collision_solver_sat.cpp 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*************************************************************************/
  2. /* collision_solver_sat.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* http://www.godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  9. /* */
  10. /* Permission is hereby granted, free of charge, to any person obtaining */
  11. /* a copy of this software and associated documentation files (the */
  12. /* "Software"), to deal in the Software without restriction, including */
  13. /* without limitation the rights to use, copy, modify, merge, publish, */
  14. /* distribute, sublicense, and/or sell copies of the Software, and to */
  15. /* permit persons to whom the Software is furnished to do so, subject to */
  16. /* the following conditions: */
  17. /* */
  18. /* The above copyright notice and this permission notice shall be */
  19. /* included in all copies or substantial portions of the Software. */
  20. /* */
  21. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  22. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  23. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  24. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  25. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  26. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  27. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  28. /*************************************************************************/
  29. #include "collision_solver_sat.h"
  30. #include "geometry.h"
  31. #define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.02
  32. struct _CollectorCallback {
  33. CollisionSolverSW::CallbackResult callback;
  34. void *userdata;
  35. bool swap;
  36. bool collided;
  37. Vector3 normal;
  38. Vector3 *prev_axis;
  39. _FORCE_INLINE_ void call(const Vector3& p_point_A, const Vector3& p_point_B) {
  40. //if (normal.dot(p_point_A) >= normal.dot(p_point_B))
  41. // return;
  42. if (swap)
  43. callback(p_point_B,p_point_A,userdata);
  44. else
  45. callback(p_point_A,p_point_B,userdata);
  46. }
  47. };
  48. typedef void (*GenerateContactsFunc)(const Vector3 *,int, const Vector3 *,int ,_CollectorCallback *);
  49. static void _generate_contacts_point_point(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  50. #ifdef DEBUG_ENABLED
  51. ERR_FAIL_COND( p_point_count_A != 1 );
  52. ERR_FAIL_COND( p_point_count_B != 1 );
  53. #endif
  54. p_callback->call(*p_points_A,*p_points_B);
  55. }
  56. static void _generate_contacts_point_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  57. #ifdef DEBUG_ENABLED
  58. ERR_FAIL_COND( p_point_count_A != 1 );
  59. ERR_FAIL_COND( p_point_count_B != 2 );
  60. #endif
  61. Vector3 closest_B = Geometry::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B );
  62. p_callback->call(*p_points_A,closest_B);
  63. }
  64. static void _generate_contacts_point_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  65. #ifdef DEBUG_ENABLED
  66. ERR_FAIL_COND( p_point_count_A != 1 );
  67. ERR_FAIL_COND( p_point_count_B < 3 );
  68. #endif
  69. Vector3 closest_B=Plane(p_points_B[0],p_points_B[1],p_points_B[2]).project( *p_points_A );
  70. p_callback->call(*p_points_A,closest_B);
  71. }
  72. static void _generate_contacts_edge_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  73. #ifdef DEBUG_ENABLED
  74. ERR_FAIL_COND( p_point_count_A != 2 );
  75. ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix
  76. #endif
  77. Vector3 rel_A=p_points_A[1]-p_points_A[0];
  78. Vector3 rel_B=p_points_B[1]-p_points_B[0];
  79. Vector3 c=rel_A.cross(rel_B).cross(rel_B);
  80. // if ( Math::abs(rel_A.dot(c) )<_EDGE_IS_VALID_SUPPORT_TRESHOLD ) {
  81. if ( Math::abs(rel_A.dot(c) )<CMP_EPSILON ) {
  82. // should handle somehow..
