mesh_storage.cpp 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. if (new_surface.vertex_data.size()) {
  321. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  322. // from a compressed array in the shader. To do so, we allow the the normal to read 4 components out of the buffer
  323. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  324. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  325. // this should still be a net win for bandwidth.
  326. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  327. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  328. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  329. Vector<uint8_t> new_vertex_data;
  330. new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  331. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  332. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, use_as_storage);
  333. s->vertex_buffer_size = new_vertex_data.size();
  334. } else {
  335. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, use_as_storage);
  336. s->vertex_buffer_size = new_surface.vertex_data.size();
  337. }
  338. }
  339. if (new_surface.attribute_data.size()) {
  340. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  341. }
  342. if (new_surface.skin_data.size()) {
  343. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, use_as_storage);
  344. s->skin_buffer_size = new_surface.skin_data.size();
  345. }
  346. s->vertex_count = new_surface.vertex_count;
  347. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  348. mesh->has_bone_weights = true;
  349. }
  350. if (new_surface.index_count) {
  351. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  352. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  353. s->index_count = new_surface.index_count;
  354. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  355. if (new_surface.lods.size()) {
  356. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  357. s->lod_count = new_surface.lods.size();
  358. for (int i = 0; i < new_surface.lods.size(); i++) {
  359. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  360. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  361. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  362. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  363. s->lods[i].index_count = indices;
  364. }
  365. }
  366. }
  367. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  368. s->aabb = new_surface.aabb;
  369. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  370. s->uv_scale = new_surface.uv_scale;
  371. if (mesh->blend_shape_count > 0) {
  372. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  373. }
  374. if (use_as_storage) {
  375. Vector<RD::Uniform> uniforms;
  376. {
  377. RD::Uniform u;
  378. u.binding = 0;
  379. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  380. if (s->vertex_buffer.is_valid()) {
  381. u.append_id(s->vertex_buffer);
  382. } else {
  383. u.append_id(default_rd_storage_buffer);
  384. }
  385. uniforms.push_back(u);
  386. }
  387. {
  388. RD::Uniform u;
  389. u.binding = 1;
  390. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  391. if (s->skin_buffer.is_valid()) {
  392. u.append_id(s->skin_buffer);
  393. } else {
  394. u.append_id(default_rd_storage_buffer);
  395. }
  396. uniforms.push_back(u);
  397. }
  398. {
  399. RD::Uniform u;
  400. u.binding = 2;
  401. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  402. if (s->blend_shape_buffer.is_valid()) {
  403. u.append_id(s->blend_shape_buffer);
  404. } else {
  405. u.append_id(default_rd_storage_buffer);
  406. }
  407. uniforms.push_back(u);
  408. }
  409. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  410. }
  411. if (mesh->surface_count == 0) {
  412. mesh->aabb = new_surface.aabb;
  413. } else {
  414. mesh->aabb.merge_with(new_surface.aabb);
  415. }
  416. mesh->skeleton_aabb_version = 0;
  417. s->material = new_surface.material;
  418. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  419. mesh->surfaces[mesh->surface_count] = s;
  420. mesh->surface_count++;
  421. for (MeshInstance *mi : mesh->instances) {
  422. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  423. }
  424. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  425. for (Mesh *E : mesh->shadow_owners) {
  426. Mesh *shadow_owner = E;
  427. shadow_owner->shadow_mesh = RID();
  428. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  429. }
  430. mesh->material_cache.clear();
  431. }
  432. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  433. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  434. ERR_FAIL_NULL_V(mesh, -1);
  435. return mesh->blend_shape_count;
  436. }
  437. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  438. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  439. ERR_FAIL_NULL(mesh);
  440. ERR_FAIL_INDEX((int)p_mode, 2);
  441. mesh->blend_shape_mode = p_mode;
  442. }
  443. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  444. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  445. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  446. return mesh->blend_shape_mode;
  447. }
  448. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  449. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  450. ERR_FAIL_NULL(mesh);
  451. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  452. ERR_FAIL_COND(p_data.size() == 0);
  453. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  454. uint64_t data_size = p_data.size();
  455. const uint8_t *r = p_data.ptr();
  456. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  457. }
  458. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  459. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  460. ERR_FAIL_NULL(mesh);
  461. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  462. ERR_FAIL_COND(p_data.size() == 0);
  463. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  464. uint64_t data_size = p_data.size();
  465. const uint8_t *r = p_data.ptr();
  466. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  467. }
  468. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  469. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  470. ERR_FAIL_NULL(mesh);
  471. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  472. ERR_FAIL_COND(p_data.size() == 0);
  473. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  474. uint64_t data_size = p_data.size();
  475. const uint8_t *r = p_data.ptr();
  476. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  477. }
  478. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  479. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  480. ERR_FAIL_NULL(mesh);
