082. }
  1083. /* Update dynamic light */
  1084. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1085. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
  1086. SDFGIShader::DirectLightPushConstant push_constant;
  1087. push_constant.grid_size[0] = cascade_size;
  1088. push_constant.grid_size[1] = cascade_size;
  1089. push_constant.grid_size[2] = cascade_size;
  1090. push_constant.max_cascades = cascades.size();
  1091. push_constant.probe_axis_size = probe_axis_count;
  1092. push_constant.bounce_feedback = bounce_feedback;
  1093. push_constant.y_mult = y_mult;
  1094. push_constant.use_occlusion = uses_occlusion;
  1095. for (uint32_t i = 0; i < cascades.size(); i++) {
  1096. SDFGI::Cascade &cascade = cascades[i];
  1097. push_constant.light_count = cascade_dynamic_light_count[i];
  1098. push_constant.cascade = i;
  1099. if (cascades[i].all_dynamic_lights_dirty || gi->sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) {
  1100. push_constant.process_offset = 0;
  1101. push_constant.process_increment = 1;
  1102. } else {
  1103. static const uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = {
  1104. 1, 2, 4, 8, 16
  1105. };
  1106. uint32_t frames_to_update = frames_to_update_table[gi->sdfgi_frames_to_update_light];
  1107. push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update;
  1108. push_constant.process_increment = frames_to_update;
  1109. }
  1110. cascades[i].all_dynamic_lights_dirty = false;
  1111. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_dynamic_uniform_set, 0);
  1112. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  1113. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer_call, 0);
  1114. }
  1115. RD::get_singleton()->compute_list_end();
  1116. RD::get_singleton()->draw_command_end_label();
  1117. }
  1118. void GI::SDFGI::update_probes(RID p_env, SkyRD::Sky *p_sky) {
  1119. RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes");
  1120. SDFGIShader::IntegratePushConstant push_constant;
  1121. push_constant.grid_size[1] = cascade_size;
  1122. push_constant.grid_size[2] = cascade_size;
  1123. push_constant.grid_size[0] = cascade_size;
  1124. push_constant.max_cascades = cascades.size();
  1125. push_constant.probe_axis_size = probe_axis_count;
  1126. push_constant.history_index = render_pass % history_size;
  1127. push_constant.history_size = history_size;
  1128. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1129. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1130. push_constant.ray_bias = probe_bias;
  1131. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1132. push_constant.image_size[1] = probe_axis_count;
  1133. push_constant.store_ambient_texture = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_enabled(p_env);
  1134. RID sky_uniform_set = gi->sdfgi_shader.integrate_default_sky_uniform_set;
  1135. push_constant.sky_flags = 0;
  1136. push_constant.y_mult = y_mult;
  1137. if (reads_sky && p_env.is_valid()) {
  1138. push_constant.sky_energy = RendererSceneRenderRD::get_singleton()->environment_get_bg_energy_multiplier(p_env);
  1139. if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_CLEAR_COLOR) {
  1140. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_COLOR;
  1141. Color c = RSG::texture_storage->get_default_clear_color().srgb_to_linear();
  1142. push_constant.sky_color_or_orientation[0] = c.r;
  1143. push_constant.sky_color_or_orientation[1] = c.g;
  1144. push_constant.sky_color_or_orientation[2] = c.b;
  1145. } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_COLOR) {
  1146. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_COLOR;
  1147. Color c = RendererSceneRenderRD::get_singleton()->environment_get_bg_color(p_env);
  1148. push_constant.sky_color_or_orientation[0] = c.r;
  1149. push_constant.sky_color_or_orientation[1] = c.g;
  1150. push_constant.sky_color_or_orientation[2] = c.b;
  1151. } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_SKY) {
  1152. if (p_sky && p_sky->radiance.is_valid()) {
  1153. if (integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(integrate_sky_uniform_set)) {
  1154. Vector<RD::Uniform> uniforms;
  1155. {
  1156. RD::Uniform u;
  1157. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1158. u.binding = 0;
  1159. u.append_id(p_sky->radiance);
  1160. uniforms.push_back(u);
  1161. }
  1162. {
  1163. RD::Uniform u;
  1164. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1165. u.binding = 1;
  1166. u.append_id(RendererRD::MaterialStorage::get_singleton()->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1167. uniforms.push_back(u);
  1168. }
  1169. integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 1);
  1170. }
  1171. sky_uniform_set = integrate_sky_uniform_set;
  1172. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_SKY;
  1173. // Encode sky orientation as quaternion in existing push constants.
  1174. const Basis sky_basis = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_env);
  1175. const Quaternion sky_quaternion = sky_basis.get_quaternion().inverse();
  1176. push_constant.sky_color_or_orientation[0] = sky_quaternion.x;
  1177. push_constant.sky_color_or_orientation[1] = sky_quaternion.y;
  1178. push_constant.sky_color_or_orientation[2] = sky_quaternion.z;
  1179. // Ideally we would reconstruct the largest component for least error, but sky contribution to GI is low frequency so just needs to get the idea across.
  1180. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_ORIENTATION_SIGN * (sky_quaternion.w < 0.0 ? 0 : 1);
  1181. }
  1182. }
  1183. }
  1184. render_pass++;
  1185. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1186. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_PROCESS]);
  1187. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1188. for (uint32_t i = 0; i < cascades.size(); i++) {
  1189. push_constant.cascade = i;
  1190. push_constant.world_offset[0] = cascades[i].position.x / probe_divisor;
  1191. push_constant.world_offset[1] = cascades[i].position.y / probe_divisor;
  1192. push_constant.world_offset[2] = cascades[i].position.z / probe_divisor;
  1193. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1194. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1195. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1196. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1197. }
  1198. RD::get_singleton()->compute_list_end();
  1199. RD::get_singleton()->draw_command_end_label();
  1200. }
  1201. void GI::SDFGI::store_probes() {
  1202. RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes");
  1203. SDFGIShader::IntegratePushConstant push_constant;
  1204. push_constant.grid_size[1] = cascade_size;
  1205. push_constant.grid_size[2] = cascade_size;
  1206. push_constant.grid_size[0] = cascade_size;
  1207. push_constant.max_cascades = cascades.size();
  1208. push_constant.probe_axis_size = probe_axis_count;
  1209. push_constant.history_index = render_pass % history_size;
  1210. push_constant.history_size = history_size;
  1211. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1212. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1213. push_constant.ray_bias = probe_bias;
  1214. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1215. push_constant.image_size[1] = probe_axis_count;
  1216. push_constant.store_ambient_texture = false;
  1217. push_constant.sky_flags = 0;
  1218. push_constant.y_mult = y_mult;
  1219. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1220. RENDER_TIMESTAMP("Average SDFGI Probes");
  1221. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1222. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
  1223. //convert to octahedral to store
  1224. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1225. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1226. for (uint32_t i = 0; i < cascades.size(); i++) {
  1227. push_constant.cascade = i;
  1228. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1229. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1230. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1231. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1232. }
  1233. RD::get_singleton()->compute_list_end();
  1234. RD::get_singleton()->draw_command_end_label();
  1235. }
  1236. int GI::SDFGI::get_pending_region_data(int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  1237. int dirty_count = 0;
  1238. for (uint32_t i = 0; i < cascades.size(); i++) {
  1239. const SDFGI::Cascade &c = cascades[i];
  1240. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  1241. if (dirty_count == p_region) {
  1242. r_local_offset = Vector3i();
  1243. r_local_size = Vector3i(1, 1, 1) * cascade_size;
  1244. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1245. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1246. return i;
  1247. }
  1248. dirty_count++;
  1249. } else {
  1250. for (int j = 0; j < 3; j++) {
  1251. if (c.dirty_regions[j] != 0) {
  1252. if (dirty_count == p_region) {
  1253. Vector3i from = Vector3i(0, 0, 0);
  1254. Vector3i to = Vector3i(1, 1, 1) * cascade_size;
  1255. if (c.dirty_regions[j] > 0) {
  1256. //fill from the beginning
  1257. to[j] = c.dirty_regions[j];
  1258. } else {
  1259. //fill from the end
  1260. from[j] = to[j] + c.dirty_regions[j];
  1261. }
  1262. for (int k = 0; k < j; k++) {
  1263. // "chip" away previous regions to avoid re-voxelizing the same thing
  1264. if (c.dirty_regions[k] > 0) {
  1265. from[k] += c.dirty_regions[k];
  1266. } else if (c.dirty_regions[k] < 0) {
  1267. to[k] += c.dirty_regions[k];
  1268. }
  1269. }
  1270. r_local_offset = from;
  1271. r_local_size = to - from;
  1272. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1273. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1274. return i;
  1275. }
  1276. dirty_count++;
  1277. }
  1278. }
  1279. }
  1280. }
  1281. return -1;
  1282. }
  1283. void GI::SDFGI::update_cascades() {
  1284. //update cascades
  1285. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  1286. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1287. for (uint32_t i = 0; i < cascades.size(); i++) {
  1288. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1289. cascade_data[i].offset[0] = pos.x;
  1290. cascade_data[i].offset[1] = pos.y;
  1291. cascade_data[i].offset[2] = pos.z;
  1292. cascade_data[i].to_cell = 1.0 / cascades[i].cell_size;
  1293. cascade_data[i].probe_offset[0] = cascades[i].position.x / probe_divisor;
  1294. cascade_data[i].probe_offset[1] = cascades[i].position.y / probe_divisor;
  1295. cascade_data[i].probe_offset[2] = cascades[i].position.z / probe_divisor;
  1296. cascade_data[i].pad = 0;
  1297. }
  1298. RD::get_singleton()->buffer_update(cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data);
  1299. }
  1300. void GI::SDFGI::debug_draw(uint32_t p_view_count, const Projection *p_projections, const Transform3D &p_transform, int p_width, int p_height, RID p_render_target, RID p_texture, const Vector<RID> &p_texture_views) {
  1301. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1302. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1303. RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
  1304. for (uint32_t v = 0; v < p_view_count; v++) {
  1305. if (!debug_uniform_set[v].is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  1306. Vector<RD::Uniform> uniforms;
  1307. {
  1308. RD::Uniform u;
  1309. u.binding = 1;
  1310. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1311. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1312. if (i < cascades.size()) {
  1313. u.append_id(cascades[i].sdf_tex);
  1314. } else {
  1315. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1316. }
  1317. }
  1318. uniforms.push_back(u);
  1319. }
  1320. {
  1321. RD::Uniform u;
  1322. u.binding = 2;
  1323. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1324. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1325. if (i < cascades.size()) {
  1326. u.append_id(cascades[i].light_tex);
  1327. } else {
  1328. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1329. }
  1330. }
  1331. uniforms.push_back(u);
  1332. }
  1333. {
  1334. RD::Uniform u;
  1335. u.binding = 3;
  1336. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1337. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1338. if (i < cascades.size()) {
  1339. u.append_id(cascades[i].light_aniso_0_tex);
  1340. } else {
  1341. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1342. }
  1343. }
  1344. uniforms.push_back(u);
  1345. }
  1346. {
  1347. RD::Uniform u;
  1348. u.binding = 4;
  1349. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1350. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1351. if (i < cascades.size()) {
  1352. u.append_id(cascades[i].light_aniso_1_tex);
  1353. } else {
  1354. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1355. }
  1356. }
  1357. uniforms.push_back(u);
  1358. }
  1359. {
  1360. RD::Uniform u;
  1361. u.binding = 5;
  1362. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1363. u.append_id(occlusion_texture);
  1364. uniforms.push_back(u);
  1365. }
  1366. {
  1367. RD::Uniform u;
  1368. u.binding = 8;
  1369. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1370. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1371. uniforms.push_back(u);
  1372. }
  1373. {
  1374. RD::Uniform u;
  1375. u.binding = 9;
  1376. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1377. u.append_id(cascades_ubo);
  1378. uniforms.push_back(u);
  1379. }
  1380. {
  1381. RD::Uniform u;
  1382. u.binding = 10;
  1383. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1384. u.append_id(p_texture_views[v]);
  1385. uniforms.push_back(u);
  1386. }
  1387. {
  1388. RD::Uniform u;
  1389. u.binding = 11;
  1390. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1391. u.append_id(lightprobe_texture);
  1392. uniforms.push_back(u);
  1393. }
  1394. debug_uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_shader_version, 0);
  1395. }
  1396. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1397. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.debug_pipeline);
  1398. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, debug_uniform_set[v], 0);
  1399. SDFGIShader::DebugPushConstant push_constant;
  1400. push_constant.grid_size[0] = cascade_size;
  1401. push_constant.grid_size[1] = cascade_size;
  1402. push_constant.grid_size[2] = cascade_size;
  1403. push_constant.max_cascades = cascades.size();
  1404. push_constant.screen_size[0] = p_width;
  1405. push_constant.screen_size[1] = p_height;
  1406. push_constant.y_mult = y_mult;
  1407. push_constant.z_near = -p_projections[v].get_z_near();
  1408. for (int i = 0; i < 3; i++) {
  1409. for (int j = 0; j < 3; j++) {
  1410. push_constant.cam_basis[i][j] = p_transform.basis.rows[j][i];
  1411. }
  1412. }
  1413. push_constant.cam_origin[0] = p_transform.origin[0];
  1414. push_constant.cam_origin[1] = p_transform.origin[1];
  1415. push_constant.cam_origin[2] = p_transform.origin[2];
  1416. // need to properly unproject for asymmetric projection matrices in stereo..