  83. //ERR_PRINT("TODO FIX");
  84. //return;
  85. Vector3 axis = rel_A.normalized(); //make an axis
  86. Vector3 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
  87. Vector3 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
  88. //sort all 4 points in axis
  89. float dvec[4]={ axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
  90. SortArray<float> sa;
  91. sa.sort(dvec,4);
  92. //use the middle ones as contacts
  93. p_callback->call(base_A+axis*dvec[1],base_B+axis*dvec[1]);
  94. p_callback->call(base_A+axis*dvec[2],base_B+axis*dvec[2]);
  95. return;
  96. }
  97. real_t d = (c.dot( p_points_B[0] ) - p_points_A[0].dot(c))/rel_A.dot(c);
  98. if (d<0.0)
  99. d=0.0;
  100. else if (d>1.0)
  101. d=1.0;
  102. Vector3 closest_A=p_points_A[0]+rel_A*d;
  103. Vector3 closest_B=Geometry::get_closest_point_to_segment_uncapped(closest_A, p_points_B);
  104. p_callback->call(closest_A,closest_B);
  105. }
  106. static void _generate_contacts_face_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  107. #ifdef DEBUG_ENABLED
  108. ERR_FAIL_COND( p_point_count_A <2 );
  109. ERR_FAIL_COND( p_point_count_B <3 );
  110. #endif
  111. static const int max_clip=32;
  112. Vector3 _clipbuf1[max_clip];
  113. Vector3 _clipbuf2[max_clip];
  114. Vector3 *clipbuf_src=_clipbuf1;
  115. Vector3 *clipbuf_dst=_clipbuf2;
  116. int clipbuf_len=p_point_count_A;
  117. // copy A points to clipbuf_src
  118. for (int i=0;i<p_point_count_A;i++) {
  119. clipbuf_src[i]=p_points_A[i];
  120. }
  121. Plane plane_B(p_points_B[0],p_points_B[1],p_points_B[2]);
  122. // go through all of B points
  123. for (int i=0;i<p_point_count_B;i++) {
  124. int i_n=(i+1)%p_point_count_B;
  125. Vector3 edge0_B=p_points_B[i];
  126. Vector3 edge1_B=p_points_B[i_n];
  127. Vector3 clip_normal = (edge0_B - edge1_B).cross( plane_B.normal ).normalized();
  128. // make a clip plane
  129. Plane clip(edge0_B,clip_normal);
  130. // avoid double clip if A is edge
  131. int dst_idx=0;
  132. bool edge = clipbuf_len==2;
  133. for (int j=0;j<clipbuf_len;j++) {
  134. int j_n=(j+1)%clipbuf_len;
  135. Vector3 edge0_A=clipbuf_src[j];
  136. Vector3 edge1_A=clipbuf_src[j_n];
  137. real_t dist0 = clip.distance_to(edge0_A);
  138. real_t dist1 = clip.distance_to(edge1_A);
  139. if ( dist0 <= 0 ) { // behind plane
  140. ERR_FAIL_COND( dst_idx >= max_clip );
  141. clipbuf_dst[dst_idx++]=clipbuf_src[j];
  142. }
  143. // check for different sides and non coplanar
  144. // if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) {
  145. if ( (dist0*dist1) < 0 && !(edge && j)) {
  146. // calculate intersection
  147. Vector3 rel = edge1_A - edge0_A;
  148. real_t den=clip.normal.dot( rel );
  149. real_t dist=-(clip.normal.dot( edge0_A )-clip.d)/den;
  150. Vector3 inters = edge0_A+rel*dist;
  151. ERR_FAIL_COND( dst_idx >= max_clip );
  152. clipbuf_dst[dst_idx]=inters;
  153. dst_idx++;
  154. }
  155. }
  156. clipbuf_len=dst_idx;
  157. SWAP(clipbuf_src,clipbuf_dst);
  158. }
  159. // generate contacts
  160. //Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]);
  161. int added=0;
  162. for (int i=0;i<clipbuf_len;i++) {
  163. float d = plane_B.distance_to(clipbuf_src[i]);
  164. if (d>CMP_EPSILON)
  165. continue;
  166. Vector3 closest_B=clipbuf_src[i] - plane_B.normal*d;
  167. p_callback->call(clipbuf_src[i],closest_B);
  168. added++;
  169. }
  170. }
  171. static void _generate_contacts_from_supports(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
  172. #ifdef DEBUG_ENABLED
  173. ERR_FAIL_COND( p_point_count_A <1 );
  174. ERR_FAIL_COND( p_point_count_B <1 );
  175. #endif
  176. static const GenerateContactsFunc generate_contacts_func_table[3][3]={
  177. {
  178. _generate_contacts_point_point,
  179. _generate_contacts_point_edge,
  180. _generate_contacts_point_face,
  181. },{
  182. 0,
  183. _generate_contacts_edge_edge,
  184. _generate_contacts_face_face,
  185. },{
  186. 0,0,
  187. _generate_contacts_face_face,
  188. }
  189. };
  190. int pointcount_B;
  191. int pointcount_A;
  192. const Vector3 *points_A;
  193. const Vector3 *points_B;
  194. if (p_point_count_A > p_point_count_B) {
  195. //swap
  196. p_callback->swap = !p_callback->swap;
  197. p_callback->normal = -p_callback->normal;
  198. pointcount_B = p_point_count_A;
  199. pointcount_A = p_point_count_B;
  200. points_A=p_points_B;
  201. points_B=p_points_A;
  202. } else {
  203. pointcount_B = p_point_count_B;
  204. pointcount_A = p_point_count_A;
  205. points_A=p_points_A;
  206. points_B=p_points_B;
  207. }
  208. int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1;
  209. int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1;