  481. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  482. mesh->surfaces[p_surface]->material = p_material;
  483. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  484. mesh->material_cache.clear();
  485. }
  486. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  487. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  488. ERR_FAIL_NULL_V(mesh, RID());
  489. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  490. return mesh->surfaces[p_surface]->material;
  491. }
  492. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  495. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  496. Mesh::Surface &s = *mesh->surfaces[p_surface];
  497. RS::SurfaceData sd;
  498. sd.format = s.format;
  499. if (s.vertex_buffer.is_valid()) {
  500. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  501. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  502. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  503. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  504. }
  505. }
  506. if (s.attribute_buffer.is_valid()) {
  507. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  508. }
  509. if (s.skin_buffer.is_valid()) {
  510. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  511. }
  512. sd.vertex_count = s.vertex_count;
  513. sd.index_count = s.index_count;
  514. sd.primitive = s.primitive;
  515. if (sd.index_count) {
  516. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  517. }
  518. sd.aabb = s.aabb;
  519. sd.uv_scale = s.uv_scale;
  520. for (uint32_t i = 0; i < s.lod_count; i++) {
  521. RS::SurfaceData::LOD lod;
  522. lod.edge_length = s.lods[i].edge_length;
  523. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  524. sd.lods.push_back(lod);
  525. }
  526. sd.bone_aabbs = s.bone_aabbs;
  527. if (s.blend_shape_buffer.is_valid()) {
  528. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  529. }
  530. return sd;
  531. }
  532. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  533. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  534. ERR_FAIL_NULL_V(mesh, 0);
  535. return mesh->surface_count;
  536. }
  537. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  538. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  539. ERR_FAIL_NULL(mesh);
  540. mesh->custom_aabb = p_aabb;
  541. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  542. }
  543. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  544. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  545. ERR_FAIL_NULL_V(mesh, AABB());
  546. return mesh->custom_aabb;
  547. }
  548. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  549. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  550. ERR_FAIL_NULL_V(mesh, AABB());
  551. if (mesh->custom_aabb != AABB()) {
  552. return mesh->custom_aabb;
  553. }
  554. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  555. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  556. return mesh->aabb;
  557. }
  558. AABB aabb;
  559. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  560. AABB laabb;
  561. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  562. int bs = mesh->surfaces[i]->bone_aabbs.size();
  563. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  564. int sbs = skeleton->size;
  565. ERR_CONTINUE(bs > sbs);
  566. const float *baseptr = skeleton->data.ptr();
  567. bool first = true;
  568. if (skeleton->use_2d) {
  569. for (int j = 0; j < bs; j++) {
  570. if (skbones[j].size == Vector3(-1, -1, -1)) {
  571. continue; //bone is unused
  572. }
  573. const float *dataptr = baseptr + j * 8;
  574. Transform3D mtx;
  575. mtx.basis.rows[0][0] = dataptr[0];
  576. mtx.basis.rows[0][1] = dataptr[1];
  577. mtx.origin.x = dataptr[3];
  578. mtx.basis.rows[1][0] = dataptr[4];
  579. mtx.basis.rows[1][1] = dataptr[5];
  580. mtx.origin.y = dataptr[7];
  581. AABB baabb = mtx.xform(skbones[j]);
  582. if (first) {
  583. laabb = baabb;
  584. first = false;
  585. } else {
  586. laabb.merge_with(baabb);
  587. }
  588. }
  589. } else {
  590. for (int j = 0; j < bs; j++) {
  591. if (skbones[j].size == Vector3(-1, -1, -1)) {
  592. continue; //bone is unused
  593. }
  594. const float *dataptr = baseptr + j * 12;
  595. Transform3D mtx;
  596. mtx.basis.rows[0][0] = dataptr[0];
  597. mtx.basis.rows[0][1] = dataptr[1];
  598. mtx.basis.rows[0][2] = dataptr[2];
  599. mtx.origin.x = dataptr[3];
  600. mtx.basis.rows[1][0] = dataptr[4];
  601. mtx.basis.rows[1][1] = dataptr[5];
  602. mtx.basis.rows[1][2] = dataptr[6];
  603. mtx.origin.y = dataptr[7];
  604. mtx.basis.rows[2][0] = dataptr[8];
  605. mtx.basis.rows[2][1] = dataptr[9];
  606. mtx.basis.rows[2][2] = dataptr[10];
  607. mtx.origin.z = dataptr[11];
  608. AABB baabb = mtx.xform(skbones[j]);
  609. if (first) {
  610. laabb = baabb;
  611. first = false;
  612. } else {
  613. laabb.merge_with(baabb);
  614. }
  615. }
  616. }
  617. if (laabb.size == Vector3()) {
  618. laabb = mesh->surfaces[i]->aabb;
  619. }
  620. } else {
  621. laabb = mesh->surfaces[i]->aabb;
  622. }
  623. if (i == 0) {
  624. aabb = laabb;
  625. } else {
  626. aabb.merge_with(laabb);
  627. }
  628. }
  629. mesh->aabb = aabb;
  630. mesh->skeleton_aabb_version = skeleton->version;
  631. return aabb;
  632. }
  633. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  634. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  635. ERR_FAIL_NULL(mesh);
  636. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  637. if (shadow_mesh) {
  638. shadow_mesh->shadow_owners.erase(mesh);
  639. }
  640. mesh->shadow_mesh = p_shadow_mesh;
  641. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  642. if (shadow_mesh) {
  643. shadow_mesh->shadow_owners.insert(mesh);
  644. }
  645. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  646. }
  647. void MeshStorage::mesh_clear(RID p_mesh) {
  648. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  649. ERR_FAIL_NULL(mesh);
  650. // Clear instance data before mesh data.
  651. for (MeshInstance *mi : mesh->instances) {
  652. _mesh_instance_clear(mi);
  653. }
  654. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  655. Mesh::Surface &s = *mesh->surfaces[i];
  656. if (s.vertex_buffer.is_valid()) {
  657. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  658. }
  659. if (s.attribute_buffer.is_valid()) {
  660. RD::get_singleton()->free(s.attribute_buffer);
  661. }
  662. if (s.skin_buffer.is_valid()) {
  663. RD::get_singleton()->free(s.skin_buffer);
  664. }
  665. if (s.versions) {
  666. memfree(s.versions); //reallocs, so free with memfree.