  1417. Projection inv_projection = p_projections[v].inverse();
  1418. for (int i = 0; i < 4; i++) {
  1419. for (int j = 0; j < 3; j++) {
  1420. push_constant.inv_projection[j][i] = inv_projection.columns[i][j];
  1421. }
  1422. }
  1423. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DebugPushConstant));
  1424. RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_width, p_height, 1);
  1425. RD::get_singleton()->compute_list_end();
  1426. }
  1427. Size2i rtsize = texture_storage->render_target_get_size(p_render_target);
  1428. copy_effects->copy_to_fb_rect(p_texture, texture_storage->render_target_get_rd_framebuffer(p_render_target), Rect2i(Point2i(), rtsize), true, false, false, false, RID(), p_view_count > 1);
  1429. }
  1430. void GI::SDFGI::debug_probes(RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms) {
  1431. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1432. // setup scene data
  1433. {
  1434. SDFGIShader::DebugProbesSceneData scene_data;
  1435. if (debug_probes_scene_data_ubo.is_null()) {
  1436. debug_probes_scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIShader::DebugProbesSceneData));
  1437. }
  1438. for (uint32_t v = 0; v < p_view_count; v++) {
  1439. RendererRD::MaterialStorage::store_camera(p_camera_with_transforms[v], scene_data.projection[v]);
  1440. }
  1441. RD::get_singleton()->buffer_update(debug_probes_scene_data_ubo, 0, sizeof(SDFGIShader::DebugProbesSceneData), &scene_data);
  1442. }
  1443. // setup push constant
  1444. SDFGIShader::DebugProbesPushConstant push_constant;
  1445. //gen spheres from strips
  1446. uint32_t band_points = 16;
  1447. push_constant.band_power = 4;
  1448. push_constant.sections_in_band = ((band_points / 2) - 1);
  1449. push_constant.band_mask = band_points - 2;
  1450. push_constant.section_arc = Math::TAU / float(push_constant.sections_in_band);
  1451. push_constant.y_mult = y_mult;
  1452. uint32_t total_points = push_constant.sections_in_band * band_points;
  1453. uint32_t total_probes = probe_axis_count * probe_axis_count * probe_axis_count;
  1454. push_constant.grid_size[0] = cascade_size;
  1455. push_constant.grid_size[1] = cascade_size;
  1456. push_constant.grid_size[2] = cascade_size;
  1457. push_constant.cascade = 0;
  1458. push_constant.probe_axis_size = probe_axis_count;
  1459. if (!debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  1460. Vector<RD::Uniform> uniforms;
  1461. {
  1462. RD::Uniform u;
  1463. u.binding = 1;
  1464. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1465. u.append_id(cascades_ubo);
  1466. uniforms.push_back(u);
  1467. }
  1468. {
  1469. RD::Uniform u;
  1470. u.binding = 2;
  1471. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1472. u.append_id(lightprobe_texture);
  1473. uniforms.push_back(u);
  1474. }
  1475. {
  1476. RD::Uniform u;
  1477. u.binding = 3;
  1478. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1479. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1480. uniforms.push_back(u);
  1481. }
  1482. {
  1483. RD::Uniform u;
  1484. u.binding = 4;
  1485. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1486. u.append_id(occlusion_texture);
  1487. uniforms.push_back(u);
  1488. }
  1489. {
  1490. RD::Uniform u;
  1491. u.binding = 5;
  1492. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1493. u.append_id(debug_probes_scene_data_ubo);
  1494. uniforms.push_back(u);
  1495. }
  1496. debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_probes.version_get_shader(gi->sdfgi_shader.debug_probes_shader, 0), 0);
  1497. }
  1498. SDFGIShader::ProbeDebugMode mode = p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_PROBES_MULTIVIEW : SDFGIShader::PROBE_DEBUG_PROBES;
  1499. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer);
  1500. RD::get_singleton()->draw_command_begin_label("Debug SDFGI");
  1501. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[mode].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1502. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1503. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1504. RD::get_singleton()->draw_list_draw(draw_list, false, total_probes, total_points);
  1505. if (gi->sdfgi_debug_probe_dir != Vector3()) {
  1506. uint32_t cascade = 0;
  1507. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[cascade].position)) * cascades[cascade].cell_size * Vector3(1.0, 1.0 / y_mult, 1.0);
  1508. Vector3 probe_size = cascades[cascade].cell_size * (cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / y_mult, 1.0);
  1509. Vector3 ray_from = gi->sdfgi_debug_probe_pos;
  1510. Vector3 ray_to = gi->sdfgi_debug_probe_pos + gi->sdfgi_debug_probe_dir * cascades[cascade].cell_size * Math::sqrt(3.0) * cascade_size;
  1511. float sphere_radius = 0.2;
  1512. float closest_dist = 1e20;
  1513. gi->sdfgi_debug_probe_enabled = false;
  1514. Vector3i probe_from = cascades[cascade].position / (cascade_size / SDFGI::PROBE_DIVISOR);
  1515. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  1516. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  1517. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  1518. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  1519. Vector3 res;
  1520. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  1521. float d = ray_from.distance_to(res);
  1522. if (d < closest_dist) {
  1523. closest_dist = d;
  1524. gi->sdfgi_debug_probe_enabled = true;
  1525. gi->sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  1526. }
  1527. }
  1528. }
  1529. }
  1530. }
  1531. gi->sdfgi_debug_probe_dir = Vector3();
  1532. }
  1533. if (gi->sdfgi_debug_probe_enabled) {
  1534. uint32_t cascade = 0;
  1535. uint32_t probe_cells = (cascade_size / SDFGI::PROBE_DIVISOR);
  1536. Vector3i probe_from = cascades[cascade].position / probe_cells;
  1537. Vector3i ofs = gi->sdfgi_debug_probe_index - probe_from;
  1538. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  1539. return;
  1540. }
  1541. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  1542. return;
  1543. }
  1544. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  1545. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  1546. push_constant.probe_debug_index = index;
  1547. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  1548. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_VISIBILITY_MULTIVIEW : SDFGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1549. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1550. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1551. RD::get_singleton()->draw_list_draw(draw_list, false, cell_count, total_points);
  1552. }
  1553. RD::get_singleton()->draw_command_end_label();
  1554. RD::get_singleton()->draw_list_end();
  1555. }
  1556. void GI::SDFGI::pre_process_gi(const Transform3D &p_transform, RenderDataRD *p_render_data) {
  1557. if (p_render_data->sdfgi_update_data == nullptr) {
  1558. return;
  1559. }
  1560. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1561. /* Update general SDFGI Buffer */
  1562. SDFGIData sdfgi_data;
  1563. sdfgi_data.grid_size[0] = cascade_size;
  1564. sdfgi_data.grid_size[1] = cascade_size;
  1565. sdfgi_data.grid_size[2] = cascade_size;
  1566. sdfgi_data.max_cascades = cascades.size();
  1567. sdfgi_data.probe_axis_size = probe_axis_count;
  1568. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1569. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1570. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1571. float csize = cascade_size;
  1572. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1573. sdfgi_data.use_occlusion = uses_occlusion;
  1574. //sdfgi_data.energy = energy;
  1575. sdfgi_data.y_mult = y_mult;
  1576. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1577. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1578. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1579. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1580. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1581. sdfgi_data.normal_bias = (normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1582. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1583. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1584. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1585. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1586. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1587. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1588. sdfgi_data.energy = energy;
  1589. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1590. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1591. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1592. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1593. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1594. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1595. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1596. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1597. SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1598. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1599. Vector3 cam_origin = p_transform.origin;
  1600. cam_origin.y *= y_mult;
  1601. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1602. c.position[0] = pos.x;
  1603. c.position[1] = pos.y;
  1604. c.position[2] = pos.z;
  1605. c.to_probe = 1.0 / (float(cascade_size) * cascades[i].cell_size / float(probe_axis_count - 1));
  1606. Vector3i probe_ofs = cascades[i].position / probe_divisor;
  1607. c.probe_world_offset[0] = probe_ofs.x;
  1608. c.probe_world_offset[1] = probe_ofs.y;
  1609. c.probe_world_offset[2] = probe_ofs.z;
  1610. c.to_cell = 1.0 / cascades[i].cell_size;
  1611. c.exposure_normalization = 1.0;
  1612. if (p_render_data->camera_attributes.is_valid()) {
  1613. float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1614. c.exposure_normalization = exposure_normalization / cascades[i].baked_exposure_normalization;
  1615. }
  1616. }
  1617. RD::get_singleton()->buffer_update(gi->sdfgi_ubo, 0, sizeof(SDFGIData), &sdfgi_data);
  1618. /* Update dynamic lights in SDFGI cascades */
  1619. for (uint32_t i = 0; i < cascades.size(); i++) {
  1620. SDFGI::Cascade &cascade = cascades[i];
  1621. SDFGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1622. uint32_t idx = 0;
  1623. for (uint32_t j = 0; j < (uint32_t)p_render_data->sdfgi_update_data->directional_lights->size(); j++) {
  1624. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1625. break;
  1626. }
  1627. RID light_instance = p_render_data->sdfgi_update_data->directional_lights->get(j);
  1628. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  1629. RID light = light_storage->light_instance_get_base_light(light_instance);
  1630. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  1631. if (RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  1632. continue;
  1633. }
  1634. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  1635. dir.y *= y_mult;
  1636. dir.normalize();
  1637. lights[idx].direction[0] = dir.x;
  1638. lights[idx].direction[1] = dir.y;
  1639. lights[idx].direction[2] = dir.z;
  1640. Color color = RSG::light_storage->light_get_color(light);
  1641. color = color.srgb_to_linear();
  1642. lights[idx].color[0] = color.r;
  1643. lights[idx].color[1] = color.g;
  1644. lights[idx].color[2] = color.b;
  1645. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1646. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1647. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  1648. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  1649. }
  1650. if (p_render_data->camera_attributes.is_valid()) {
  1651. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1652. }
  1653. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  1654. idx++;
  1655. }
  1656. AABB cascade_aabb;
  1657. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1658. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cascade.cell_size;
  1659. for (uint32_t j = 0; j < p_render_data->sdfgi_update_data->positional_light_count; j++) {
  1660. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1661. break;
  1662. }
  1663. RID light_instance = p_render_data->sdfgi_update_data->positional_light_instances[j];
  1664. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  1665. RID light = light_storage->light_instance_get_base_light(light_instance);
  1666. AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
  1667. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  1668. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
  1669. if (i > max_sdfgi_cascade) {
  1670. continue;
  1671. }
  1672. if (!cascade_aabb.intersects(light_aabb)) {
  1673. continue;
  1674. }
  1675. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  1676. //faster to not do this here
  1677. //dir.y *= y_mult;
  1678. //dir.normalize();
  1679. lights[idx].direction[0] = dir.x;
  1680. lights[idx].direction[1] = dir.y;
  1681. lights[idx].direction[2] = dir.z;
  1682. Vector3 pos = light_transform.origin;
  1683. pos.y *= y_mult;
  1684. lights[idx].position[0] = pos.x;
  1685. lights[idx].position[1] = pos.y;
  1686. lights[idx].position[2] = pos.z;
  1687. Color color = RSG::light_storage->light_get_color(light);
  1688. color = color.srgb_to_linear();
  1689. lights[idx].color[0] = color.r;
  1690. lights[idx].color[1] = color.g;
  1691. lights[idx].color[2] = color.b;
  1692. lights[idx].type = RSG::light_storage->light_get_type(light);
  1693. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1694. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  1695. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  1696. // Convert from Luminous Power to Luminous Intensity
  1697. if (lights[idx].type == RS::LIGHT_OMNI) {
  1698. lights[idx].energy *= 1.0 / (Math::PI * 4.0);
  1699. } else if (lights[idx].type == RS::LIGHT_SPOT) {
  1700. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  1701. // We make this assumption to keep them easy to control.