  210. GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
  211. ERR_FAIL_COND(!contacts_func);
  212. contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_callback);
  213. }
  214. template<class ShapeA, class ShapeB>
  215. class SeparatorAxisTest {
  216. const ShapeA *shape_A;
  217. const ShapeB *shape_B;
  218. const Transform *transform_A;
  219. const Transform *transform_B;
  220. real_t best_depth;
  221. Vector3 best_axis;
  222. _CollectorCallback *callback;
  223. Vector3 separator_axis;
  224. public:
  225. _FORCE_INLINE_ bool test_previous_axis() {
  226. if (callback && callback->prev_axis && *callback->prev_axis!=Vector3())
  227. return test_axis(*callback->prev_axis);
  228. else
  229. return true;
  230. }
  231. _FORCE_INLINE_ bool test_axis(const Vector3& p_axis) {
  232. Vector3 axis=p_axis;
  233. if ( Math::abs(axis.x)<CMP_EPSILON &&
  234. Math::abs(axis.y)<CMP_EPSILON &&
  235. Math::abs(axis.z)<CMP_EPSILON ) {
  236. // strange case, try an upwards separator
  237. axis=Vector3(0.0,1.0,0.0);
  238. }
  239. real_t min_A,max_A,min_B,max_B;
  240. shape_A->project_range(axis,*transform_A,min_A,max_A);
  241. shape_B->project_range(axis,*transform_B,min_B,max_B);
  242. min_B -= ( max_A - min_A ) * 0.5;
  243. max_B += ( max_A - min_A ) * 0.5;
  244. real_t dmin = min_B - ( min_A + max_A ) * 0.5;
  245. real_t dmax = max_B - ( min_A + max_A ) * 0.5;
  246. if (dmin > 0.0 || dmax < 0.0) {
  247. separator_axis=axis;
  248. return false; // doesn't contain 0
  249. }
  250. //use the smallest depth
  251. dmin = Math::abs(dmin);
  252. if ( dmax < dmin ) {
  253. if ( dmax < best_depth ) {
  254. best_depth=dmax;
  255. best_axis=axis;
  256. }
  257. } else {
  258. if ( dmin < best_depth ) {
  259. best_depth=dmin;
  260. best_axis=-axis; // keep it as A axis
  261. }
  262. }
  263. return true;
  264. }
  265. _FORCE_INLINE_ void generate_contacts() {
  266. // nothing to do, don't generate
  267. if (best_axis==Vector3(0.0,0.0,0.0))
  268. return;
  269. if (!callback->callback) {
  270. //just was checking intersection?
  271. callback->collided=true;
  272. if (callback->prev_axis)
  273. *callback->prev_axis=best_axis;
  274. return;
  275. }
  276. static const int max_supports=16;
  277. Vector3 supports_A[max_supports];
  278. int support_count_A;
  279. shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(),max_supports,supports_A,support_count_A);
  280. for(int i=0;i<support_count_A;i++) {
  281. supports_A[i] = transform_A->xform(supports_A[i]);
  282. }
  283. Vector3 supports_B[max_supports];
  284. int support_count_B;
  285. shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(),max_supports,supports_B,support_count_B);
  286. for(int i=0;i<support_count_B;i++) {
  287. supports_B[i] = transform_B->xform(supports_B[i]);
  288. }
  289. /*
  290. print_line("best depth: "+rtos(best_depth));
  291. for(int i=0;i<support_count_A;i++) {
  292. print_line("A-"+itos(i)+": "+supports_A[i]);
  293. }
  294. for(int i=0;i<support_count_B;i++) {
  295. print_line("B-"+itos(i)+": "+supports_B[i]);
  296. }
  297. */
  298. callback->normal=best_axis;
  299. if (callback->prev_axis)
  300. *callback->prev_axis=best_axis;
  301. _generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback);
  302. callback->collided=true;
  303. //CollisionSolverSW::CallbackResult cbk=NULL;
  304. //cbk(Vector3(),Vector3(),NULL);
  305. }
  306. _FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A,const Transform& p_transform_A, const ShapeB *p_shape_B,const Transform& p_transform_B,_CollectorCallback *p_callback) {
  307. best_depth=1e15;
  308. shape_A=p_shape_A;
  309. shape_B=p_shape_B;
  310. transform_A=&p_transform_A;
  311. transform_B=&p_transform_B;
  312. callback=p_callback;
  313. }
  314. };
  315. /****** SAT TESTS *******/
  316. /****** SAT TESTS *******/
  317. /****** SAT TESTS *******/
  318. /****** SAT TESTS *******/
  319. typedef void (*CollisionFunc)(const ShapeSW*,const Transform&,const ShapeSW*,const Transform&,_CollectorCallback *p_callback);
  320. static void _collision_sphere_sphere(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  321. const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
  322. const SphereShapeSW *sphere_B = static_cast<const SphereShapeSW*>(p_b);
  323. SeparatorAxisTest<SphereShapeSW,SphereShapeSW> separator(sphere_A,p_transform_a,sphere_B,p_transform_b,p_collector);
  324. // previous axis
  325. if (!separator.test_previous_axis())
  326. return;
  327. if (!separator.test_axis( (p_transform_a.origin-p_transform_b.origin).normalized() ))
  328. return;
  329. separator.generate_contacts();
  330. }