  667. }
  668. if (s.index_buffer.is_valid()) {
  669. RD::get_singleton()->free(s.index_buffer);
  670. }
  671. if (s.lod_count) {
  672. for (uint32_t j = 0; j < s.lod_count; j++) {
  673. RD::get_singleton()->free(s.lods[j].index_buffer);
  674. }
  675. memdelete_arr(s.lods);
  676. }
  677. if (s.blend_shape_buffer.is_valid()) {
  678. RD::get_singleton()->free(s.blend_shape_buffer);
  679. }
  680. memdelete(mesh->surfaces[i]);
  681. }
  682. if (mesh->surfaces) {
  683. memfree(mesh->surfaces);
  684. }
  685. mesh->surfaces = nullptr;
  686. mesh->surface_count = 0;
  687. mesh->material_cache.clear();
  688. mesh->has_bone_weights = false;
  689. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  690. for (Mesh *E : mesh->shadow_owners) {
  691. Mesh *shadow_owner = E;
  692. shadow_owner->shadow_mesh = RID();
  693. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  694. }
  695. }
  696. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  697. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  698. ERR_FAIL_NULL_V(mesh, false);
  699. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  700. }
  701. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  702. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  703. ERR_FAIL_NULL_V(mesh, nullptr);
  704. return &mesh->dependency;
  705. }
  706. /* MESH INSTANCE */
  707. RID MeshStorage::mesh_instance_create(RID p_base) {
  708. Mesh *mesh = mesh_owner.get_or_null(p_base);
  709. ERR_FAIL_NULL_V(mesh, RID());
  710. RID rid = mesh_instance_owner.make_rid();
  711. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  712. mi->mesh = mesh;
  713. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  714. _mesh_instance_add_surface(mi, mesh, i);
  715. }
  716. mi->I = mesh->instances.push_back(mi);
  717. mi->dirty = true;
  718. return rid;
  719. }
  720. void MeshStorage::mesh_instance_free(RID p_rid) {
  721. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  722. _mesh_instance_clear(mi);
  723. mi->mesh->instances.erase(mi->I);
  724. mi->I = nullptr;
  725. mesh_instance_owner.free(p_rid);
  726. }
  727. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  728. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  729. if (mi->skeleton == p_skeleton) {
  730. return;
  731. }
  732. mi->skeleton = p_skeleton;
  733. mi->skeleton_version = 0;
  734. mi->dirty = true;
  735. }
  736. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  737. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  738. ERR_FAIL_NULL(mi);
  739. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  740. mi->blend_weights[p_shape] = p_weight;
  741. mi->weights_dirty = true;
  742. //will be eventually updated
  743. }
  744. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  745. for (const RendererRD::MeshStorage::MeshInstance::Surface &surface : mi->surfaces) {
  746. if (surface.versions) {
  747. for (uint32_t j = 0; j < surface.version_count; j++) {
  748. RD::get_singleton()->free(surface.versions[j].vertex_array);
  749. }
  750. memfree(surface.versions);
  751. }
  752. for (uint32_t i = 0; i < 2; i++) {
  753. if (surface.vertex_buffer[i].is_valid()) {
  754. RD::get_singleton()->free(surface.vertex_buffer[i]);
  755. }
  756. }
  757. }
  758. mi->surfaces.clear();
  759. if (mi->blend_weights_buffer.is_valid()) {
  760. RD::get_singleton()->free(mi->blend_weights_buffer);
  761. mi->blend_weights_buffer = RID();
  762. }
  763. mi->blend_weights.clear();
  764. mi->weights_dirty = false;
  765. mi->skeleton_version = 0;
  766. }
  767. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  768. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  769. mi->blend_weights.resize(mesh->blend_shape_count);
  770. for (float &weight : mi->blend_weights) {
  771. weight = 0;
  772. }
  773. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  774. mi->weights_dirty = true;
  775. }
  776. MeshInstance::Surface s;
  777. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  778. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  779. }
  780. mi->surfaces.push_back(s);
  781. mi->dirty = true;
  782. }
  783. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  784. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  785. Vector<RD::Uniform> uniforms;
  786. {
  787. RD::Uniform u;
  788. u.binding = 1;
  789. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  790. u.append_id(s->vertex_buffer[p_buffer_index]);
  791. uniforms.push_back(u);
  792. }
  793. {
  794. RD::Uniform u;
  795. u.binding = 2;
  796. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  797. if (mi->blend_weights_buffer.is_valid()) {
  798. u.append_id(mi->blend_weights_buffer);
  799. } else {
  800. u.append_id(default_rd_storage_buffer);
  801. }
  802. uniforms.push_back(u);
  803. }
  804. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  805. }
  806. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  807. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  808. bool needs_update = mi->dirty;
  809. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  810. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  811. needs_update = true;
  812. }
  813. if (mi->array_update_list.in_list()) {
  814. return;
  815. }
  816. if (!needs_update && mi->skeleton.is_valid()) {
  817. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  818. if (sk && sk->version != mi->skeleton_version) {
  819. needs_update = true;
  820. }
  821. }
  822. if (needs_update) {
  823. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  824. }
  825. }
  826. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  827. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  828. mi->canvas_item_transform_2d = p_transform;
  829. }
  830. void MeshStorage::update_mesh_instances() {
  831. while (dirty_mesh_instance_weights.first()) {
  832. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  833. if (mi->blend_weights_buffer.is_valid()) {
  834. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  835. }
  836. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  837. mi->weights_dirty = false;
  838. }
  839. if (dirty_mesh_instance_arrays.first() == nullptr) {
  840. return; //nothing to do
  841. }
  842. //process skeletons and blend shapes
  843. uint64_t frame = RSG::rasterizer->get_frame_number();
  844. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  845. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  846. while (dirty_mesh_instance_arrays.first()) {
  847. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  848. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  849. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  850. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  851. // Skip over mesh instances that don't require their own uniform buffers.
  852. continue;
  853. }
  854. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  855. if (uses_motion_vectors && (frame - mi->surfaces[i].last_change) == 1) {
  856. // Previous buffer's data can only be one frame old to be able to use motion vectors.