  1702. lights[idx].energy *= 1.0 / Math::PI;
  1703. }
  1704. }
  1705. if (p_render_data->camera_attributes.is_valid()) {
  1706. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1707. }
  1708. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  1709. lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  1710. lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
  1711. lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  1712. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1713. idx++;
  1714. }
  1715. if (idx > 0) {
  1716. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
  1717. }
  1718. cascade_dynamic_light_count[i] = idx;
  1719. }
  1720. }
  1721. void GI::SDFGI::render_region(Ref<RenderSceneBuffersRD> p_render_buffers, int p_region, const PagedArray<RenderGeometryInstance *> &p_instances, float p_exposure_normalization) {
  1722. //print_line("rendering region " + itos(p_region));
  1723. ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
  1724. AABB bounds;
  1725. Vector3i from;
  1726. Vector3i size;
  1727. int cascade_prev = get_pending_region_data(p_region - 1, from, size, bounds);
  1728. int cascade_next = get_pending_region_data(p_region + 1, from, size, bounds);
  1729. int cascade = get_pending_region_data(p_region, from, size, bounds);
  1730. ERR_FAIL_COND(cascade < 0);
  1731. if (cascade_prev != cascade) {
  1732. //initialize render
  1733. RD::get_singleton()->texture_clear(render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1734. RD::get_singleton()->texture_clear(render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1735. RD::get_singleton()->texture_clear(render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1736. RD::get_singleton()->texture_clear(render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1737. }
  1738. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(cascades[cascade].cell_size));
  1739. RendererSceneRenderRD::get_singleton()->_render_sdfgi(p_render_buffers, from, size, bounds, p_instances, render_albedo, render_emission, render_emission_aniso, render_geom_facing, p_exposure_normalization);
  1740. if (cascade_next != cascade) {
  1741. RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade");
  1742. RENDER_TIMESTAMP("> SDFGI Update SDF");
  1743. //done rendering! must update SDF
  1744. //clear dispatch indirect data
  1745. SDFGIShader::PreprocessPushConstant push_constant;
  1746. memset(&push_constant, 0, sizeof(SDFGIShader::PreprocessPushConstant));
  1747. RENDER_TIMESTAMP("SDFGI Scroll SDF");
  1748. //scroll
  1749. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1750. //for scroll
  1751. Vector3i dirty = cascades[cascade].dirty_regions;
  1752. push_constant.scroll[0] = dirty.x;
  1753. push_constant.scroll[1] = dirty.y;
  1754. push_constant.scroll[2] = dirty.z;
  1755. } else {
  1756. //for no scroll
  1757. push_constant.scroll[0] = 0;
  1758. push_constant.scroll[1] = 0;
  1759. push_constant.scroll[2] = 0;
  1760. }
  1761. cascades[cascade].all_dynamic_lights_dirty = true;
  1762. cascades[cascade].baked_exposure_normalization = p_exposure_normalization;
  1763. push_constant.grid_size = cascade_size;
  1764. push_constant.cascade = cascade;
  1765. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1766. RD::get_singleton()->buffer_copy(cascades[cascade].solid_cell_dispatch_buffer_storage, cascades[cascade].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  1767. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1768. //must pre scroll existing data because not all is dirty
  1769. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL]);
  1770. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_uniform_set, 0);
  1771. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1772. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascades[cascade].solid_cell_dispatch_buffer_call, 0);
  1773. // no barrier do all together
  1774. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
  1775. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_occlusion_uniform_set, 0);
  1776. Vector3i dirty = cascades[cascade].dirty_regions;
  1777. Vector3i groups;
  1778. groups.x = cascade_size - Math::abs(dirty.x);
  1779. groups.y = cascade_size - Math::abs(dirty.y);
  1780. groups.z = cascade_size - Math::abs(dirty.z);
  1781. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1782. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z);
  1783. //no barrier, continue together
  1784. {
  1785. //scroll probes and their history also
  1786. SDFGIShader::IntegratePushConstant ipush_constant;
  1787. ipush_constant.grid_size[1] = cascade_size;
  1788. ipush_constant.grid_size[2] = cascade_size;
  1789. ipush_constant.grid_size[0] = cascade_size;
  1790. ipush_constant.max_cascades = cascades.size();
  1791. ipush_constant.probe_axis_size = probe_axis_count;
  1792. ipush_constant.history_index = 0;
  1793. ipush_constant.history_size = history_size;
  1794. ipush_constant.ray_count = 0;
  1795. ipush_constant.ray_bias = 0;
  1796. ipush_constant.sky_flags = 0;
  1797. ipush_constant.sky_energy = 0;
  1798. ipush_constant.sky_color_or_orientation[0] = 0;
  1799. ipush_constant.sky_color_or_orientation[1] = 0;
  1800. ipush_constant.sky_color_or_orientation[2] = 0;
  1801. ipush_constant.y_mult = y_mult;
  1802. ipush_constant.store_ambient_texture = false;
  1803. ipush_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1804. ipush_constant.image_size[1] = probe_axis_count;
  1805. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1806. ipush_constant.cascade = cascade;
  1807. ipush_constant.world_offset[0] = cascades[cascade].position.x / probe_divisor;
  1808. ipush_constant.world_offset[1] = cascades[cascade].position.y / probe_divisor;
  1809. ipush_constant.world_offset[2] = cascades[cascade].position.z / probe_divisor;
  1810. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  1811. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  1812. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  1813. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL]);
  1814. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1815. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1816. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1817. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1818. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1819. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL_STORE]);
  1820. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1821. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1822. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1823. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1824. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1825. if (bounce_feedback > 0.0) {
  1826. //multibounce requires this to be stored so direct light can read from it
  1827. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
  1828. //convert to octahedral to store
  1829. ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1830. ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1831. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1832. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1833. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1834. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1835. }
  1836. }
  1837. //ok finally barrier
  1838. RD::get_singleton()->compute_list_end();
  1839. }
  1840. //clear dispatch indirect data
  1841. uint32_t dispatch_indirect_data[4] = { 0, 0, 0, 0 };
  1842. RD::get_singleton()->buffer_update(cascades[cascade].solid_cell_dispatch_buffer_storage, 0, sizeof(uint32_t) * 4, dispatch_indirect_data);
  1843. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1844. bool half_size = true; //much faster, very little difference
  1845. static const int optimized_jf_group_size = 8;
  1846. if (half_size) {
  1847. push_constant.grid_size >>= 1;
  1848. uint32_t cascade_half_size = cascade_size >> 1;
  1849. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
  1850. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_half_uniform_set, 0);
  1851. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1852. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1853. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1854. //must start with regular jumpflood
  1855. push_constant.half_size = true;
  1856. {
  1857. RENDER_TIMESTAMP("SDFGI Jump Flood (Half-Size)");
  1858. uint32_t s = cascade_half_size;
  1859. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
  1860. int jf_us = 0;
  1861. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1862. while (s > 1) {
  1863. s /= 2;
  1864. push_constant.step_size = s;
  1865. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1866. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1867. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1868. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1869. jf_us = jf_us == 0 ? 1 : 0;
  1870. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  1871. break;
  1872. }
  1873. }
  1874. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half-Size)");
  1875. //continue with optimized jump flood for smaller reads
  1876. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1877. while (s > 1) {
  1878. s /= 2;
  1879. push_constant.step_size = s;
  1880. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1881. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1882. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1883. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1884. jf_us = jf_us == 0 ? 1 : 0;
  1885. }
  1886. }
  1887. // restore grid size for last passes
  1888. push_constant.grid_size = cascade_size;
  1889. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
  1890. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_upscale_uniform_set, 0);
  1891. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1892. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1893. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1894. //run one pass of fullsize jumpflood to fix up half size artifacts
  1895. push_constant.half_size = false;
  1896. push_constant.step_size = 1;
  1897. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1898. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[upscale_jfa_uniform_set_index], 0);
  1899. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1900. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1901. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1902. } else {
  1903. //full size jumpflood
  1904. RENDER_TIMESTAMP("SDFGI Jump Flood (Full-Size)");
  1905. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
  1906. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_uniform_set, 0);
  1907. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1908. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1909. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1910. push_constant.half_size = false;
  1911. {
  1912. uint32_t s = cascade_size;
  1913. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
  1914. int jf_us = 0;
  1915. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1916. while (s > 1) {
  1917. s /= 2;
  1918. push_constant.step_size = s;
  1919. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1920. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1921. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1922. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1923. jf_us = jf_us == 0 ? 1 : 0;
  1924. if (cascade_size / (s / 2) >= optimized_jf_group_size) {
  1925. break;
  1926. }
  1927. }
  1928. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Full-Size)");
  1929. //continue with optimized jump flood for smaller reads
  1930. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1931. while (s > 1) {
  1932. s /= 2;
  1933. push_constant.step_size = s;
  1934. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1935. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1936. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1937. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1938. jf_us = jf_us == 0 ? 1 : 0;
  1939. }
  1940. }
  1941. }
  1942. RENDER_TIMESTAMP("SDFGI Occlusion");
  1943. // occlusion
  1944. {
  1945. uint32_t probe_size = cascade_size / SDFGI::PROBE_DIVISOR;
  1946. Vector3i probe_global_pos = cascades[cascade].position / probe_size;
  1947. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_OCCLUSION]);
  1948. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, occlusion_uniform_set, 0);
  1949. for (int i = 0; i < 8; i++) {
  1950. //dispatch all at once for performance
  1951. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  1952. if ((probe_global_pos.x & 1) != 0) {
  1953. offset.x = (offset.x + 1) & 1;
  1954. }
  1955. if ((probe_global_pos.y & 1) != 0) {
  1956. offset.y = (offset.y + 1) & 1;
  1957. }
  1958. if ((probe_global_pos.z & 1) != 0) {
  1959. offset.z = (offset.z + 1) & 1;
  1960. }
  1961. push_constant.probe_offset[0] = offset.x;
  1962. push_constant.probe_offset[1] = offset.y;
  1963. push_constant.probe_offset[2] = offset.z;
  1964. push_constant.occlusion_index = i;
  1965. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1966. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  1967. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  1968. }
  1969. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1970. }
  1971. RENDER_TIMESTAMP("SDFGI Store");
  1972. // store
  1973. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_STORE]);
  1974. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].sdf_store_uniform_set, 0);
  1975. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1976. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1977. RD::get_singleton()->compute_list_end();
  1978. //clear these textures, as they will have previous garbage on next draw
  1979. RD::get_singleton()->texture_clear(cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1980. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1981. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1982. #if 0
  1983. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(cascades[cascade].sdf, 0);
  1984. Ref<Image> img;
  1985. img.instantiate();
  1986. for (uint32_t i = 0; i < cascade_size; i++) {
  1987. Vector<uint8_t> subarr = data.slice(128 * 128 * i, 128 * 128 * (i + 1));
  1988. img->set_data(cascade_size, cascade_size, false, Image::FORMAT_L8, subarr);
  1989. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  1990. }
  1991. //finalize render and update sdf
  1992. #endif
  1993. #if 0
  1994. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(render_albedo, 0);
  1995. Ref<Image> img;
  1996. img.instantiate();
  1997. for (uint32_t i = 0; i < cascade_size; i++) {
  1998. Vector<uint8_t> subarr = data.slice(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2);
  1999. img->createcascade_size, cascade_size, false, Image::FORMAT_RGB565, subarr);
  2000. img->convert(Image::FORMAT_RGBA8);
  2001. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  2002. }
  2003. //finalize render and update sdf
  2004. #endif
  2005. RENDER_TIMESTAMP("< SDFGI Update SDF");
  2006. RD::get_singleton()->draw_command_end_label();
  2007. }
  2008. }
  2009. void GI::SDFGI::render_static_lights(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result) {
  2010. ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
  2011. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2012. RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lights");
  2013. update_cascades();
  2014. SDFGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  2015. uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS];
  2016. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2017. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2018. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2019. { //fill light buffer
  2020. AABB cascade_aabb;
  2021. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cc.position)) * cc.cell_size;
  2022. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cc.cell_size;
  2023. int idx = 0;
  2024. for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
  2025. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  2026. break;
  2027. }
  2028. RID light_instance = p_positional_light_cull_result[i][j];
  2029. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  2030. RID light = light_storage->light_instance_get_base_light(light_instance);
  2031. AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
  2032. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  2033. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
  2034. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  2035. continue;
  2036. }
  2037. if (!cascade_aabb.intersects(light_aabb)) {
  2038. continue;
  2039. }
  2040. lights[idx].type = RSG::light_storage->light_get_type(light);
  2041. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  2042. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  2043. dir.y *= y_mult; //only makes sense for directional
  2044. dir.normalize();
  2045. }
  2046. lights[idx].direction[0] = dir.x;
  2047. lights[idx].direction[1] = dir.y;
  2048. lights[idx].direction[2] = dir.z;
  2049. Vector3 pos = light_transform.origin;
  2050. pos.y *= y_mult;
  2051. lights[idx].position[0] = pos.x;
  2052. lights[idx].position[1] = pos.y;
  2053. lights[idx].position[2] = pos.z;
  2054. Color color = RSG::light_storage->light_get_color(light);
  2055. color = color.srgb_to_linear();
  2056. lights[idx].color[0] = color.r;
  2057. lights[idx].color[1] = color.g;
  2058. lights[idx].color[2] = color.b;
  2059. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2060. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2061. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  2062. // Convert from Luminous Power to Luminous Intensity
  2063. if (lights[idx].type == RS::LIGHT_OMNI) {
  2064. lights[idx].energy *= 1.0 / (Math::PI * 4.0);
  2065. } else if (lights[idx].type == RS::LIGHT_SPOT) {
  2066. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  2067. // We make this assumption to keep them easy to control.