  331. static void _collision_sphere_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  332. const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
  333. const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
  334. SeparatorAxisTest<SphereShapeSW,BoxShapeSW> separator(sphere_A,p_transform_a,box_B,p_transform_b,p_collector);
  335. if (!separator.test_previous_axis())
  336. return;
  337. // test faces
  338. for (int i=0;i<3;i++) {
  339. Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
  340. if (!separator.test_axis( axis ))
  341. return;
  342. }
  343. // calculate closest point to sphere
  344. Vector3 cnormal=p_transform_b.xform_inv( p_transform_a.origin );
  345. Vector3 cpoint=p_transform_b.xform( Vector3(
  346. (cnormal.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
  347. (cnormal.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
  348. (cnormal.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z
  349. ) );
  350. // use point to test axis
  351. Vector3 point_axis = (p_transform_a.origin - cpoint).normalized();
  352. if (!separator.test_axis( point_axis ))
  353. return;
  354. // test edges
  355. for (int i=0;i<3;i++) {
  356. Vector3 axis = point_axis.cross( p_transform_b.basis.get_axis(i) ).cross( p_transform_b.basis.get_axis(i) ).normalized();
  357. if (!separator.test_axis( axis ))
  358. return;
  359. }
  360. separator.generate_contacts();
  361. }
  362. static void _collision_sphere_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  363. const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
  364. const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
  365. SeparatorAxisTest<SphereShapeSW,CapsuleShapeSW> separator(sphere_A,p_transform_a,capsule_B,p_transform_b,p_collector);
  366. if (!separator.test_previous_axis())
  367. return;
  368. //capsule sphere 1, sphere
  369. Vector3 capsule_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
  370. Vector3 capsule_ball_1 = p_transform_b.origin + capsule_axis;
  371. if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) )
  372. return;
  373. //capsule sphere 2, sphere
  374. Vector3 capsule_ball_2 = p_transform_b.origin - capsule_axis;
  375. if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) )
  376. return;
  377. //capsule edge, sphere
  378. Vector3 b2a = p_transform_a.origin - p_transform_b.origin;
  379. Vector3 axis = b2a.cross( capsule_axis ).cross( capsule_axis ).normalized();
  380. if (!separator.test_axis( axis ))
  381. return;
  382. separator.generate_contacts();
  383. }
  384. static void _collision_sphere_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  385. const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
  386. const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
  387. SeparatorAxisTest<SphereShapeSW,ConvexPolygonShapeSW> separator(sphere_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector);
  388. if (!separator.test_previous_axis())
  389. return;
  390. const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
  391. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  392. int face_count = mesh.faces.size();
  393. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  394. int edge_count = mesh.edges.size();
  395. const Vector3 *vertices = mesh.vertices.ptr();
  396. int vertex_count = mesh.vertices.size();
  397. // faces of B
  398. for (int i=0;i<face_count;i++) {
  399. Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
  400. if (!separator.test_axis( axis ))
  401. return;
  402. }
  403. // edges of B
  404. for(int i=0;i<edge_count;i++) {
  405. Vector3 v1=p_transform_b.xform( vertices[ edges[i].a ] );
  406. Vector3 v2=p_transform_b.xform( vertices[ edges[i].b ] );
  407. Vector3 v3=p_transform_a.origin;
  408. Vector3 n1=v2-v1;
  409. Vector3 n2=v2-v3;
  410. Vector3 axis = n1.cross(n2).cross(n1).normalized();;
  411. if (!separator.test_axis( axis ))
  412. return;
  413. }
  414. // vertices of B
  415. for(int i=0;i<vertex_count;i++) {
  416. Vector3 v1=p_transform_b.xform( vertices[i] );
  417. Vector3 v2=p_transform_a.origin;
  418. Vector3 axis = (v2-v1).normalized();
  419. if (!separator.test_axis( axis ))
  420. return;
  421. }
  422. separator.generate_contacts();
  423. }
  424. static void _collision_sphere_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b, _CollectorCallback *p_collector) {
  425. const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
  426. const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
  427. SeparatorAxisTest<SphereShapeSW,FaceShapeSW> separator(sphere_A,p_transform_a,face_B,p_transform_b,p_collector);
  428. Vector3 vertex[3]={
  429. p_transform_b.xform( face_B->vertex[0] ),
  430. p_transform_b.xform( face_B->vertex[1] ),
  431. p_transform_b.xform( face_B->vertex[2] ),