  857. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  858. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  859. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  860. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  861. }
  862. mi->surfaces[i].current_buffer = new_buffer_index;
  863. }
  864. mi->surfaces[i].last_change = frame;
  865. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  866. if (mi_surface_uniform_set.is_null()) {
  867. continue;
  868. }
  869. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  870. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  871. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  872. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  873. if (sk && sk->uniform_set_mi.is_valid()) {
  874. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  875. } else {
  876. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  877. }
  878. SkeletonShader::PushConstant push_constant;
  879. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  880. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  881. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  882. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  883. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  884. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  885. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  886. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  887. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  888. Transform2D transform = Transform2D();
  889. if (sk && sk->use_2d) {
  890. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  891. }
  892. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  893. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  894. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  895. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  896. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  897. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  898. Transform2D inverse_transform = transform.affine_inverse();
  899. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  900. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  901. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  902. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  903. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  904. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  905. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  906. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  907. push_constant.pad1 = 0;
  908. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  909. //dispatch without barrier, so all is done at the same time
  910. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  911. }
  912. mi->dirty = false;
  913. if (sk) {
  914. mi->skeleton_version = sk->version;
  915. }
  916. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  917. }
  918. RD::get_singleton()->compute_list_end();
  919. }
  920. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  921. Vector<RD::VertexAttribute> attributes;
  922. Vector<RID> buffers;
  923. Vector<uint64_t> offsets;
  924. uint32_t position_stride = 0;
  925. uint32_t normal_tangent_stride = 0;
  926. uint32_t attribute_stride = 0;
  927. uint32_t skin_stride = 0;
  928. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  929. RD::VertexAttribute vd;
  930. RID buffer;
  931. vd.location = i;
  932. uint64_t offset = 0;
  933. if (!(s->format & (1ULL << i))) {
  934. // Not supplied by surface, use default value
  935. buffer = mesh_default_rd_buffers[i];
  936. vd.stride = 0;
  937. switch (i) {
  938. case RS::ARRAY_VERTEX: {
  939. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  940. } break;
  941. case RS::ARRAY_NORMAL: {
  942. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  943. } break;
  944. case RS::ARRAY_TANGENT: {
  945. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  946. } break;
  947. case RS::ARRAY_COLOR: {
  948. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  949. } break;
  950. case RS::ARRAY_TEX_UV: {
  951. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  952. } break;
  953. case RS::ARRAY_TEX_UV2: {
  954. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  955. } break;
  956. case RS::ARRAY_CUSTOM0:
  957. case RS::ARRAY_CUSTOM1:
  958. case RS::ARRAY_CUSTOM2:
  959. case RS::ARRAY_CUSTOM3: {
  960. //assumed weights too
  961. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  962. } break;
  963. case RS::ARRAY_BONES: {
  964. //assumed weights too
  965. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  966. } break;
  967. case RS::ARRAY_WEIGHTS: {
  968. //assumed weights too
  969. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  970. } break;
  971. }
  972. } else {
  973. //Supplied, use it
  974. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  975. switch (i) {
  976. case RS::ARRAY_VERTEX: {
  977. vd.offset = position_stride;
  978. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  979. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  980. position_stride = sizeof(float) * 2;
  981. } else {
  982. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  983. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  984. position_stride = sizeof(uint16_t) * 4;
  985. } else {
  986. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  987. position_stride = sizeof(float) * 3;
  988. }
  989. }
  990. if (mis) {
  991. buffer = mis->vertex_buffer[p_current_buffer];
  992. } else {
  993. buffer = s->vertex_buffer;
  994. }
  995. } break;
  996. case RS::ARRAY_NORMAL: {
  997. vd.offset = 0;
  998. offset = position_stride * s->vertex_count;
  999. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1000. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1001. normal_tangent_stride += sizeof(uint16_t) * 2;
  1002. } else {
  1003. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1004. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1005. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1006. // but a stride based on only having 2 elements.
  1007. if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
  1008. normal_tangent_stride += sizeof(uint16_t) * 2;
  1009. } else {
  1010. normal_tangent_stride += sizeof(uint16_t) * 4;
  1011. }
  1012. }
  1013. if (mis) {
  1014. buffer = mis->vertex_buffer[p_current_buffer];
  1015. } else {
  1016. buffer = s->vertex_buffer;
  1017. }
  1018. } break;
  1019. case RS::ARRAY_TANGENT: {
  1020. buffer = mesh_default_rd_buffers[i];
  1021. vd.stride = 0;
  1022. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1023. } break;
  1024. case RS::ARRAY_COLOR: {
  1025. vd.offset = attribute_stride;
  1026. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1027. attribute_stride += sizeof(int8_t) * 4;
  1028. buffer = s->attribute_buffer;
  1029. } break;
  1030. case RS::ARRAY_TEX_UV: {
  1031. vd.offset = attribute_stride;
  1032. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1033. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1034. attribute_stride += sizeof(uint16_t) * 2;
  1035. } else {
  1036. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1037. attribute_stride += sizeof(float) * 2;
  1038. }
  1039. buffer = s->attribute_buffer;
  1040. } break;
  1041. case RS::ARRAY_TEX_UV2: {
  1042. vd.offset = attribute_stride;
  1043. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1044. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1045. attribute_stride += sizeof(uint16_t) * 2;
  1046. } else {
  1047. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1048. attribute_stride += sizeof(float) * 2;
  1049. }
  1050. buffer = s->attribute_buffer;
  1051. } break;
  1052. case RS::ARRAY_CUSTOM0:
  1053. case RS::ARRAY_CUSTOM1:
  1054. case RS::ARRAY_CUSTOM2:
  1055. case RS::ARRAY_CUSTOM3: {
  1056. vd.offset = attribute_stride;
  1057. int idx = i - RS::ARRAY_CUSTOM0;
  1058. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1059. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1060. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1061. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1062. vd.format = fmtrd[fmt];
  1063. attribute_stride += fmtsize[fmt];
  1064. buffer = s->attribute_buffer;
  1065. } break;
  1066. case RS::ARRAY_BONES: {
  1067. vd.offset = skin_stride;
  1068. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1069. skin_stride += sizeof(int16_t) * 4;
  1070. buffer = s->skin_buffer;
  1071. } break;
  1072. case RS::ARRAY_WEIGHTS: {
  1073. vd.offset = skin_stride;
  1074. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1075. skin_stride += sizeof(int16_t) * 4;
  1076. buffer = s->skin_buffer;
  1077. } break;
  1078. }
  1079. }
  1080. if (!(p_input_mask & (1ULL << i))) {
  1081. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1082. }
  1083. attributes.push_back(vd);
  1084. buffers.push_back(buffer);
  1085. offsets.push_back(offset);
  1086. if (p_input_motion_vectors) {
  1087. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when motion
  1088. // vectors are enabled, we opt to push a copy of the vertex attribute with a different location and buffer (if it's
  1089. // part of an instance that has one).