  2068. lights[idx].energy *= 1.0 / Math::PI;
  2069. }
  2070. }
  2071. if (p_render_data->camera_attributes.is_valid()) {
  2072. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  2073. }
  2074. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  2075. lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2076. lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
  2077. lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  2078. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2079. idx++;
  2080. }
  2081. if (idx > 0) {
  2082. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
  2083. }
  2084. light_count[i] = idx;
  2085. }
  2086. }
  2087. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2088. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2089. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2090. if (light_count[i] > 0) {
  2091. RD::get_singleton()->buffer_copy(cc.solid_cell_dispatch_buffer_storage, cc.solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  2092. }
  2093. }
  2094. /* Static Lights */
  2095. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2096. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_STATIC]);
  2097. SDFGIShader::DirectLightPushConstant dl_push_constant;
  2098. dl_push_constant.grid_size[0] = cascade_size;
  2099. dl_push_constant.grid_size[1] = cascade_size;
  2100. dl_push_constant.grid_size[2] = cascade_size;
  2101. dl_push_constant.max_cascades = cascades.size();
  2102. dl_push_constant.probe_axis_size = probe_axis_count;
  2103. dl_push_constant.bounce_feedback = 0.0; // this is static light, do not multibounce yet
  2104. dl_push_constant.y_mult = y_mult;
  2105. dl_push_constant.use_occlusion = uses_occlusion;
  2106. //all must be processed
  2107. dl_push_constant.process_offset = 0;
  2108. dl_push_constant.process_increment = 1;
  2109. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2110. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2111. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2112. dl_push_constant.light_count = light_count[i];
  2113. dl_push_constant.cascade = p_cascade_indices[i];
  2114. if (dl_push_constant.light_count > 0) {
  2115. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_static_uniform_set, 0);
  2116. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  2117. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer_call, 0);
  2118. }
  2119. }
  2120. RD::get_singleton()->compute_list_end();
  2121. RD::get_singleton()->draw_command_end_label();
  2122. }
  2123. ////////////////////////////////////////////////////////////////////////////////
  2124. // VoxelGIInstance
  2125. void GI::VoxelGIInstance::update(bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  2126. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2127. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2128. uint32_t data_version = gi->voxel_gi_get_data_version(probe);
  2129. // (RE)CREATE IF NEEDED
  2130. if (last_probe_data_version != data_version) {
  2131. //need to re-create everything
  2132. free_resources();
  2133. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2134. if (octree_size != Vector3i()) {
  2135. //can create a 3D texture
  2136. Vector<int> levels = gi->voxel_gi_get_level_counts(probe);
  2137. RD::TextureFormat tf;
  2138. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2139. tf.width = octree_size.x;
  2140. tf.height = octree_size.y;
  2141. tf.depth = octree_size.z;
  2142. tf.texture_type = RD::TEXTURE_TYPE_3D;
  2143. tf.mipmaps = levels.size();
  2144. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2145. texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2146. RD::get_singleton()->set_resource_name(texture, "VoxelGI Instance Texture");
  2147. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1);
  2148. {
  2149. int total_elements = 0;
  2150. for (int i = 0; i < levels.size(); i++) {
  2151. total_elements += levels[i];
  2152. }
  2153. write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  2154. }
  2155. for (int i = 0; i < levels.size(); i++) {
  2156. VoxelGIInstance::Mipmap mipmap;
  2157. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), texture, 0, i, 1, RD::TEXTURE_SLICE_3D);
  2158. mipmap.level = levels.size() - i - 1;
  2159. mipmap.cell_offset = 0;
  2160. for (uint32_t j = 0; j < mipmap.level; j++) {
  2161. mipmap.cell_offset += levels[j];
  2162. }
  2163. mipmap.cell_count = levels[mipmap.level];
  2164. Vector<RD::Uniform> uniforms;
  2165. {
  2166. RD::Uniform u;
  2167. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2168. u.binding = 1;
  2169. u.append_id(gi->voxel_gi_get_octree_buffer(probe));
  2170. uniforms.push_back(u);
  2171. }
  2172. {
  2173. RD::Uniform u;
  2174. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2175. u.binding = 2;
  2176. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2177. uniforms.push_back(u);
  2178. }
  2179. {
  2180. RD::Uniform u;
  2181. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2182. u.binding = 4;
  2183. u.append_id(write_buffer);
  2184. uniforms.push_back(u);
  2185. }
  2186. {
  2187. RD::Uniform u;
  2188. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2189. u.binding = 9;
  2190. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2191. uniforms.push_back(u);
  2192. }
  2193. {
  2194. RD::Uniform u;
  2195. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2196. u.binding = 10;
  2197. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2198. uniforms.push_back(u);
  2199. }
  2200. {
  2201. Vector<RD::Uniform> copy_uniforms = uniforms;
  2202. if (i == 0) {
  2203. {
  2204. RD::Uniform u;
  2205. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2206. u.binding = 3;
  2207. u.append_id(gi->voxel_gi_lights_uniform);
  2208. copy_uniforms.push_back(u);
  2209. }
  2210. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT], 0);
  2211. copy_uniforms = uniforms; //restore
  2212. {
  2213. RD::Uniform u;
  2214. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2215. u.binding = 5;
  2216. u.append_id(texture);
  2217. copy_uniforms.push_back(u);
  2218. }
  2219. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  2220. } else {
  2221. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  2222. }
  2223. }
  2224. {
  2225. RD::Uniform u;
  2226. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2227. u.binding = 5;
  2228. u.append_id(mipmap.texture);
  2229. uniforms.push_back(u);
  2230. }
  2231. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE], 0);
  2232. mipmaps.push_back(mipmap);
  2233. }
  2234. {
  2235. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2236. uint32_t oversample = nearest_power_of_2_templated(4);
  2237. int mipmap_index = 0;
  2238. while (mipmap_index < mipmaps.size()) {
  2239. VoxelGIInstance::DynamicMap dmap;
  2240. if (oversample > 0) {
  2241. dmap.size = dynamic_map_size * (1 << oversample);
  2242. dmap.mipmap = -1;
  2243. oversample--;
  2244. } else {
  2245. dmap.size = dynamic_map_size >> mipmap_index;
  2246. dmap.mipmap = mipmap_index;
  2247. mipmap_index++;
  2248. }
  2249. RD::TextureFormat dtf;
  2250. dtf.width = dmap.size;
  2251. dtf.height = dmap.size;
  2252. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2253. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2254. if (dynamic_maps.is_empty()) {
  2255. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2256. }
  2257. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2258. RD::get_singleton()->set_resource_name(dmap.texture, "VoxelGI Instance DMap Texture");
  2259. if (dynamic_maps.is_empty()) {
  2260. // Render depth for first one.
  2261. // Use 16-bit depth when supported to improve performance.