  432. };
  433. if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
  434. return;
  435. // edges and points of B
  436. for(int i=0;i<3;i++) {
  437. Vector3 n1=vertex[i]-p_transform_a.origin;
  438. if (!separator.test_axis( n1.normalized() )) {
  439. return;
  440. }
  441. Vector3 n2=vertex[(i+1)%3]-vertex[i];
  442. Vector3 axis = n1.cross(n2).cross(n2).normalized();
  443. if (!separator.test_axis( axis )) {
  444. return;
  445. }
  446. }
  447. separator.generate_contacts();
  448. }
  449. static void _collision_box_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  450. const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
  451. const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
  452. SeparatorAxisTest<BoxShapeSW,BoxShapeSW> separator(box_A,p_transform_a,box_B,p_transform_b,p_collector);
  453. if (!separator.test_previous_axis())
  454. return;
  455. // test faces of A
  456. for (int i=0;i<3;i++) {
  457. Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
  458. if (!separator.test_axis( axis ))
  459. return;
  460. }
  461. // test faces of B
  462. for (int i=0;i<3;i++) {
  463. Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
  464. if (!separator.test_axis( axis ))
  465. return;
  466. }
  467. // test combined edges
  468. for (int i=0;i<3;i++) {
  469. for (int j=0;j<3;j++) {
  470. Vector3 axis = p_transform_a.basis.get_axis(i).cross( p_transform_b.basis.get_axis(j) );
  471. if (axis.length_squared()<CMP_EPSILON)
  472. continue;
  473. axis.normalize();
  474. if (!separator.test_axis( axis )) {
  475. return;
  476. }
  477. }
  478. }
  479. separator.generate_contacts();
  480. }
  481. static void _collision_box_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  482. const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
  483. const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
  484. SeparatorAxisTest<BoxShapeSW,CapsuleShapeSW> separator(box_A,p_transform_a,capsule_B,p_transform_b,p_collector);
  485. if (!separator.test_previous_axis())
  486. return;
  487. // faces of A
  488. for (int i=0;i<3;i++) {
  489. Vector3 axis = p_transform_a.basis.get_axis(i);
  490. if (!separator.test_axis( axis ))
  491. return;
  492. }
  493. Vector3 cyl_axis = p_transform_b.basis.get_axis(2).normalized();
  494. // edges of A, capsule cylinder
  495. for (int i=0;i<3;i++) {
  496. // cylinder
  497. Vector3 box_axis = p_transform_a.basis.get_axis(i);
  498. Vector3 axis = box_axis.cross( cyl_axis );
  499. if (axis.length_squared() < CMP_EPSILON)
  500. continue;
  501. if (!separator.test_axis( axis.normalized() ))
  502. return;
  503. }
  504. // points of A, capsule cylinder
  505. // this sure could be made faster somehow..
  506. for (int i=0;i<2;i++) {
  507. for (int j=0;j<2;j++) {
  508. for (int k=0;k<2;k++) {
  509. Vector3 he = box_A->get_half_extents();
  510. he.x*=(i*2-1);
  511. he.y*=(j*2-1);
  512. he.z*=(k*2-1);
  513. Vector3 point=p_transform_a.origin;
  514. for(int l=0;l<3;l++)
  515. point+=p_transform_a.basis.get_axis(l)*he[l];
  516. //Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized();
  517. Vector3 axis = Plane(cyl_axis,0).project(point).normalized();
  518. if (!separator.test_axis( axis ))
  519. return;
  520. }
  521. }
  522. }
  523. // capsule balls, edges of A
  524. for (int i=0;i<2;i++) {
  525. Vector3 capsule_axis = p_transform_b.basis.get_axis(2)*(capsule_B->get_height()*0.5);
  526. Vector3 sphere_pos = p_transform_b.origin + ((i==0)?capsule_axis:-capsule_axis);
  527. Vector3 cnormal=p_transform_a.xform_inv( sphere_pos );
  528. Vector3 cpoint=p_transform_a.xform( Vector3(
  529. (cnormal.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
  530. (cnormal.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
  531. (cnormal.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
  532. ) );
  533. // use point to test axis
  534. Vector3 point_axis = (sphere_pos - cpoint).normalized();
  535. if (!separator.test_axis( point_axis ))
  536. return;
  537. // test edges of A
  538. for (int i=0;i<3;i++) {
  539. Vector3 axis = point_axis.cross( p_transform_a.basis.get_axis(i) ).cross( p_transform_a.basis.get_axis(i) ).normalized();
  540. if (!separator.test_axis( axis ))
  541. return;
  542. }
  543. }
  544. separator.generate_contacts();
  545. }
  546. static void _collision_box_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  547. const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
  548. const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
  549. SeparatorAxisTest<BoxShapeSW,ConvexPolygonShapeSW> separator(box_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector);
  550. if (!separator.test_previous_axis())