  1090. switch (i) {
  1091. case RS::ARRAY_VERTEX: {
  1092. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1093. } break;
  1094. case RS::ARRAY_NORMAL: {
  1095. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1096. } break;
  1097. case RS::ARRAY_TANGENT: {
  1098. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1099. } break;
  1100. }
  1101. if (int(vd.location) != i) {
  1102. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1103. buffer = mis->vertex_buffer[p_previous_buffer];
  1104. }
  1105. attributes.push_back(vd);
  1106. buffers.push_back(buffer);
  1107. offsets.push_back(offset);
  1108. }
  1109. }
  1110. }
  1111. //update final stride
  1112. for (int i = 0; i < attributes.size(); i++) {
  1113. if (attributes[i].stride == 0) {
  1114. continue; //default location
  1115. }
  1116. int loc = attributes[i].location;
  1117. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1118. attributes.write[i].stride = position_stride;
  1119. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1120. attributes.write[i].stride = normal_tangent_stride;
  1121. } else if (loc < RS::ARRAY_BONES) {
  1122. attributes.write[i].stride = attribute_stride;
  1123. } else {
  1124. attributes.write[i].stride = skin_stride;
  1125. }
  1126. }
  1127. v.input_mask = p_input_mask;
  1128. v.current_buffer = p_current_buffer;
  1129. v.previous_buffer = p_previous_buffer;
  1130. v.input_motion_vectors = p_input_motion_vectors;
  1131. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1132. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1133. }
  1134. ////////////////// MULTIMESH
  1135. RID MeshStorage::multimesh_allocate() {
  1136. return multimesh_owner.allocate_rid();
  1137. }
  1138. void MeshStorage::multimesh_initialize(RID p_rid) {
  1139. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1140. }
  1141. void MeshStorage::multimesh_free(RID p_rid) {
  1142. _update_dirty_multimeshes();
  1143. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1144. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1145. multimesh->dependency.deleted_notify(p_rid);
  1146. multimesh_owner.free(p_rid);
  1147. }
  1148. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1149. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1150. ERR_FAIL_NULL(multimesh);
  1151. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1152. return;
  1153. }
  1154. if (multimesh->buffer.is_valid()) {
  1155. RD::get_singleton()->free(multimesh->buffer);
  1156. multimesh->buffer = RID();
  1157. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1158. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1159. }
  1160. if (multimesh->data_cache_dirty_regions) {
  1161. memdelete_arr(multimesh->data_cache_dirty_regions);
  1162. multimesh->data_cache_dirty_regions = nullptr;
  1163. multimesh->data_cache_dirty_region_count = 0;
  1164. }
  1165. if (multimesh->previous_data_cache_dirty_regions) {
  1166. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1167. multimesh->previous_data_cache_dirty_regions = nullptr;
  1168. multimesh->previous_data_cache_dirty_region_count = 0;
  1169. }
  1170. multimesh->instances = p_instances;
  1171. multimesh->xform_format = p_transform_format;
  1172. multimesh->uses_colors = p_use_colors;
  1173. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1174. multimesh->uses_custom_data = p_use_custom_data;
  1175. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1176. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1177. multimesh->buffer_set = false;
  1178. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1179. multimesh->data_cache = Vector<float>();
  1180. multimesh->aabb = AABB();
  1181. multimesh->aabb_dirty = false;
  1182. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1183. multimesh->motion_vectors_current_offset = 0;
  1184. multimesh->motion_vectors_previous_offset = 0;
  1185. multimesh->motion_vectors_last_change = -1;
  1186. if (multimesh->instances) {
  1187. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1188. if (multimesh->motion_vectors_enabled) {
  1189. buffer_size *= 2;
  1190. }
  1191. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1192. }
  1193. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1194. }
  1195. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1196. if (multimesh->motion_vectors_enabled) {
  1197. return;
  1198. }
  1199. multimesh->motion_vectors_enabled = true;
  1200. multimesh->motion_vectors_current_offset = 0;
  1201. multimesh->motion_vectors_previous_offset = 0;
  1202. multimesh->motion_vectors_last_change = -1;
  1203. if (!multimesh->data_cache.is_empty()) {
  1204. multimesh->data_cache.append_array(multimesh->data_cache);
  1205. }
  1206. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1207. uint32_t new_buffer_size = buffer_size * 2;
  1208. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1209. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1210. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1211. RD::get_singleton()->barrier();
  1212. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size, RD::BARRIER_MASK_NO_BARRIER);
  1213. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1214. } else if (!multimesh->data_cache.is_empty()) {
  1215. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1216. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1217. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1218. }
  1219. if (multimesh->buffer.is_valid()) {
  1220. RD::get_singleton()->free(multimesh->buffer);
  1221. }
  1222. multimesh->buffer = new_buffer;
  1223. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1224. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1225. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1226. }
  1227. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1228. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1229. ERR_FAIL_NULL(multimesh);
  1230. r_current_offset = multimesh->motion_vectors_current_offset;
  1231. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1232. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1233. }
  1234. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1235. }
  1236. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1237. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1238. ERR_FAIL_NULL_V(multimesh, false);
  1239. return _multimesh_uses_motion_vectors(multimesh);
  1240. }
  1241. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1242. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1243. ERR_FAIL_NULL_V(multimesh, 0);
  1244. return multimesh->instances;
  1245. }
  1246. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1247. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1248. ERR_FAIL_NULL(multimesh);
  1249. if (multimesh->mesh == p_mesh) {
  1250. return;
  1251. }
  1252. multimesh->mesh = p_mesh;
  1253. if (multimesh->instances == 0) {
  1254. return;
  1255. }
  1256. if (multimesh->data_cache.size()) {
  1257. //we have a data cache, just mark it dirt
  1258. _multimesh_mark_all_dirty(multimesh, false, true);
  1259. } else if (multimesh->instances) {
  1260. //need to re-create AABB unfortunately, calling this has a penalty
  1261. if (multimesh->buffer_set) {
  1262. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1263. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1264. const float *data = reinterpret_cast<const float *>(r);
  1265. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1266. }
  1267. }
  1268. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1269. }
  1270. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1271. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1272. if (multimesh->data_cache.size() > 0) {
  1273. return; //already local
  1274. }
  1275. // this means that the user wants to load/save individual elements,
  1276. // for this, the data must reside on CPU, so just copy it there.