  2262. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D16_UNORM, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2263. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  2264. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2265. RD::get_singleton()->set_resource_name(dmap.fb_depth, "VoxelGI Instance DMap FB Depth");
  2266. }
  2267. //just use depth as-is
  2268. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2269. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2270. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2271. RD::get_singleton()->set_resource_name(dmap.depth, "VoxelGI Instance DMap Depth");
  2272. if (dynamic_maps.is_empty()) {
  2273. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2274. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2275. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2276. RD::get_singleton()->set_resource_name(dmap.albedo, "VoxelGI Instance DMap Albedo");
  2277. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2278. RD::get_singleton()->set_resource_name(dmap.normal, "VoxelGI Instance DMap Normal");
  2279. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2280. RD::get_singleton()->set_resource_name(dmap.orm, "VoxelGI Instance DMap ORM");
  2281. Vector<RID> fb;
  2282. fb.push_back(dmap.albedo);
  2283. fb.push_back(dmap.normal);
  2284. fb.push_back(dmap.orm);
  2285. fb.push_back(dmap.texture); //emission
  2286. fb.push_back(dmap.depth);
  2287. fb.push_back(dmap.fb_depth);
  2288. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  2289. {
  2290. Vector<RD::Uniform> uniforms;
  2291. {
  2292. RD::Uniform u;
  2293. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2294. u.binding = 3;
  2295. u.append_id(gi->voxel_gi_lights_uniform);
  2296. uniforms.push_back(u);
  2297. }
  2298. {
  2299. RD::Uniform u;
  2300. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2301. u.binding = 5;
  2302. u.append_id(dmap.albedo);
  2303. uniforms.push_back(u);
  2304. }
  2305. {
  2306. RD::Uniform u;
  2307. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2308. u.binding = 6;
  2309. u.append_id(dmap.normal);
  2310. uniforms.push_back(u);
  2311. }
  2312. {
  2313. RD::Uniform u;
  2314. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2315. u.binding = 7;
  2316. u.append_id(dmap.orm);
  2317. uniforms.push_back(u);
  2318. }
  2319. {
  2320. RD::Uniform u;
  2321. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2322. u.binding = 8;
  2323. u.append_id(dmap.fb_depth);
  2324. uniforms.push_back(u);
  2325. }
  2326. {
  2327. RD::Uniform u;
  2328. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2329. u.binding = 9;
  2330. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2331. uniforms.push_back(u);
  2332. }
  2333. {
  2334. RD::Uniform u;
  2335. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2336. u.binding = 10;
  2337. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2338. uniforms.push_back(u);
  2339. }
  2340. {
  2341. RD::Uniform u;
  2342. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2343. u.binding = 11;
  2344. u.append_id(dmap.texture);
  2345. uniforms.push_back(u);
  2346. }
  2347. {
  2348. RD::Uniform u;
  2349. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2350. u.binding = 12;
  2351. u.append_id(dmap.depth);
  2352. uniforms.push_back(u);
  2353. }
  2354. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  2355. }
  2356. } else {
  2357. bool plot = dmap.mipmap >= 0;
  2358. bool write = dmap.mipmap < (mipmaps.size() - 1);
  2359. Vector<RD::Uniform> uniforms;
  2360. {
  2361. RD::Uniform u;
  2362. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2363. u.binding = 5;
  2364. u.append_id(dynamic_maps[dynamic_maps.size() - 1].texture);
  2365. uniforms.push_back(u);
  2366. }
  2367. {
  2368. RD::Uniform u;
  2369. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2370. u.binding = 6;
  2371. u.append_id(dynamic_maps[dynamic_maps.size() - 1].depth);
  2372. uniforms.push_back(u);
  2373. }
  2374. if (write) {
  2375. {
  2376. RD::Uniform u;
  2377. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2378. u.binding = 7;
  2379. u.append_id(dmap.texture);
  2380. uniforms.push_back(u);
  2381. }
  2382. {
  2383. RD::Uniform u;
  2384. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2385. u.binding = 8;
  2386. u.append_id(dmap.depth);
  2387. uniforms.push_back(u);
  2388. }
  2389. }
  2390. {
  2391. RD::Uniform u;
  2392. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2393. u.binding = 9;
  2394. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2395. uniforms.push_back(u);
  2396. }
  2397. {
  2398. RD::Uniform u;
  2399. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2400. u.binding = 10;
  2401. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2402. uniforms.push_back(u);
  2403. }
  2404. if (plot) {
  2405. {
  2406. RD::Uniform u;
  2407. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2408. u.binding = 11;
  2409. u.append_id(mipmaps[dmap.mipmap].texture);
  2410. uniforms.push_back(u);
  2411. }
  2412. }
  2413. dmap.uniform_set = RD::get_singleton()->uniform_set_create(
  2414. uniforms,
  2415. gi->voxel_gi_lighting_shader_version_shaders[(write && plot) ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)],
  2416. 0);
  2417. }
  2418. dynamic_maps.push_back(dmap);
  2419. }
  2420. }
  2421. }
  2422. last_probe_data_version = data_version;
  2423. p_update_light_instances = true; //just in case
  2424. RendererSceneRenderRD::get_singleton()->base_uniforms_changed();
  2425. }
  2426. // UDPDATE TIME
  2427. if (has_dynamic_object_data) {
  2428. //if it has dynamic object data, it needs to be cleared
  2429. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, mipmaps.size(), 0, 1);
  2430. }
  2431. uint32_t light_count = 0;
  2432. if (p_update_light_instances || p_dynamic_objects.size() > 0) {
  2433. light_count = MIN(gi->voxel_gi_max_lights, (uint32_t)p_light_instances.size());
  2434. {
  2435. Transform3D to_cell = gi->voxel_gi_get_to_cell_xform(probe);
  2436. Transform3D to_probe_xform = to_cell * transform.affine_inverse();
  2437. //update lights
  2438. for (uint32_t i = 0; i < light_count; i++) {
  2439. VoxelGILight &l = gi->voxel_gi_lights[i];
  2440. RID light_instance = p_light_instances[i];
  2441. RID light = light_storage->light_instance_get_base_light(light_instance);
  2442. l.type = RSG::light_storage->light_get_type(light);
  2443. if (l.type == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  2444. light_count--;
  2445. continue;
  2446. }
  2447. l.attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2448. l.energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2449. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2450. l.energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  2451. l.energy *= gi->voxel_gi_get_baked_exposure_normalization(probe);
  2452. // Convert from Luminous Power to Luminous Intensity
  2453. if (l.type == RS::LIGHT_OMNI) {
  2454. l.energy *= 1.0 / (Math::PI * 4.0);
  2455. } else if (l.type == RS::LIGHT_SPOT) {
  2456. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  2457. // We make this assumption to keep them easy to control.
  2458. l.energy *= 1.0 / Math::PI;
  2459. }
  2460. }
  2461. l.radius = to_cell.basis.xform(Vector3(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  2462. Color color = RSG::light_storage->light_get_color(light).srgb_to_linear();
  2463. l.color[0] = color.r;
  2464. l.color[1] = color.g;
  2465. l.color[2] = color.b;
  2466. l.cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  2467. l.inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2468. Transform3D xform = light_storage->light_instance_get_base_transform(light_instance);
  2469. Vector3 pos = to_probe_xform.xform(xform.origin);
  2470. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_column(2)).normalized();
  2471. l.position[0] = pos.x;
  2472. l.position[1] = pos.y;
  2473. l.position[2] = pos.z;
  2474. l.direction[0] = dir.x;
  2475. l.direction[1] = dir.y;
  2476. l.direction[2] = dir.z;
  2477. l.has_shadow = RSG::light_storage->light_has_shadow(light);
  2478. }
  2479. RD::get_singleton()->buffer_update(gi->voxel_gi_lights_uniform, 0, sizeof(VoxelGILight) * light_count, gi->voxel_gi_lights);
  2480. }
  2481. }
  2482. if (has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
  2483. // PROCESS MIPMAPS
  2484. if (mipmaps.size()) {
  2485. //can update mipmaps
  2486. Vector3i probe_size = gi->voxel_gi_get_octree_size(probe);
  2487. Vector3 ps = probe_size / gi->voxel_gi_get_bounds(probe).size;
  2488. float cell_size = (1.0 / MAX(MAX(ps.x, ps.y), ps.z)); // probe size relative to 1 unit in world space
  2489. VoxelGIPushConstant push_constant;
  2490. push_constant.limits[0] = probe_size.x;
  2491. push_constant.limits[1] = probe_size.y;
  2492. push_constant.limits[2] = probe_size.z;
  2493. push_constant.stack_size = mipmaps.size();
  2494. push_constant.emission_scale = 1.0;
  2495. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2496. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2497. push_constant.light_count = light_count;
  2498. push_constant.aniso_strength = 0;
  2499. push_constant.cell_size = cell_size;
  2500. /* print_line("probe update to version " + itos(last_probe_version));
  2501. print_line("propagation " + rtos(push_constant.propagation));
  2502. print_line("dynrange " + rtos(push_constant.dynamic_range));
  2503. */
  2504. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2505. int passes;
  2506. if (p_update_light_instances) {
  2507. passes = gi->voxel_gi_is_using_two_bounces(probe) ? 2 : 1;
  2508. } else {
  2509. passes = 1; //only re-blitting is necessary
  2510. }
  2511. int wg_size = 64;
  2512. int64_t wg_limit_x = (int64_t)RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  2513. for (int pass = 0; pass < passes; pass++) {
  2514. if (p_update_light_instances) {
  2515. for (int i = 0; i < mipmaps.size(); i++) {
  2516. if (i == 0) {
  2517. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[pass == 0 ? VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT : VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  2518. } else if (i == 1) {
  2519. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP]);
  2520. }
  2521. if (pass == 1 || i > 0) {
  2522. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2523. }
  2524. if (pass == 0 || i > 0) {
  2525. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].uniform_set, 0);
  2526. } else {
  2527. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].second_bounce_uniform_set, 0);
  2528. }
  2529. push_constant.cell_offset = mipmaps[i].cell_offset;
  2530. push_constant.cell_count = mipmaps[i].cell_count;
  2531. int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
  2532. while (wg_todo) {
  2533. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2534. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2535. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2536. wg_todo -= wg_count;
  2537. push_constant.cell_offset += wg_count * wg_size;
  2538. }
  2539. }
  2540. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2541. }
  2542. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE]);
  2543. for (int i = 0; i < mipmaps.size(); i++) {
  2544. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].write_uniform_set, 0);
  2545. push_constant.cell_offset = mipmaps[i].cell_offset;
  2546. push_constant.cell_count = mipmaps[i].cell_count;
  2547. int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
  2548. while (wg_todo) {
  2549. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2550. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2551. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2552. wg_todo -= wg_count;
  2553. push_constant.cell_offset += wg_count * wg_size;
  2554. }
  2555. }
  2556. }
  2557. RD::get_singleton()->compute_list_end();
  2558. }
  2559. }
  2560. has_dynamic_object_data = false; //clear until dynamic object data is used again
  2561. if (p_dynamic_objects.size() && dynamic_maps.size()) {
  2562. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2563. int multiplier = dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2564. Transform3D oversample_scale;
  2565. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  2566. Transform3D to_cell = oversample_scale * gi->voxel_gi_get_to_cell_xform(probe);
  2567. Transform3D to_world_xform = transform * to_cell.affine_inverse();
  2568. Transform3D to_probe_xform = to_world_xform.affine_inverse();
  2569. AABB probe_aabb(Vector3(), octree_size);
  2570. //this could probably be better parallelized in compute..