  551. return;
  552. const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
  553. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  554. int face_count = mesh.faces.size();
  555. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  556. int edge_count = mesh.edges.size();
  557. const Vector3 *vertices = mesh.vertices.ptr();
  558. int vertex_count = mesh.vertices.size();
  559. // faces of A
  560. for (int i=0;i<3;i++) {
  561. Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
  562. if (!separator.test_axis( axis ))
  563. return;
  564. }
  565. // faces of B
  566. for (int i=0;i<face_count;i++) {
  567. Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
  568. if (!separator.test_axis( axis ))
  569. return;
  570. }
  571. // A<->B edges
  572. for (int i=0;i<3;i++) {
  573. Vector3 e1 = p_transform_a.basis.get_axis(i);
  574. for (int j=0;j<edge_count;j++) {
  575. Vector3 e2=p_transform_b.basis.xform(vertices[edges[j].a]) - p_transform_b.basis.xform(vertices[edges[j].b]);
  576. Vector3 axis=e1.cross( e2 ).normalized();
  577. if (!separator.test_axis( axis ))
  578. return;
  579. }
  580. }
  581. separator.generate_contacts();
  582. }
  583. static void _collision_box_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b, _CollectorCallback *p_collector) {
  584. const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
  585. const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
  586. SeparatorAxisTest<BoxShapeSW,FaceShapeSW> separator(box_A,p_transform_a,face_B,p_transform_b,p_collector);
  587. Vector3 vertex[3]={
  588. p_transform_b.xform( face_B->vertex[0] ),
  589. p_transform_b.xform( face_B->vertex[1] ),
  590. p_transform_b.xform( face_B->vertex[2] ),
  591. };
  592. if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
  593. return;
  594. // faces of A
  595. for (int i=0;i<3;i++) {
  596. Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
  597. if (!separator.test_axis( axis ))
  598. return;
  599. }
  600. // combined edges
  601. for(int i=0;i<3;i++) {
  602. Vector3 e=vertex[i]-vertex[(i+1)%3];
  603. for (int i=0;i<3;i++) {
  604. Vector3 axis = p_transform_a.basis.get_axis(i);
  605. if (!separator.test_axis( e.cross(axis).normalized() ))
  606. return;
  607. }
  608. }
  609. separator.generate_contacts();
  610. }
  611. static void _collision_capsule_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  612. const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
  613. const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
  614. SeparatorAxisTest<CapsuleShapeSW,CapsuleShapeSW> separator(capsule_A,p_transform_a,capsule_B,p_transform_b,p_collector);
  615. if (!separator.test_previous_axis())
  616. return;
  617. // some values
  618. Vector3 capsule_A_axis = p_transform_a.basis.get_axis(2) * (capsule_A->get_height() * 0.5);
  619. Vector3 capsule_B_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
  620. Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis;
  621. Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis;
  622. Vector3 capsule_B_ball_1 = p_transform_b.origin + capsule_B_axis;
  623. Vector3 capsule_B_ball_2 = p_transform_b.origin - capsule_B_axis;
  624. //balls-balls
  625. if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).normalized() ) )
  626. return;
  627. if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).normalized() ) )
  628. return;
  629. if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_1 ).normalized() ) )
  630. return;
  631. if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_2 ).normalized() ) )
  632. return;
  633. // edges-balls
  634. if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
  635. return;
  636. if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
  637. return;
  638. if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_1 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
  639. return;
  640. if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_2 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
  641. return;
  642. // edges
  643. if (!separator.test_axis( capsule_A_axis.cross(capsule_B_axis).normalized() ) )
  644. return;
  645. separator.generate_contacts();
  646. }
  647. static void _collision_capsule_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  648. const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
  649. const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
  650. SeparatorAxisTest<CapsuleShapeSW,ConvexPolygonShapeSW> separator(capsule_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector);
  651. if (!separator.test_previous_axis())
  652. return;
  653. const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
