123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Transform2D" version="3.2">
- <brief_description>
- 2D transformation (3×2 matrix).
- </brief_description>
- <description>
- Represents one or many transformations in 2D space such as translation, rotation, or scaling. It consists of two [member x] and [member y] [Vector2]s and an [member origin]. It is similar to a 3×2 matrix.
- </description>
- <tutorials>
- </tutorials>
- <methods>
- <method name="Transform2D">
- <return type="Transform2D">
- </return>
- <argument index="0" name="from" type="Transform">
- </argument>
- <description>
- Constructs the transform from a 3D [Transform].
- </description>
- </method>
- <method name="Transform2D">
- <return type="Transform2D">
- </return>
- <argument index="0" name="x_axis" type="Vector2">
- </argument>
- <argument index="1" name="y_axis" type="Vector2">
- </argument>
- <argument index="2" name="origin" type="Vector2">
- </argument>
- <description>
- Constructs the transform from 3 [Vector2]s representing x, y, and origin.
- </description>
- </method>
- <method name="Transform2D">
- <return type="Transform2D">
- </return>
- <argument index="0" name="rotation" type="float">
- </argument>
- <argument index="1" name="position" type="Vector2">
- </argument>
- <description>
- Constructs the transform from a given angle (in radians) and position.
- </description>
- </method>
- <method name="affine_inverse">
- <return type="Transform2D">
- </return>
- <description>
- Returns the inverse of the matrix.
- </description>
- </method>
- <method name="basis_xform">
- <return type="Vector2">
- </return>
- <argument index="0" name="v" type="Vector2">
- </argument>
- <description>
- Transforms the given vector by this transform's basis (no translation).
- </description>
- </method>
- <method name="basis_xform_inv">
- <return type="Vector2">
- </return>
- <argument index="0" name="v" type="Vector2">
- </argument>
- <description>
- Inverse-transforms the given vector by this transform's basis (no translation).
- </description>
- </method>
- <method name="get_origin">
- <return type="Vector2">
- </return>
- <description>
- Returns the transform's origin (translation).
- </description>
- </method>
- <method name="get_rotation">
- <return type="float">
- </return>
- <description>
- Returns the transform's rotation (in radians).
- </description>
- </method>
- <method name="get_scale">
- <return type="Vector2">
- </return>
- <description>
- Returns the scale.
- </description>
- </method>
- <method name="interpolate_with">
- <return type="Transform2D">
- </return>
- <argument index="0" name="transform" type="Transform2D">
- </argument>
- <argument index="1" name="weight" type="float">
- </argument>
- <description>
- Returns a transform interpolated between this transform and another by a given weight (0-1).
- </description>
- </method>
- <method name="inverse">
- <return type="Transform2D">
- </return>
- <description>
- Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
- </description>
- </method>
- <method name="is_equal_approx">
- <return type="bool">
- </return>
- <argument index="0" name="transform" type="Transform2D">
- </argument>
- <description>
- Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
- </description>
- </method>
- <method name="orthonormalized">
- <return type="Transform2D">
- </return>
- <description>
- Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
- </description>
- </method>
- <method name="rotated">
- <return type="Transform2D">
- </return>
- <argument index="0" name="phi" type="float">
- </argument>
- <description>
- Rotates the transform by the given angle (in radians), using matrix multiplication.
- </description>
- </method>
- <method name="scaled">
- <return type="Transform2D">
- </return>
- <argument index="0" name="scale" type="Vector2">
- </argument>
- <description>
- Scales the transform by the given scale factor, using matrix multiplication.
- </description>
- </method>
- <method name="translated">
- <return type="Transform2D">
- </return>
- <argument index="0" name="offset" type="Vector2">
- </argument>
- <description>
- Translates the transform by the given offset, relative to the transform's basis vectors.
- Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
- </description>
- </method>
- <method name="xform">
- <return type="Variant">
- </return>
- <argument index="0" name="v" type="Variant">
- </argument>
- <description>
- Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
- </description>
- </method>
- <method name="xform_inv">
- <return type="Variant">
- </return>
- <argument index="0" name="v" type="Variant">
- </argument>
- <description>
- Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
- </description>
- </method>
- </methods>
- <members>
- <member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
- The transform's translation offset.
- </member>
- <member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
- The X axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
- </member>
- <member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
- The Y axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
- </member>
- </members>
- <constants>
- <constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
- [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
- </constant>
- <constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
- [Transform2D] with mirroring applied parallel to the X axis.
- </constant>
- <constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
- [Transform2D] with mirroring applied parallel to the Y axis.
- </constant>
- </constants>
- </class>
|