  2571. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
  2572. RenderGeometryInstance *instance = p_dynamic_objects[i];
  2573. //transform aabb to voxel_gi
  2574. AABB aabb = (to_probe_xform * instance->get_transform()).xform(instance->get_aabb());
  2575. //this needs to wrap to grid resolution to avoid jitter
  2576. //also extend margin a bit just in case
  2577. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  2578. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  2579. for (int j = 0; j < 3; j++) {
  2580. if ((end[j] - begin[j]) & 1) {
  2581. end[j]++; //for half extents split, it needs to be even
  2582. }
  2583. begin[j] = MAX(begin[j], 0);
  2584. end[j] = MIN(end[j], octree_size[j] * multiplier);
  2585. }
  2586. //aabb = aabb.intersection(probe_aabb); //intersect
  2587. aabb.position = begin;
  2588. aabb.size = end - begin;
  2589. //print_line("aabb: " + aabb);
  2590. for (int j = 0; j < 6; j++) {
  2591. //if (j != 0 && j != 3) {
  2592. // continue;
  2593. //}
  2594. static const Vector3 render_z[6] = {
  2595. Vector3(1, 0, 0),
  2596. Vector3(0, 1, 0),
  2597. Vector3(0, 0, 1),
  2598. Vector3(-1, 0, 0),
  2599. Vector3(0, -1, 0),
  2600. Vector3(0, 0, -1),
  2601. };
  2602. static const Vector3 render_up[6] = {
  2603. Vector3(0, 1, 0),
  2604. Vector3(0, 0, 1),
  2605. Vector3(0, 1, 0),
  2606. Vector3(0, 1, 0),
  2607. Vector3(0, 0, 1),
  2608. Vector3(0, 1, 0),
  2609. };
  2610. Vector3 render_dir = render_z[j];
  2611. Vector3 up_dir = render_up[j];
  2612. Vector3 center = aabb.get_center();
  2613. Transform3D xform;
  2614. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  2615. Vector3 x_dir = xform.basis.get_column(0).abs();
  2616. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  2617. Vector3 y_dir = xform.basis.get_column(1).abs();
  2618. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  2619. Vector3 z_dir = -xform.basis.get_column(2);
  2620. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  2621. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  2622. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(0)) < 0);
  2623. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(1)) < 0);
  2624. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(2)) > 0);
  2625. Projection cm;
  2626. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  2627. if (RendererSceneRenderRD::get_singleton()->cull_argument.size() == 0) {
  2628. RendererSceneRenderRD::get_singleton()->cull_argument.push_back(nullptr);
  2629. }
  2630. RendererSceneRenderRD::get_singleton()->cull_argument[0] = instance;
  2631. float exposure_normalization = 1.0;
  2632. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2633. exposure_normalization = gi->voxel_gi_get_baked_exposure_normalization(probe);
  2634. }
  2635. RendererSceneRenderRD::get_singleton()->_render_material(to_world_xform * xform, cm, true, RendererSceneRenderRD::get_singleton()->cull_argument, dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size), exposure_normalization);
  2636. Vector3 ps = octree_size / gi->voxel_gi_get_bounds(probe).size;
  2637. float cell_size = (1.0 / MAX(MAX(ps.x, ps.y), ps.z)); // probe size relative to 1 unit in world space
  2638. VoxelGIDynamicPushConstant push_constant;
  2639. memset(&push_constant, 0, sizeof(VoxelGIDynamicPushConstant));
  2640. push_constant.limits[0] = octree_size.x;
  2641. push_constant.limits[1] = octree_size.y;
  2642. push_constant.limits[2] = octree_size.z;
  2643. push_constant.light_count = p_light_instances.size();
  2644. push_constant.x_dir[0] = x_dir[0];
  2645. push_constant.x_dir[1] = x_dir[1];
  2646. push_constant.x_dir[2] = x_dir[2];
  2647. push_constant.y_dir[0] = y_dir[0];
  2648. push_constant.y_dir[1] = y_dir[1];
  2649. push_constant.y_dir[2] = y_dir[2];
  2650. push_constant.z_dir[0] = z_dir[0];
  2651. push_constant.z_dir[1] = z_dir[1];
  2652. push_constant.z_dir[2] = z_dir[2];
  2653. push_constant.z_base = xform.origin[z_axis];
  2654. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  2655. push_constant.pos_multiplier = float(1.0) / multiplier;
  2656. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2657. push_constant.flip_x = x_flip;
  2658. push_constant.flip_y = y_flip;
  2659. push_constant.rect_pos[0] = rect.position[0];
  2660. push_constant.rect_pos[1] = rect.position[1];
  2661. push_constant.rect_size[0] = rect.size[0];
  2662. push_constant.rect_size[1] = rect.size[1];
  2663. push_constant.prev_rect_ofs[0] = 0;
  2664. push_constant.prev_rect_ofs[1] = 0;
  2665. push_constant.prev_rect_size[0] = 0;
  2666. push_constant.prev_rect_size[1] = 0;
  2667. push_constant.on_mipmap = false;
  2668. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2669. push_constant.cell_size = cell_size;
  2670. push_constant.pad[0] = 0;
  2671. push_constant.pad[1] = 0;
  2672. //process lighting
  2673. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2674. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  2675. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[0].uniform_set, 0);
  2676. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2677. RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
  2678. //print_line("rect: " + itos(i) + ": " + rect);
  2679. for (int k = 1; k < dynamic_maps.size(); k++) {
  2680. // enlarge the rect if needed so all pixels fit when downscaled,
  2681. // this ensures downsampling is smooth and optimal because no pixels are left behind
  2682. //x
  2683. if (rect.position.x & 1) {
  2684. rect.size.x++;
  2685. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  2686. } else {
  2687. push_constant.prev_rect_ofs[0] = 0;
  2688. }
  2689. if (rect.size.x & 1) {
  2690. rect.size.x++;
  2691. }
  2692. rect.position.x >>= 1;
  2693. rect.size.x = MAX(1, rect.size.x >> 1);
  2694. //y
  2695. if (rect.position.y & 1) {
  2696. rect.size.y++;
  2697. push_constant.prev_rect_ofs[1] = 1;
  2698. } else {
  2699. push_constant.prev_rect_ofs[1] = 0;
  2700. }
  2701. if (rect.size.y & 1) {
  2702. rect.size.y++;
  2703. }
  2704. rect.position.y >>= 1;
  2705. rect.size.y = MAX(1, rect.size.y >> 1);
  2706. //shrink limits to ensure plot does not go outside map
  2707. if (dynamic_maps[k].mipmap > 0) {
  2708. for (int l = 0; l < 3; l++) {
  2709. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  2710. }
  2711. }
  2712. //print_line("rect: " + itos(i) + ": " + rect);
  2713. push_constant.rect_pos[0] = rect.position[0];
  2714. push_constant.rect_pos[1] = rect.position[1];
  2715. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  2716. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  2717. push_constant.rect_size[0] = rect.size[0];
  2718. push_constant.rect_size[1] = rect.size[1];
  2719. push_constant.on_mipmap = dynamic_maps[k].mipmap > 0;
  2720. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2721. if (dynamic_maps[k].mipmap < 0) {
  2722. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  2723. } else if (k < dynamic_maps.size() - 1) {
  2724. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  2725. } else {
  2726. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  2727. }
  2728. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[k].uniform_set, 0);
  2729. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2730. RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
  2731. }
  2732. RD::get_singleton()->compute_list_end();
  2733. }
  2734. }
  2735. has_dynamic_object_data = true; //clear until dynamic object data is used again
  2736. }
  2737. last_probe_version = gi->voxel_gi_get_version(probe);
  2738. }
  2739. void GI::VoxelGIInstance::free_resources() {
  2740. if (texture.is_valid()) {
  2741. RD::get_singleton()->free_rid(texture);
  2742. RD::get_singleton()->free_rid(write_buffer);
  2743. texture = RID();
  2744. write_buffer = RID();
  2745. mipmaps.clear();
  2746. }
  2747. for (int i = 0; i < dynamic_maps.size(); i++) {
  2748. RD::get_singleton()->free_rid(dynamic_maps[i].texture);
  2749. RD::get_singleton()->free_rid(dynamic_maps[i].depth);
  2750. // these only exist on the first level...
  2751. if (dynamic_maps[i].fb_depth.is_valid()) {
  2752. RD::get_singleton()->free_rid(dynamic_maps[i].fb_depth);
  2753. }
  2754. if (dynamic_maps[i].albedo.is_valid()) {
  2755. RD::get_singleton()->free_rid(dynamic_maps[i].albedo);
  2756. }
  2757. if (dynamic_maps[i].normal.is_valid()) {
  2758. RD::get_singleton()->free_rid(dynamic_maps[i].normal);
  2759. }
  2760. if (dynamic_maps[i].orm.is_valid()) {
  2761. RD::get_singleton()->free_rid(dynamic_maps[i].orm);
  2762. }
  2763. }
  2764. dynamic_maps.clear();
  2765. }
  2766. void GI::VoxelGIInstance::debug(RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  2767. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2768. if (mipmaps.is_empty()) {
  2769. return;
  2770. }
  2771. Projection cam_transform = (p_camera_with_transform * Projection(transform)) * Projection(gi->voxel_gi_get_to_cell_xform(probe).affine_inverse());
  2772. int level = 0;
  2773. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2774. VoxelGIDebugPushConstant push_constant;
  2775. push_constant.alpha = p_alpha;
  2776. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2777. push_constant.cell_offset = mipmaps[level].cell_offset;
  2778. push_constant.level = level;
  2779. push_constant.bounds[0] = octree_size.x >> level;
  2780. push_constant.bounds[1] = octree_size.y >> level;
  2781. push_constant.bounds[2] = octree_size.z >> level;
  2782. push_constant.pad = 0;
  2783. for (int i = 0; i < 4; i++) {
  2784. for (int j = 0; j < 4; j++) {
  2785. push_constant.projection[i * 4 + j] = cam_transform.columns[i][j];
  2786. }
  2787. }
  2788. if (gi->voxel_gi_debug_uniform_set.is_valid()) {
  2789. RD::get_singleton()->free_rid(gi->voxel_gi_debug_uniform_set);
  2790. }
  2791. Vector<RD::Uniform> uniforms;
  2792. {
  2793. RD::Uniform u;
  2794. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2795. u.binding = 1;
  2796. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2797. uniforms.push_back(u);
  2798. }
  2799. {
  2800. RD::Uniform u;
  2801. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2802. u.binding = 2;
  2803. u.append_id(texture);
  2804. uniforms.push_back(u);
  2805. }
  2806. {
  2807. RD::Uniform u;
  2808. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2809. u.binding = 3;
  2810. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2811. uniforms.push_back(u);
  2812. }
  2813. int cell_count;
  2814. if (!p_emission && p_lighting && has_dynamic_object_data) {
  2815. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  2816. } else {
  2817. cell_count = mipmaps[level].cell_count;
  2818. }
  2819. gi->voxel_gi_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_debug_shader_version_shaders[0], 0);
  2820. int voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_COLOR;
  2821. if (p_emission) {
  2822. voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_EMISSION;
  2823. } else if (p_lighting) {
  2824. voxel_gi_debug_pipeline = has_dynamic_object_data ? VOXEL_GI_DEBUG_LIGHT_FULL : VOXEL_GI_DEBUG_LIGHT;
  2825. }
  2826. RD::get_singleton()->draw_list_bind_render_pipeline(
  2827. p_draw_list,
  2828. gi->voxel_gi_debug_shader_version_pipelines[voxel_gi_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  2829. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, gi->voxel_gi_debug_uniform_set, 0);
  2830. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(VoxelGIDebugPushConstant));
  2831. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  2832. }
  2833. ////////////////////////////////////////////////////////////////////////////////
  2834. // GI
  2835. GI::GI() {
  2836. singleton = this;
  2837. sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1)));
  2838. sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1)));
  2839. sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1)));
  2840. }
  2841. GI::~GI() {
  2842. if (voxel_gi_debug_shader_version.is_valid()) {
  2843. voxel_gi_debug_shader.version_free(voxel_gi_debug_shader_version);
  2844. }
  2845. if (voxel_gi_lighting_shader_version.is_valid()) {
  2846. voxel_gi_shader.version_free(voxel_gi_lighting_shader_version);
  2847. }
  2848. if (shader_version.is_valid()) {
  2849. shader.version_free(shader_version);
  2850. }
  2851. if (sdfgi_shader.debug_probes_shader.is_valid()) {
  2852. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  2853. }
  2854. if (sdfgi_shader.debug_shader.is_valid()) {
  2855. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  2856. }
  2857. if (sdfgi_shader.direct_light_shader.is_valid()) {
  2858. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  2859. }
  2860. if (sdfgi_shader.integrate_shader.is_valid()) {
  2861. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  2862. }
  2863. if (sdfgi_shader.preprocess_shader.is_valid()) {
  2864. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  2865. }
  2866. singleton = nullptr;
  2867. }
  2868. void GI::init(SkyRD *p_sky) {
  2869. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2870. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2871. /* GI */
  2872. {
  2873. //kinda complicated to compute the amount of slots, we try to use as many as we can
  2874. voxel_gi_lights = memnew_arr(VoxelGILight, voxel_gi_max_lights);
  2875. voxel_gi_lights_uniform = RD::get_singleton()->uniform_buffer_create(voxel_gi_max_lights * sizeof(VoxelGILight));
  2876. voxel_gi_quality = RS::VoxelGIQuality(CLAMP(int(GLOBAL_GET("rendering/global_illumination/voxel_gi/quality")), 0, 1));
  2877. String defines = "\n#define MAX_LIGHTS " + itos(voxel_gi_max_lights) + "\n";
  2878. Vector<String> versions;
  2879. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  2880. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  2881. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  2882. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  2883. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  2884. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2885. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  2886. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2887. voxel_gi_shader.initialize(versions, defines);
  2888. voxel_gi_lighting_shader_version = voxel_gi_shader.version_create();
  2889. for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) {
  2890. voxel_gi_lighting_shader_version_shaders[i] = voxel_gi_shader.version_get_shader(voxel_gi_lighting_shader_version, i);
  2891. voxel_gi_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(voxel_gi_lighting_shader_version_shaders[i]);
  2892. }
  2893. }
  2894. {
  2895. String defines;
  2896. Vector<String> versions;
  2897. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  2898. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  2899. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  2900. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  2901. voxel_gi_debug_shader.initialize(versions, defines);
  2902. voxel_gi_debug_shader_version = voxel_gi_debug_shader.version_create();
  2903. for (int i = 0; i < VOXEL_GI_DEBUG_MAX; i++) {
  2904. voxel_gi_debug_shader_version_shaders[i] = voxel_gi_debug_shader.version_get_shader(voxel_gi_debug_shader_version, i);
  2905. RD::PipelineRasterizationState rs;
  2906. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  2907. RD::PipelineDepthStencilState ds;
  2908. ds.enable_depth_test = true;