  654. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  655. int face_count = mesh.faces.size();
  656. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  657. int edge_count = mesh.edges.size();
  658. const Vector3 *vertices = mesh.vertices.ptr();
  659. int vertex_count = mesh.vertices.size();
  660. // faces of B
  661. for (int i=0;i<face_count;i++) {
  662. Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
  663. if (!separator.test_axis( axis ))
  664. return;
  665. }
  666. // edges of B, capsule cylinder
  667. for (int i=0;i<edge_count;i++) {
  668. // cylinder
  669. Vector3 edge_axis = p_transform_b.basis.xform( vertices[ edges[i].a] ) - p_transform_b.basis.xform( vertices[ edges[i].b] );
  670. Vector3 axis = edge_axis.cross( p_transform_a.basis.get_axis(2) ).normalized();
  671. if (!separator.test_axis( axis ))
  672. return;
  673. }
  674. // capsule balls, edges of B
  675. for (int i=0;i<2;i++) {
  676. // edges of B, capsule cylinder
  677. Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
  678. Vector3 sphere_pos = p_transform_a.origin + ((i==0)?capsule_axis:-capsule_axis);
  679. for (int j=0;j<edge_count;j++) {
  680. Vector3 n1=sphere_pos - p_transform_b.xform( vertices[ edges[j].a] );
  681. Vector3 n2=p_transform_b.basis.xform( vertices[ edges[j].a] ) - p_transform_b.basis.xform( vertices[ edges[j].b] );
  682. Vector3 axis = n1.cross(n2).cross(n2).normalized();
  683. if (!separator.test_axis( axis ))
  684. return;
  685. }
  686. }
  687. separator.generate_contacts();
  688. }
  689. static void _collision_capsule_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b, _CollectorCallback *p_collector) {
  690. const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
  691. const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
  692. SeparatorAxisTest<CapsuleShapeSW,FaceShapeSW> separator(capsule_A,p_transform_a,face_B,p_transform_b,p_collector);
  693. Vector3 vertex[3]={
  694. p_transform_b.xform( face_B->vertex[0] ),
  695. p_transform_b.xform( face_B->vertex[1] ),
  696. p_transform_b.xform( face_B->vertex[2] ),
  697. };
  698. if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
  699. return;
  700. // edges of B, capsule cylinder
  701. Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
  702. for (int i=0;i<3;i++) {
  703. // edge-cylinder
  704. Vector3 edge_axis = vertex[i]-vertex[(i+1)%3];
  705. Vector3 axis = edge_axis.cross( capsule_axis ).normalized();
  706. if (!separator.test_axis( axis ))
  707. return;
  708. if (!separator.test_axis( (p_transform_a.origin-vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized() ))
  709. return;
  710. for (int j=0;j<2;j++) {
  711. // point-spheres
  712. Vector3 sphere_pos = p_transform_a.origin + ( (j==0) ? capsule_axis : -capsule_axis );
  713. Vector3 n1=sphere_pos - vertex[i];
  714. if (!separator.test_axis( n1.normalized() ))
  715. return;
  716. Vector3 n2=edge_axis;
  717. axis = n1.cross(n2).cross(n2);
  718. if (!separator.test_axis( axis.normalized() ))
  719. return;
  720. }
  721. }
  722. separator.generate_contacts();
  723. }
  724. static void _collision_convex_polygon_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) {
  725. const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
  726. const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
  727. SeparatorAxisTest<ConvexPolygonShapeSW,ConvexPolygonShapeSW> separator(convex_polygon_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector);
  728. if (!separator.test_previous_axis())
  729. return;
  730. const Geometry::MeshData &mesh_A = convex_polygon_A->get_mesh();
  731. const Geometry::MeshData::Face *faces_A = mesh_A.faces.ptr();
  732. int face_count_A = mesh_A.faces.size();
  733. const Geometry::MeshData::Edge *edges_A = mesh_A.edges.ptr();
  734. int edge_count_A = mesh_A.edges.size();
  735. const Vector3 *vertices_A = mesh_A.vertices.ptr();
  736. int vertex_count_A = mesh_A.vertices.size();
  737. const Geometry::MeshData &mesh_B = convex_polygon_B->get_mesh();
  738. const Geometry::MeshData::Face *faces_B = mesh_B.faces.ptr();
  739. int face_count_B = mesh_B.faces.size();
  740. const Geometry::MeshData::Edge *edges_B = mesh_B.edges.ptr();
  741. int edge_count_B = mesh_B.edges.size();
  742. const Vector3 *vertices_B = mesh_B.vertices.ptr();
  743. int vertex_count_B = mesh_B.vertices.size();
  744. // faces of A
  745. for (int i=0;i<face_count_A;i++) {
  746. Vector3 axis = p_transform_a.xform( faces_A[i].plane ).normal;
  747. // Vector3 axis = p_transform_a.basis.xform( faces_A[i].plane.normal ).normalized();
  748. if (!separator.test_axis( axis ))
  749. return;
  750. }
  751. // faces of B
  752. for (int i=0;i<face_count_B;i++) {