  1277. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1278. if (multimesh->motion_vectors_enabled) {
  1279. buffer_size *= 2;
  1280. }
  1281. multimesh->data_cache.resize(buffer_size);
  1282. {
  1283. float *w = multimesh->data_cache.ptrw();
  1284. if (multimesh->buffer_set) {
  1285. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1286. {
  1287. const uint8_t *r = buffer.ptr();
  1288. memcpy(w, r, buffer.size());
  1289. }
  1290. } else {
  1291. memset(w, 0, buffer_size * sizeof(float));
  1292. }
  1293. }
  1294. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1295. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1296. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1297. multimesh->data_cache_dirty_region_count = 0;
  1298. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1299. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1300. multimesh->previous_data_cache_dirty_region_count = 0;
  1301. }
  1302. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1303. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1304. if (!multimesh->motion_vectors_enabled) {
  1305. return;
  1306. }
  1307. uint32_t frame = RSG::rasterizer->get_frame_number();
  1308. if (multimesh->motion_vectors_last_change != frame) {
  1309. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1310. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1311. multimesh->motion_vectors_last_change = frame;
  1312. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1313. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1314. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1315. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1316. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1317. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1318. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1319. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1320. for (uint32_t i = 0; i < visible_region_count; i++) {
  1321. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1322. uint32_t offset = i * region_size;
  1323. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1324. }
  1325. }
  1326. }
  1327. }
  1328. }
  1329. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1330. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1331. }
  1332. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1333. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1334. #ifdef DEBUG_ENABLED
  1335. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1336. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1337. #endif
  1338. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1339. multimesh->data_cache_dirty_regions[region_index] = true;
  1340. multimesh->data_cache_dirty_region_count++;
  1341. }
  1342. if (p_aabb) {
  1343. multimesh->aabb_dirty = true;
  1344. }
  1345. if (!multimesh->dirty) {
  1346. multimesh->dirty_list = multimesh_dirty_list;
  1347. multimesh_dirty_list = multimesh;
  1348. multimesh->dirty = true;
  1349. }
  1350. }
  1351. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1352. if (p_data) {
  1353. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1354. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1355. if (!multimesh->data_cache_dirty_regions[i]) {
  1356. multimesh->data_cache_dirty_regions[i] = true;
  1357. multimesh->data_cache_dirty_region_count++;
  1358. }
  1359. }
  1360. }
  1361. if (p_aabb) {
  1362. multimesh->aabb_dirty = true;
  1363. }
  1364. if (!multimesh->dirty) {
  1365. multimesh->dirty_list = multimesh_dirty_list;
  1366. multimesh_dirty_list = multimesh;
  1367. multimesh->dirty = true;
  1368. }
  1369. }
  1370. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1371. ERR_FAIL_COND(multimesh->mesh.is_null());
  1372. AABB aabb;
  1373. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1374. for (int i = 0; i < p_instances; i++) {
  1375. const float *data = p_data + multimesh->stride_cache * i;
  1376. Transform3D t;
  1377. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1378. t.basis.rows[0][0] = data[0];
  1379. t.basis.rows[0][1] = data[1];
  1380. t.basis.rows[0][2] = data[2];
  1381. t.origin.x = data[3];
  1382. t.basis.rows[1][0] = data[4];
  1383. t.basis.rows[1][1] = data[5];
  1384. t.basis.rows[1][2] = data[6];
  1385. t.origin.y = data[7];
  1386. t.basis.rows[2][0] = data[8];
  1387. t.basis.rows[2][1] = data[9];
  1388. t.basis.rows[2][2] = data[10];
  1389. t.origin.z = data[11];
  1390. } else {
  1391. t.basis.rows[0][0] = data[0];
  1392. t.basis.rows[0][1] = data[1];
  1393. t.origin.x = data[3];
  1394. t.basis.rows[1][0] = data[4];
  1395. t.basis.rows[1][1] = data[5];
  1396. t.origin.y = data[7];
  1397. }
  1398. if (i == 0) {
  1399. aabb = t.xform(mesh_aabb);
  1400. } else {
  1401. aabb.merge_with(t.xform(mesh_aabb));
  1402. }
  1403. }
  1404. multimesh->aabb = aabb;
  1405. }
  1406. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1407. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1408. ERR_FAIL_NULL(multimesh);
  1409. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1410. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1411. _multimesh_make_local(multimesh);
  1412. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1413. if (uses_motion_vectors) {
  1414. _multimesh_enable_motion_vectors(multimesh);
  1415. }
  1416. _multimesh_update_motion_vectors_data_cache(multimesh);
  1417. {
  1418. float *w = multimesh->data_cache.ptrw();
  1419. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1420. dataptr[0] = p_transform.basis.rows[0][0];
  1421. dataptr[1] = p_transform.basis.rows[0][1];
  1422. dataptr[2] = p_transform.basis.rows[0][2];
  1423. dataptr[3] = p_transform.origin.x;
  1424. dataptr[4] = p_transform.basis.rows[1][0];
  1425. dataptr[5] = p_transform.basis.rows[1][1];
  1426. dataptr[6] = p_transform.basis.rows[1][2];
  1427. dataptr[7] = p_transform.origin.y;
  1428. dataptr[8] = p_transform.basis.rows[2][0];
  1429. dataptr[9] = p_transform.basis.rows[2][1];
  1430. dataptr[10] = p_transform.basis.rows[2][2];
  1431. dataptr[11] = p_transform.origin.z;
  1432. }
  1433. _multimesh_mark_dirty(multimesh, p_index, true);
  1434. }
  1435. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1436. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1437. ERR_FAIL_NULL(multimesh);
  1438. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1439. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1440. _multimesh_make_local(multimesh);
  1441. _multimesh_update_motion_vectors_data_cache(multimesh);
  1442. {
  1443. float *w = multimesh->data_cache.ptrw();
  1444. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1445. dataptr[0] = p_transform.columns[0][0];
  1446. dataptr[1] = p_transform.columns[1][0];
  1447. dataptr[2] = 0;
  1448. dataptr[3] = p_transform.columns[2][0];
  1449. dataptr[4] = p_transform.columns[0][1];
  1450. dataptr[5] = p_transform.columns[1][1];
  1451. dataptr[6] = 0;
  1452. dataptr[7] = p_transform.columns[2][1];
  1453. }
  1454. _multimesh_mark_dirty(multimesh, p_index, true);
  1455. }
  1456. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1457. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1458. ERR_FAIL_NULL(multimesh);
  1459. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1460. ERR_FAIL_COND(!multimesh->uses_colors);
  1461. _multimesh_make_local(multimesh);
  1462. _multimesh_update_motion_vectors_data_cache(multimesh);
  1463. {
  1464. float *w = multimesh->data_cache.ptrw();
  1465. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1466. dataptr[0] = p_color.r;
  1467. dataptr[1] = p_color.g;
  1468. dataptr[2] = p_color.b;
  1469. dataptr[3] = p_color.a;
  1470. }
  1471. _multimesh_mark_dirty(multimesh, p_index, false);
  1472. }
  1473. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1474. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1475. ERR_FAIL_NULL(multimesh);
  1476. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1477. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1478. _multimesh_make_local(multimesh);
  1479. _multimesh_update_motion_vectors_data_cache(multimesh);
  1480. {
  1481. float *w = multimesh->data_cache.ptrw();
  1482. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1483. dataptr[0] = p_color.r;
  1484. dataptr[1] = p_color.g;
  1485. dataptr[2] = p_color.b;
  1486. dataptr[3] = p_color.a;
  1487. }
  1488. _multimesh_mark_dirty(multimesh, p_index, false);