  2909. ds.enable_depth_write = true;
  2910. ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
  2911. voxel_gi_debug_shader_version_pipelines[i].setup(voxel_gi_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  2912. }
  2913. }
  2914. /* SDGFI */
  2915. {
  2916. Vector<String> preprocess_modes;
  2917. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  2918. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  2919. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  2920. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  2921. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  2922. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  2923. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  2924. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  2925. preprocess_modes.push_back("\n#define MODE_STORE\n");
  2926. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  2927. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  2928. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  2929. for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) {
  2930. sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  2931. }
  2932. }
  2933. {
  2934. //calculate tables
  2935. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2936. Vector<String> direct_light_modes;
  2937. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  2938. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  2939. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  2940. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  2941. for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  2942. sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  2943. }
  2944. }
  2945. {
  2946. //calculate tables
  2947. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2948. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  2949. if (p_sky->sky_use_cubemap_array) {
  2950. defines += "\n#define USE_CUBEMAP_ARRAY\n";
  2951. }
  2952. Vector<String> integrate_modes;
  2953. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  2954. integrate_modes.push_back("\n#define MODE_STORE\n");
  2955. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  2956. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  2957. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  2958. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  2959. for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) {
  2960. sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  2961. }
  2962. {
  2963. Vector<RD::Uniform> uniforms;
  2964. {
  2965. RD::Uniform u;
  2966. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2967. u.binding = 0;
  2968. if (p_sky->sky_use_cubemap_array) {
  2969. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_WHITE));
  2970. } else {
  2971. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE));
  2972. }
  2973. uniforms.push_back(u);
  2974. }
  2975. {
  2976. RD::Uniform u;
  2977. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2978. u.binding = 1;
  2979. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2980. uniforms.push_back(u);
  2981. }
  2982. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  2983. }
  2984. }
  2985. //GK
  2986. {
  2987. //calculate tables
  2988. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2989. Vector<ShaderRD::VariantDefine> variants;
  2990. for (uint32_t vrs = 0; vrs < 2; vrs++) {
  2991. String vrs_base = vrs ? "\n#define USE_VRS\n" : "";
  2992. Group group = vrs ? GROUP_VRS : GROUP_NORMAL;
  2993. bool default_enabled = vrs == 0;
  2994. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_VOXEL_GI_INSTANCES\n", default_enabled)); // MODE_VOXEL_GI
  2995. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_VOXEL_GI_INSTANCES\n#define SAMPLE_VOXEL_GI_NEAREST\n", default_enabled)); // MODE_VOXEL_GI_WITHOUT_SAMPLER
  2996. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n", default_enabled)); // MODE_SDFGI
  2997. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n", default_enabled)); // MODE_COMBINED
  2998. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n#define SAMPLE_VOXEL_GI_NEAREST\n", default_enabled)); // MODE_COMBINED_WITHOUT_SAMPLER
  2999. }
  3000. shader.initialize(variants, defines);
  3001. bool vrs_supported = RendererSceneRenderRD::get_singleton()->is_vrs_supported();
  3002. if (vrs_supported) {
  3003. shader.enable_group(GROUP_VRS);
  3004. }
  3005. shader_version = shader.version_create();
  3006. Vector<RD::PipelineSpecializationConstant> specialization_constants;
  3007. {
  3008. RD::PipelineSpecializationConstant sc;
  3009. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3010. sc.constant_id = 0; // SHADER_SPECIALIZATION_HALF_RES
  3011. sc.bool_value = false;
  3012. specialization_constants.push_back(sc);
  3013. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3014. sc.constant_id = 1; // SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX
  3015. sc.bool_value = false;
  3016. specialization_constants.push_back(sc);
  3017. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3018. sc.constant_id = 2; // SHADER_SPECIALIZATION_USE_VRS
  3019. sc.bool_value = false;
  3020. specialization_constants.push_back(sc);
  3021. }
  3022. for (int v = 0; v < SHADER_SPECIALIZATION_VARIATIONS; v++) {
  3023. specialization_constants.ptrw()[0].bool_value = (v & SHADER_SPECIALIZATION_HALF_RES) ? true : false;
  3024. specialization_constants.ptrw()[1].bool_value = (v & SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX) ? true : false;
  3025. specialization_constants.ptrw()[2].bool_value = (v & SHADER_SPECIALIZATION_USE_VRS) ? true : false;
  3026. int variant_base = vrs_supported ? MODE_MAX : 0;
  3027. for (int i = 0; i < MODE_MAX; i++) {
  3028. pipelines[v][i] = RD::get_singleton()->compute_pipeline_create(shader.version_get_shader(shader_version, variant_base + i), specialization_constants);
  3029. }
  3030. }
  3031. sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIData));
  3032. }
  3033. {
  3034. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  3035. Vector<String> debug_modes;
  3036. debug_modes.push_back("");
  3037. sdfgi_shader.debug.initialize(debug_modes, defines);
  3038. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  3039. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  3040. sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
  3041. }
  3042. {
  3043. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  3044. Vector<String> versions;
  3045. versions.push_back("\n#define MODE_PROBES\n");
  3046. versions.push_back("\n#define MODE_PROBES\n#define USE_MULTIVIEW\n");
  3047. versions.push_back("\n#define MODE_VISIBILITY\n");
  3048. versions.push_back("\n#define MODE_VISIBILITY\n#define USE_MULTIVIEW\n");
  3049. sdfgi_shader.debug_probes.initialize(versions, defines);
  3050. // TODO disable multiview versions if turned off
  3051. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  3052. {
  3053. RD::PipelineRasterizationState rs;
  3054. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  3055. RD::PipelineDepthStencilState ds;
  3056. ds.enable_depth_test = true;
  3057. ds.enable_depth_write = true;
  3058. ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
  3059. for (int i = 0; i < SDFGIShader::PROBE_DEBUG_MAX; i++) {
  3060. // TODO check if version is enabled
  3061. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  3062. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  3063. }
  3064. }
  3065. }
  3066. default_voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(VoxelGIData) * MAX_VOXEL_GI_INSTANCES);
  3067. half_resolution = GLOBAL_GET("rendering/global_illumination/gi/use_half_resolution");
  3068. }
  3069. void GI::free() {
  3070. if (default_voxel_gi_buffer.is_valid()) {
  3071. RD::get_singleton()->free_rid(default_voxel_gi_buffer);
  3072. }
  3073. if (voxel_gi_lights_uniform.is_valid()) {
  3074. RD::get_singleton()->free_rid(voxel_gi_lights_uniform);
  3075. }
  3076. if (sdfgi_ubo.is_valid()) {
  3077. RD::get_singleton()->free_rid(sdfgi_ubo);
  3078. }
  3079. if (voxel_gi_lights) {
  3080. memdelete_arr(voxel_gi_lights);
  3081. }
  3082. }
  3083. Ref<GI::SDFGI> GI::create_sdfgi(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size) {
  3084. Ref<SDFGI> sdfgi;
  3085. sdfgi.instantiate();
  3086. sdfgi->create(p_env, p_world_position, p_requested_history_size, this);
  3087. return sdfgi;
  3088. }
  3089. void GI::setup_voxel_gi_instances(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, const Transform3D &p_transform, const PagedArray<RID> &p_voxel_gi_instances, uint32_t &r_voxel_gi_instances_used) {
  3090. ERR_FAIL_COND(p_render_buffers.is_null());
  3091. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  3092. ERR_FAIL_NULL(texture_storage);
  3093. r_voxel_gi_instances_used = 0;
  3094. Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  3095. ERR_FAIL_COND(rbgi.is_null());
  3096. RID voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
  3097. VoxelGIData voxel_gi_data[MAX_VOXEL_GI_INSTANCES];
  3098. bool voxel_gi_instances_changed = false;
  3099. Transform3D to_camera;
  3100. to_camera.origin = p_transform.origin; //only translation, make local
  3101. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  3102. RID texture;
  3103. if (i < (int)p_voxel_gi_instances.size()) {
  3104. VoxelGIInstance *gipi = voxel_gi_instance_owner.get_or_null(p_voxel_gi_instances[i]);
  3105. if (gipi) {
  3106. texture = gipi->texture;
  3107. VoxelGIData &gipd = voxel_gi_data[i];
  3108. RID base_probe = gipi->probe;
  3109. Transform3D to_cell = voxel_gi_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  3110. gipd.xform[0] = to_cell.basis.rows[0][0];
  3111. gipd.xform[1] = to_cell.basis.rows[1][0];
  3112. gipd.xform[2] = to_cell.basis.rows[2][0];
  3113. gipd.xform[3] = 0;
  3114. gipd.xform[4] = to_cell.basis.rows[0][1];
  3115. gipd.xform[5] = to_cell.basis.rows[1][1];
  3116. gipd.xform[6] = to_cell.basis.rows[2][1];
  3117. gipd.xform[7] = 0;
  3118. gipd.xform[8] = to_cell.basis.rows[0][2];
  3119. gipd.xform[9] = to_cell.basis.rows[1][2];
  3120. gipd.xform[10] = to_cell.basis.rows[2][2];
  3121. gipd.xform[11] = 0;
  3122. gipd.xform[12] = to_cell.origin.x;
  3123. gipd.xform[13] = to_cell.origin.y;
  3124. gipd.xform[14] = to_cell.origin.z;
  3125. gipd.xform[15] = 1;
  3126. Vector3 bounds = voxel_gi_get_octree_size(base_probe);
  3127. gipd.bounds[0] = bounds.x;
  3128. gipd.bounds[1] = bounds.y;
  3129. gipd.bounds[2] = bounds.z;
  3130. gipd.dynamic_range = voxel_gi_get_dynamic_range(base_probe) * voxel_gi_get_energy(base_probe);
  3131. gipd.bias = voxel_gi_get_bias(base_probe);
  3132. gipd.normal_bias = voxel_gi_get_normal_bias(base_probe);
  3133. gipd.blend_ambient = !voxel_gi_is_interior(base_probe);
  3134. gipd.mipmaps = gipi->mipmaps.size();
  3135. gipd.exposure_normalization = 1.0;
  3136. if (p_render_data->camera_attributes.is_valid()) {
  3137. float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  3138. gipd.exposure_normalization = exposure_normalization / voxel_gi_get_baked_exposure_normalization(base_probe);
  3139. }
  3140. }
  3141. r_voxel_gi_instances_used++;
  3142. }
  3143. if (texture == RID()) {
  3144. texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  3145. }
  3146. if (texture != rbgi->voxel_gi_textures[i]) {
  3147. voxel_gi_instances_changed = true;
  3148. rbgi->voxel_gi_textures[i] = texture;
  3149. }
  3150. }
  3151. if (voxel_gi_instances_changed) {
  3152. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  3153. if (RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
  3154. RD::get_singleton()->free_rid(rbgi->uniform_set[v]);
  3155. }
  3156. rbgi->uniform_set[v] = RID();
  3157. }
  3158. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  3159. // VoxelGI instances have changed, so we need to update volumetric fog.
  3160. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  3161. fog->sync_gi_dependent_sets_validity(true);
  3162. }
  3163. }
  3164. if (p_voxel_gi_instances.size() > 0) {
  3165. RD::get_singleton()->draw_command_begin_label("VoxelGIs Setup");
  3166. RD::get_singleton()->buffer_update(voxel_gi_buffer, 0, sizeof(VoxelGIData) * MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()), voxel_gi_data);
  3167. RD::get_singleton()->draw_command_end_label();
  3168. }
  3169. }
  3170. RID GI::RenderBuffersGI::get_voxel_gi_buffer() {
  3171. if (voxel_gi_buffer.is_null()) {
  3172. voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::VoxelGIData) * GI::MAX_VOXEL_GI_INSTANCES);
  3173. }
  3174. return voxel_gi_buffer;
  3175. }
  3176. void GI::RenderBuffersGI::free_data() {
  3177. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  3178. if (RD::get_singleton()->uniform_set_is_valid(uniform_set[v])) {
  3179. RD::get_singleton()->free_rid(uniform_set[v]);
  3180. }
  3181. uniform_set[v] = RID();
  3182. }
  3183. if (scene_data_ubo.is_valid()) {
  3184. RD::get_singleton()->free_rid(scene_data_ubo);
  3185. scene_data_ubo = RID();
  3186. }
  3187. if (voxel_gi_buffer.is_valid()) {
  3188. RD::get_singleton()->free_rid(voxel_gi_buffer);
  3189. voxel_gi_buffer = RID();
  3190. }
  3191. }
  3192. void GI::process_gi(Ref<RenderSceneBuffersRD> p_render_buffers, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer, RID p_environment, uint32_t p_view_count, const Projection *p_projections, const Vector3 *p_eye_offsets, const Transform3D &p_cam_transform, const PagedArray<RID> &p_voxel_gi_instances) {
  3193. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  3194. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  3195. ERR_FAIL_COND_MSG(p_view_count > 2, "Maximum of 2 views supported for Processing GI.");
  3196. RD::get_singleton()->draw_command_begin_label("GI Render");
  3197. ERR_FAIL_COND(p_render_buffers.is_null());
  3198. Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  3199. ERR_FAIL_COND(rbgi.is_null());
  3200. Size2i internal_size = p_render_buffers->get_internal_size();
  3201. if (rbgi->using_half_size_gi != half_resolution) {
  3202. p_render_buffers->clear_context(RB_SCOPE_GI);
  3203. }
  3204. if (!p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
  3205. Size2i size = internal_size;
  3206. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  3207. if (half_resolution) {
  3208. size.x >>= 1;
  3209. size.y >>= 1;
  3210. }
  3211. p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_AMBIENT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
  3212. p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_REFLECTION, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
  3213. rbgi->using_half_size_gi = half_resolution;
  3214. }
  3215. // Setup our scene data
  3216. {
  3217. SceneData scene_data;
  3218. if (rbgi->scene_data_ubo.is_null()) {
  3219. rbgi->scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SceneData));
  3220. }
  3221. Projection correction;
  3222. correction.set_depth_correction(false);
  3223. for (uint32_t v = 0; v < p_view_count; v++) {
  3224. Projection temp = correction * p_projections[v];
  3225. RendererRD::MaterialStorage::store_camera(temp.inverse(), scene_data.inv_projection[v]);
  3226. scene_data.eye_offset[v][0] = p_eye_offsets[v].x;
  3227. scene_data.eye_offset[v][1] = p_eye_offsets[v].y;
  3228. scene_data.eye_offset[v][2] = p_eye_offsets[v].z;
  3229. scene_data.eye_offset[v][3] = 0.0;
  3230. }
  3231. // Note that we will be ignoring the origin of this transform.