  753. Vector3 axis = p_transform_b.xform( faces_B[i].plane ).normal;
  754. // Vector3 axis = p_transform_b.basis.xform( faces_B[i].plane.normal ).normalized();
  755. if (!separator.test_axis( axis ))
  756. return;
  757. }
  758. // A<->B edges
  759. for (int i=0;i<edge_count_A;i++) {
  760. Vector3 e1=p_transform_a.basis.xform( vertices_A[ edges_A[i].a] ) -p_transform_a.basis.xform( vertices_A[ edges_A[i].b] );
  761. for (int j=0;j<edge_count_B;j++) {
  762. Vector3 e2=p_transform_b.basis.xform( vertices_B[ edges_B[j].a] ) -p_transform_b.basis.xform( vertices_B[ edges_B[j].b] );
  763. Vector3 axis=e1.cross( e2 ).normalized();
  764. if (!separator.test_axis( axis ))
  765. return;
  766. }
  767. }
  768. separator.generate_contacts();
  769. }
  770. static void _collision_convex_polygon_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b, _CollectorCallback *p_collector) {
  771. const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
  772. const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
  773. SeparatorAxisTest<ConvexPolygonShapeSW,FaceShapeSW> separator(convex_polygon_A,p_transform_a,face_B,p_transform_b,p_collector);
  774. const Geometry::MeshData &mesh = convex_polygon_A->get_mesh();
  775. const Geometry::MeshData::Face *faces = mesh.faces.ptr();
  776. int face_count = mesh.faces.size();
  777. const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
  778. int edge_count = mesh.edges.size();
  779. const Vector3 *vertices = mesh.vertices.ptr();
  780. int vertex_count = mesh.vertices.size();
  781. Vector3 vertex[3]={
  782. p_transform_b.xform( face_B->vertex[0] ),
  783. p_transform_b.xform( face_B->vertex[1] ),
  784. p_transform_b.xform( face_B->vertex[2] ),
  785. };
  786. if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
  787. return;
  788. // faces of A
  789. for (int i=0;i<face_count;i++) {
  790. // Vector3 axis = p_transform_a.xform( faces[i].plane ).normal;
  791. Vector3 axis = p_transform_a.basis.xform( faces[i].plane.normal ).normalized();
  792. if (!separator.test_axis( axis ))
  793. return;
  794. }
  795. // A<->B edges
  796. for (int i=0;i<edge_count;i++) {
  797. Vector3 e1=p_transform_a.xform( vertices[edges[i].a] ) - p_transform_a.xform( vertices[edges[i].b] );
  798. for (int j=0;j<3;j++) {
  799. Vector3 e2=vertex[j]-vertex[(j+1)%3];
  800. Vector3 axis=e1.cross( e2 ).normalized();
  801. if (!separator.test_axis( axis ))
  802. return;
  803. }
  804. }
  805. separator.generate_contacts();
  806. }
  807. bool sat_calculate_penetration(const ShapeSW *p_shape_A, const Transform& p_transform_A, const ShapeSW *p_shape_B, const Transform& p_transform_B, CollisionSolverSW::CallbackResult p_result_callback,void *p_userdata,bool p_swap,Vector3* r_prev_axis) {
  808. PhysicsServer::ShapeType type_A=p_shape_A->get_type();
  809. ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_PLANE,false);
  810. ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_RAY,false);
  811. ERR_FAIL_COND_V(p_shape_A->is_concave(),false);
  812. PhysicsServer::ShapeType type_B=p_shape_B->get_type();
  813. ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_PLANE,false);
  814. ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_RAY,false);
  815. ERR_FAIL_COND_V(p_shape_B->is_concave(),false);
  816. static const CollisionFunc collision_table[5][5]={
  817. {_collision_sphere_sphere,
  818. _collision_sphere_box,
  819. _collision_sphere_capsule,
  820. _collision_sphere_convex_polygon,
  821. _collision_sphere_face},
  822. {0,
  823. _collision_box_box,
  824. _collision_box_capsule,
  825. _collision_box_convex_polygon,
  826. _collision_box_face},
  827. {0,
  828. 0,
  829. _collision_capsule_capsule,
  830. _collision_capsule_convex_polygon,
  831. _collision_capsule_face},
  832. {0,
  833. 0,
  834. 0,
  835. _collision_convex_polygon_convex_polygon,
  836. _collision_convex_polygon_face},
  837. {0,
  838. 0,
  839. 0,
  840. 0,
  841. 0},
  842. };
  843. _CollectorCallback callback;
  844. callback.callback=p_result_callback;
  845. callback.swap=p_swap;
  846. callback.userdata=p_userdata;
  847. callback.collided=false;
  848. callback.prev_axis=r_prev_axis;
  849. const ShapeSW *A=p_shape_A;
  850. const ShapeSW *B=p_shape_B;
  851. const Transform *transform_A=&p_transform_A;
  852. const Transform *transform_B=&p_transform_B;
  853. if (type_A > type_B) {
  854. SWAP(A,B);
  855. SWAP(transform_A,transform_B);
  856. SWAP(type_A,type_B);
  857. callback.swap = !callback.swap;
  858. }
  859. CollisionFunc collision_func = collision_table[type_A-2][type_B-2];
  860. ERR_FAIL_COND_V(!collision_func,false);
  861. collision_func(A,*transform_A,B,*transform_B,&callback);
  862. return callback.collided;
  863. }