  1489. }
  1490. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1491. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1492. ERR_FAIL_NULL_V(multimesh, RID());
  1493. return multimesh->mesh;
  1494. }
  1495. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1496. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1497. ERR_FAIL_NULL_V(multimesh, nullptr);
  1498. return &multimesh->dependency;
  1499. }
  1500. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1501. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1502. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1503. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1504. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1505. _multimesh_make_local(multimesh);
  1506. Transform3D t;
  1507. {
  1508. const float *r = multimesh->data_cache.ptr();
  1509. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1510. t.basis.rows[0][0] = dataptr[0];
  1511. t.basis.rows[0][1] = dataptr[1];
  1512. t.basis.rows[0][2] = dataptr[2];
  1513. t.origin.x = dataptr[3];
  1514. t.basis.rows[1][0] = dataptr[4];
  1515. t.basis.rows[1][1] = dataptr[5];
  1516. t.basis.rows[1][2] = dataptr[6];
  1517. t.origin.y = dataptr[7];
  1518. t.basis.rows[2][0] = dataptr[8];
  1519. t.basis.rows[2][1] = dataptr[9];
  1520. t.basis.rows[2][2] = dataptr[10];
  1521. t.origin.z = dataptr[11];
  1522. }
  1523. return t;
  1524. }
  1525. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1526. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1527. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1528. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1529. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1530. _multimesh_make_local(multimesh);
  1531. Transform2D t;
  1532. {
  1533. const float *r = multimesh->data_cache.ptr();
  1534. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1535. t.columns[0][0] = dataptr[0];
  1536. t.columns[1][0] = dataptr[1];
  1537. t.columns[2][0] = dataptr[3];
  1538. t.columns[0][1] = dataptr[4];
  1539. t.columns[1][1] = dataptr[5];
  1540. t.columns[2][1] = dataptr[7];
  1541. }
  1542. return t;
  1543. }
  1544. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1545. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1546. ERR_FAIL_NULL_V(multimesh, Color());
  1547. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1548. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1549. _multimesh_make_local(multimesh);
  1550. Color c;
  1551. {
  1552. const float *r = multimesh->data_cache.ptr();
  1553. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1554. c.r = dataptr[0];
  1555. c.g = dataptr[1];
  1556. c.b = dataptr[2];
  1557. c.a = dataptr[3];
  1558. }
  1559. return c;
  1560. }
  1561. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1562. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1563. ERR_FAIL_NULL_V(multimesh, Color());
  1564. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1565. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1566. _multimesh_make_local(multimesh);
  1567. Color c;
  1568. {
  1569. const float *r = multimesh->data_cache.ptr();
  1570. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1571. c.r = dataptr[0];
  1572. c.g = dataptr[1];
  1573. c.b = dataptr[2];
  1574. c.a = dataptr[3];
  1575. }
  1576. return c;
  1577. }
  1578. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1579. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1580. ERR_FAIL_NULL(multimesh);
  1581. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1582. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0);
  1583. if (uses_motion_vectors) {
  1584. _multimesh_enable_motion_vectors(multimesh);
  1585. }
  1586. if (multimesh->motion_vectors_enabled) {
  1587. uint32_t frame = RSG::rasterizer->get_frame_number();
  1588. if (multimesh->motion_vectors_last_change != frame) {
  1589. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1590. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1591. multimesh->motion_vectors_last_change = frame;
  1592. }
  1593. }
  1594. {
  1595. const float *r = p_buffer.ptr();
  1596. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1597. multimesh->buffer_set = true;
  1598. }
  1599. if (multimesh->data_cache.size()) {
  1600. float *cache_data = multimesh->data_cache.ptrw();
  1601. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1602. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1603. } else if (multimesh->mesh.is_valid()) {
  1604. //if we have a mesh set, we need to re-generate the AABB from the new data
  1605. const float *data = p_buffer.ptr();
  1606. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1607. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1608. }
  1609. }
  1610. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1611. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1612. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1613. if (multimesh->buffer.is_null()) {
  1614. return Vector<float>();
  1615. } else {
  1616. Vector<float> ret;
  1617. ret.resize(multimesh->instances * multimesh->stride_cache);
  1618. float *w = ret.ptrw();
  1619. if (multimesh->data_cache.size()) {
  1620. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1621. memcpy(w, r, ret.size() * sizeof(float));
  1622. } else {
  1623. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1624. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1625. memcpy(w, r, ret.size() * sizeof(float));
  1626. }
  1627. return ret;
  1628. }
  1629. }
  1630. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1631. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1632. ERR_FAIL_NULL(multimesh);
  1633. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1634. if (multimesh->visible_instances == p_visible) {
  1635. return;
  1636. }
  1637. if (multimesh->data_cache.size()) {
  1638. // There is a data cache, but we may need to update some sections.
  1639. _multimesh_mark_all_dirty(multimesh, false, true);
  1640. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1641. for (int i = start; i < p_visible; i++) {
  1642. _multimesh_mark_dirty(multimesh, i, true);
  1643. }
  1644. }
  1645. multimesh->visible_instances = p_visible;
  1646. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1647. }
  1648. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1649. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1650. ERR_FAIL_NULL_V(multimesh, 0);
  1651. return multimesh->visible_instances;
  1652. }
  1653. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1654. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1655. ERR_FAIL_NULL_V(multimesh, AABB());
  1656. if (multimesh->aabb_dirty) {
  1657. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1658. }
  1659. return multimesh->aabb;
  1660. }
  1661. void MeshStorage::_update_dirty_multimeshes() {
  1662. while (multimesh_dirty_list) {
  1663. MultiMesh *multimesh = multimesh_dirty_list;
  1664. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1665. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1666. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1667. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1668. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1669. if (total_dirty_regions != 0) {
  1670. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1671. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1672. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1673. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1674. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1675. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1676. } else {
  1677. //not that many regions? update them all
  1678. for (uint32_t i = 0; i < visible_region_count; i++) {
  1679. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1680. uint32_t offset = i * region_size;
  1681. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1682. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1683. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1684. }
  1685. }
  1686. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1687. }
  1688. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1689. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1690. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1691. multimesh->data_cache_dirty_region_count = 0;
  1692. }
  1693. if (multimesh->aabb_dirty) {
  1694. //aabb is dirty..