  3232. RendererRD::MaterialStorage::store_transform(p_cam_transform, scene_data.cam_transform);
  3233. scene_data.screen_size[0] = internal_size.x;
  3234. scene_data.screen_size[1] = internal_size.y;
  3235. RD::get_singleton()->buffer_update(rbgi->scene_data_ubo, 0, sizeof(SceneData), &scene_data);
  3236. }
  3237. // Now compute the contents of our buffers.
  3238. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3239. // Render each eye separately.
  3240. // We need to look into whether we can make our compute shader use Multiview but not sure that works or makes a difference..
  3241. // setup our push constant
  3242. PushConstant push_constant;
  3243. push_constant.max_voxel_gi_instances = MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size());
  3244. push_constant.high_quality_vct = voxel_gi_quality == RS::VOXEL_GI_QUALITY_HIGH;
  3245. // these should be the same for all views
  3246. push_constant.orthogonal = p_projections[0].is_orthogonal();
  3247. push_constant.z_near = p_projections[0].get_z_near();
  3248. push_constant.z_far = p_projections[0].get_z_far();
  3249. // these are only used if we have 1 view, else we use the projections in our scene data
  3250. push_constant.proj_info[0] = -2.0f / (internal_size.x * p_projections[0].columns[0][0]);
  3251. push_constant.proj_info[1] = -2.0f / (internal_size.y * p_projections[0].columns[1][1]);
  3252. push_constant.proj_info[2] = (1.0f - p_projections[0].columns[0][2]) / p_projections[0].columns[0][0];
  3253. push_constant.proj_info[3] = (1.0f + p_projections[0].columns[1][2]) / p_projections[0].columns[1][1];
  3254. bool use_sdfgi = p_render_buffers->has_custom_data(RB_SCOPE_SDFGI);
  3255. bool use_voxel_gi_instances = push_constant.max_voxel_gi_instances > 0;
  3256. Ref<SDFGI> sdfgi;
  3257. if (use_sdfgi) {
  3258. sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  3259. }
  3260. uint32_t pipeline_specialization = 0;
  3261. if (rbgi->using_half_size_gi) {
  3262. pipeline_specialization |= SHADER_SPECIALIZATION_HALF_RES;
  3263. }
  3264. if (p_view_count > 1) {
  3265. pipeline_specialization |= SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX;
  3266. }
  3267. bool has_vrs_texture = p_render_buffers->has_texture(RB_SCOPE_VRS, RB_TEXTURE);
  3268. if (has_vrs_texture) {
  3269. pipeline_specialization |= SHADER_SPECIALIZATION_USE_VRS;
  3270. }
  3271. bool without_sampler = RD::get_singleton()->sampler_is_format_supported_for_filter(RD::DATA_FORMAT_R8G8_UINT, RD::SAMPLER_FILTER_LINEAR);
  3272. Mode mode;
  3273. if (use_sdfgi && use_voxel_gi_instances) {
  3274. mode = without_sampler ? MODE_COMBINED_WITHOUT_SAMPLER : MODE_COMBINED;
  3275. } else if (use_sdfgi) {
  3276. mode = MODE_SDFGI;
  3277. } else {
  3278. mode = without_sampler ? MODE_VOXEL_GI_WITHOUT_SAMPLER : MODE_VOXEL_GI;
  3279. }
  3280. for (uint32_t v = 0; v < p_view_count; v++) {
  3281. push_constant.view_index = v;
  3282. // setup our uniform set
  3283. if (rbgi->uniform_set[v].is_null() || !RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
  3284. Vector<RD::Uniform> uniforms;
  3285. {
  3286. RD::Uniform u;
  3287. u.binding = 1;
  3288. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3289. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3290. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3291. u.append_id(sdfgi->cascades[j].sdf_tex);
  3292. } else {
  3293. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3294. }
  3295. }
  3296. uniforms.push_back(u);
  3297. }
  3298. {
  3299. RD::Uniform u;
  3300. u.binding = 2;
  3301. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3302. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3303. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3304. u.append_id(sdfgi->cascades[j].light_tex);
  3305. } else {
  3306. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3307. }
  3308. }
  3309. uniforms.push_back(u);
  3310. }
  3311. {
  3312. RD::Uniform u;
  3313. u.binding = 3;
  3314. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3315. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3316. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3317. u.append_id(sdfgi->cascades[j].light_aniso_0_tex);
  3318. } else {
  3319. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3320. }
  3321. }
  3322. uniforms.push_back(u);
  3323. }
  3324. {
  3325. RD::Uniform u;
  3326. u.binding = 4;
  3327. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3328. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3329. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3330. u.append_id(sdfgi->cascades[j].light_aniso_1_tex);
  3331. } else {
  3332. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3333. }
  3334. }
  3335. uniforms.push_back(u);
  3336. }
  3337. {
  3338. RD::Uniform u;
  3339. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3340. u.binding = 5;
  3341. if (use_sdfgi) {
  3342. u.append_id(sdfgi->occlusion_texture);
  3343. } else {
  3344. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3345. }
  3346. uniforms.push_back(u);
  3347. }
  3348. {
  3349. RD::Uniform u;
  3350. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3351. u.binding = 6;
  3352. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3353. uniforms.push_back(u);
  3354. }
  3355. {
  3356. RD::Uniform u;
  3357. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3358. u.binding = 7;
  3359. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3360. uniforms.push_back(u);
  3361. }
  3362. {
  3363. RD::Uniform u;
  3364. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3365. u.binding = 9;
  3366. u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_AMBIENT, v, 0));
  3367. uniforms.push_back(u);
  3368. }
  3369. {
  3370. RD::Uniform u;
  3371. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3372. u.binding = 10;
  3373. u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_REFLECTION, v, 0));
  3374. uniforms.push_back(u);
  3375. }
  3376. {
  3377. RD::Uniform u;
  3378. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3379. u.binding = 11;
  3380. if (use_sdfgi) {
  3381. u.append_id(sdfgi->lightprobe_texture);
  3382. } else {
  3383. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  3384. }
  3385. uniforms.push_back(u);
  3386. }
  3387. {
  3388. RD::Uniform u;
  3389. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3390. u.binding = 12;
  3391. u.append_id(p_render_buffers->get_depth_texture(v));
  3392. uniforms.push_back(u);
  3393. }
  3394. {
  3395. RD::Uniform u;
  3396. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3397. u.binding = 13;
  3398. u.append_id(p_normal_roughness_slices[v]);
  3399. uniforms.push_back(u);
  3400. }
  3401. {
  3402. RD::Uniform u;
  3403. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3404. u.binding = 14;
  3405. RID buffer = p_voxel_gi_buffer.is_valid() ? p_voxel_gi_buffer : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  3406. u.append_id(buffer);
  3407. uniforms.push_back(u);
  3408. }
  3409. {
  3410. RD::Uniform u;
  3411. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3412. u.binding = 15;
  3413. u.append_id(sdfgi_ubo);
  3414. uniforms.push_back(u);
  3415. }
  3416. {
  3417. RD::Uniform u;
  3418. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3419. u.binding = 16;
  3420. u.append_id(rbgi->get_voxel_gi_buffer());
  3421. uniforms.push_back(u);
  3422. }
  3423. {
  3424. RD::Uniform u;
  3425. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3426. u.binding = 17;
  3427. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  3428. u.append_id(rbgi->voxel_gi_textures[i]);
  3429. }
  3430. uniforms.push_back(u);
  3431. }
  3432. {
  3433. RD::Uniform u;
  3434. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3435. u.binding = 18;
  3436. u.append_id(rbgi->scene_data_ubo);
  3437. uniforms.push_back(u);
  3438. }
  3439. if (RendererSceneRenderRD::get_singleton()->is_vrs_supported()) {
  3440. RD::Uniform u;
  3441. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3442. u.binding = 19;
  3443. RID buffer = has_vrs_texture ? p_render_buffers->get_texture_slice(RB_SCOPE_VRS, RB_TEXTURE, v, 0) : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_VRS);
  3444. u.append_id(buffer);
  3445. uniforms.push_back(u);
  3446. }
  3447. bool vrs_supported = RendererSceneRenderRD::get_singleton()->is_vrs_supported();
  3448. int variant_base = vrs_supported ? MODE_MAX : 0;
  3449. rbgi->uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, shader.version_get_shader(shader_version, variant_base), 0);
  3450. }
  3451. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, pipelines[pipeline_specialization][mode]);
  3452. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rbgi->uniform_set[v], 0);
  3453. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
  3454. if (rbgi->using_half_size_gi) {
  3455. RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x >> 1, internal_size.y >> 1, 1);
  3456. } else {
  3457. RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x, internal_size.y, 1);
  3458. }
  3459. }
  3460. RD::get_singleton()->compute_list_end();
  3461. RD::get_singleton()->draw_command_end_label();
  3462. }
  3463. RID GI::voxel_gi_instance_create(RID p_base) {
  3464. VoxelGIInstance voxel_gi;
  3465. voxel_gi.gi = this;
  3466. voxel_gi.probe = p_base;
  3467. RID rid = voxel_gi_instance_owner.make_rid(voxel_gi);
  3468. return rid;
  3469. }
  3470. void GI::voxel_gi_instance_free(RID p_rid) {
  3471. GI::VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_rid);
  3472. voxel_gi->free_resources();
  3473. voxel_gi_instance_owner.free(p_rid);
  3474. }
  3475. void GI::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  3476. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3477. ERR_FAIL_NULL(voxel_gi);
  3478. voxel_gi->transform = p_xform;
  3479. }
  3480. bool GI::voxel_gi_needs_update(RID p_probe) const {
  3481. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3482. ERR_FAIL_NULL_V(voxel_gi, false);
  3483. return voxel_gi->last_probe_version != voxel_gi_get_version(voxel_gi->probe);
  3484. }
  3485. void GI::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  3486. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3487. ERR_FAIL_NULL(voxel_gi);
  3488. voxel_gi->update(p_update_light_instances, p_light_instances, p_dynamic_objects);
  3489. }
  3490. void GI::debug_voxel_gi(RID p_voxel_gi, RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  3491. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_voxel_gi);
  3492. ERR_FAIL_NULL(voxel_gi);
  3493. voxel_gi->debug(p_draw_list, p_framebuffer, p_camera_with_transform, p_lighting, p_emission, p_alpha);
  3494. }
  3495. void GI::enable_vrs_shader_group() {
  3496. shader.enable_group(GROUP_VRS);
  3497. }