  1695. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1696. multimesh->aabb_dirty = false;
  1697. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1698. }
  1699. }
  1700. multimesh_dirty_list = multimesh->dirty_list;
  1701. multimesh->dirty_list = nullptr;
  1702. multimesh->dirty = false;
  1703. }
  1704. multimesh_dirty_list = nullptr;
  1705. }
  1706. /* SKELETON API */
  1707. RID MeshStorage::skeleton_allocate() {
  1708. return skeleton_owner.allocate_rid();
  1709. }
  1710. void MeshStorage::skeleton_initialize(RID p_rid) {
  1711. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1712. }
  1713. void MeshStorage::skeleton_free(RID p_rid) {
  1714. _update_dirty_skeletons();
  1715. skeleton_allocate_data(p_rid, 0);
  1716. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1717. skeleton->dependency.deleted_notify(p_rid);
  1718. skeleton_owner.free(p_rid);
  1719. }
  1720. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1721. if (!skeleton->dirty) {
  1722. skeleton->dirty = true;
  1723. skeleton->dirty_list = skeleton_dirty_list;
  1724. skeleton_dirty_list = skeleton;
  1725. }
  1726. }
  1727. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1728. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1729. ERR_FAIL_NULL(skeleton);
  1730. ERR_FAIL_COND(p_bones < 0);
  1731. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1732. return;
  1733. }
  1734. skeleton->size = p_bones;
  1735. skeleton->use_2d = p_2d_skeleton;
  1736. skeleton->uniform_set_3d = RID();
  1737. if (skeleton->buffer.is_valid()) {
  1738. RD::get_singleton()->free(skeleton->buffer);
  1739. skeleton->buffer = RID();
  1740. skeleton->data.clear();
  1741. skeleton->uniform_set_mi = RID();
  1742. }
  1743. if (skeleton->size) {
  1744. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1745. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1746. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1747. _skeleton_make_dirty(skeleton);
  1748. {
  1749. Vector<RD::Uniform> uniforms;
  1750. {
  1751. RD::Uniform u;
  1752. u.binding = 0;
  1753. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1754. u.append_id(skeleton->buffer);
  1755. uniforms.push_back(u);
  1756. }
  1757. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1758. }
  1759. }
  1760. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1761. }
  1762. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1763. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1764. ERR_FAIL_NULL_V(skeleton, 0);
  1765. return skeleton->size;
  1766. }
  1767. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1768. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1769. ERR_FAIL_NULL(skeleton);
  1770. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1771. ERR_FAIL_COND(skeleton->use_2d);
  1772. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1773. dataptr[0] = p_transform.basis.rows[0][0];
  1774. dataptr[1] = p_transform.basis.rows[0][1];
  1775. dataptr[2] = p_transform.basis.rows[0][2];
  1776. dataptr[3] = p_transform.origin.x;
  1777. dataptr[4] = p_transform.basis.rows[1][0];
  1778. dataptr[5] = p_transform.basis.rows[1][1];
  1779. dataptr[6] = p_transform.basis.rows[1][2];
  1780. dataptr[7] = p_transform.origin.y;
  1781. dataptr[8] = p_transform.basis.rows[2][0];
  1782. dataptr[9] = p_transform.basis.rows[2][1];
  1783. dataptr[10] = p_transform.basis.rows[2][2];
  1784. dataptr[11] = p_transform.origin.z;
  1785. _skeleton_make_dirty(skeleton);
  1786. }
  1787. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1788. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1789. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1790. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1791. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1792. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1793. Transform3D t;
  1794. t.basis.rows[0][0] = dataptr[0];
  1795. t.basis.rows[0][1] = dataptr[1];
  1796. t.basis.rows[0][2] = dataptr[2];
  1797. t.origin.x = dataptr[3];
  1798. t.basis.rows[1][0] = dataptr[4];
  1799. t.basis.rows[1][1] = dataptr[5];
  1800. t.basis.rows[1][2] = dataptr[6];
  1801. t.origin.y = dataptr[7];
  1802. t.basis.rows[2][0] = dataptr[8];
  1803. t.basis.rows[2][1] = dataptr[9];
  1804. t.basis.rows[2][2] = dataptr[10];
  1805. t.origin.z = dataptr[11];
  1806. return t;
  1807. }
  1808. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1809. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1810. ERR_FAIL_NULL(skeleton);
  1811. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1812. ERR_FAIL_COND(!skeleton->use_2d);
  1813. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1814. dataptr[0] = p_transform.columns[0][0];
  1815. dataptr[1] = p_transform.columns[1][0];
  1816. dataptr[2] = 0;
  1817. dataptr[3] = p_transform.columns[2][0];
  1818. dataptr[4] = p_transform.columns[0][1];
  1819. dataptr[5] = p_transform.columns[1][1];
  1820. dataptr[6] = 0;
  1821. dataptr[7] = p_transform.columns[2][1];
  1822. _skeleton_make_dirty(skeleton);
  1823. }
  1824. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1825. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1826. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1827. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1828. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1829. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1830. Transform2D t;
  1831. t.columns[0][0] = dataptr[0];
  1832. t.columns[1][0] = dataptr[1];
  1833. t.columns[2][0] = dataptr[3];
  1834. t.columns[0][1] = dataptr[4];
  1835. t.columns[1][1] = dataptr[5];
  1836. t.columns[2][1] = dataptr[7];
  1837. return t;
  1838. }
  1839. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1840. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1841. ERR_FAIL_NULL(skeleton);
  1842. ERR_FAIL_COND(!skeleton->use_2d);
  1843. skeleton->base_transform_2d = p_base_transform;
  1844. }
  1845. void MeshStorage::_update_dirty_skeletons() {
  1846. while (skeleton_dirty_list) {
  1847. Skeleton *skeleton = skeleton_dirty_list;
  1848. if (skeleton->size) {
  1849. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1850. }
  1851. skeleton_dirty_list = skeleton->dirty_list;
  1852. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1853. skeleton->version++;
  1854. skeleton->dirty = false;
  1855. skeleton->dirty_list = nullptr;
  1856. }
  1857. skeleton_dirty_list = nullptr;
  1858. }
  1859. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1860. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1861. ERR_FAIL_NULL(skeleton);
  1862. p_instance->update_dependency(&skeleton->dependency);
  1863. }