123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524 |
- // Copyright 2021 The Manifold Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "csg_tree.h"
- #include "disjoint_sets.h"
- #include "impl.h"
- #include "manifold/manifold.h"
- #include "manifold/polygon.h"
- #include "parallel.h"
- namespace {
- using namespace manifold;
- template <typename P, typename I>
- std::shared_ptr<Manifold::Impl> SmoothImpl(
- const MeshGLP<P, I>& meshGL,
- const std::vector<Smoothness>& sharpenedEdges) {
- DEBUG_ASSERT(meshGL.halfedgeTangent.empty(), std::runtime_error,
- "when supplying tangents, the normal constructor should be used "
- "rather than Smooth().");
- MeshGLP<P, I> meshTmp = meshGL;
- meshTmp.faceID.resize(meshGL.NumTri());
- std::iota(meshTmp.faceID.begin(), meshTmp.faceID.end(), 0);
- std::shared_ptr<Manifold::Impl> impl =
- std::make_shared<Manifold::Impl>(meshTmp);
- impl->CreateTangents(impl->UpdateSharpenedEdges(sharpenedEdges));
- // Restore the original faceID
- const size_t numTri = impl->NumTri();
- for (size_t i = 0; i < numTri; ++i) {
- if (meshGL.faceID.size() == numTri) {
- impl->meshRelation_.triRef[i].faceID =
- meshGL.faceID[impl->meshRelation_.triRef[i].faceID];
- } else {
- impl->meshRelation_.triRef[i].faceID = -1;
- }
- }
- return impl;
- }
- } // namespace
- namespace manifold {
- /**
- * Constructs a smooth version of the input mesh by creating tangents; this
- * method will throw if you have supplied tangents with your mesh already. The
- * actual triangle resolution is unchanged; use the Refine() method to
- * interpolate to a higher-resolution curve.
- *
- * By default, every edge is calculated for maximum smoothness (very much
- * approximately), attempting to minimize the maximum mean Curvature magnitude.
- * No higher-order derivatives are considered, as the interpolation is
- * independent per triangle, only sharing constraints on their boundaries.
- *
- * @param meshGL input MeshGL.
- * @param sharpenedEdges If desired, you can supply a vector of sharpened
- * halfedges, which should in general be a small subset of all halfedges. Order
- * of entries doesn't matter, as each one specifies the desired smoothness
- * (between zero and one, with one the default for all unspecified halfedges)
- * and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge
- * between triVert 0 and 1, etc).
- *
- * At a smoothness value of zero, a sharp crease is made. The smoothness is
- * interpolated along each edge, so the specified value should be thought of as
- * an average. Where exactly two sharpened edges meet at a vertex, their
- * tangents are rotated to be colinear so that the sharpened edge can be
- * continuous. Vertices with only one sharpened edge are completely smooth,
- * allowing sharpened edges to smoothly vanish at termination. A single vertex
- * can be sharpened by sharping all edges that are incident on it, allowing
- * cones to be formed.
- */
- Manifold Manifold::Smooth(const MeshGL& meshGL,
- const std::vector<Smoothness>& sharpenedEdges) {
- return Manifold(SmoothImpl(meshGL, sharpenedEdges));
- }
- /**
- * Constructs a smooth version of the input mesh by creating tangents; this
- * method will throw if you have supplied tangents with your mesh already. The
- * actual triangle resolution is unchanged; use the Refine() method to
- * interpolate to a higher-resolution curve.
- *
- * By default, every edge is calculated for maximum smoothness (very much
- * approximately), attempting to minimize the maximum mean Curvature magnitude.
- * No higher-order derivatives are considered, as the interpolation is
- * independent per triangle, only sharing constraints on their boundaries.
- *
- * @param meshGL64 input MeshGL64.
- * @param sharpenedEdges If desired, you can supply a vector of sharpened
- * halfedges, which should in general be a small subset of all halfedges. Order
- * of entries doesn't matter, as each one specifies the desired smoothness
- * (between zero and one, with one the default for all unspecified halfedges)
- * and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge
- * between triVert 0 and 1, etc).
- *
- * At a smoothness value of zero, a sharp crease is made. The smoothness is
- * interpolated along each edge, so the specified value should be thought of as
- * an average. Where exactly two sharpened edges meet at a vertex, their
- * tangents are rotated to be colinear so that the sharpened edge can be
- * continuous. Vertices with only one sharpened edge are completely smooth,
- * allowing sharpened edges to smoothly vanish at termination. A single vertex
- * can be sharpened by sharping all edges that are incident on it, allowing
- * cones to be formed.
- */
- Manifold Manifold::Smooth(const MeshGL64& meshGL64,
- const std::vector<Smoothness>& sharpenedEdges) {
- return Manifold(SmoothImpl(meshGL64, sharpenedEdges));
- }
- /**
- * Constructs a tetrahedron centered at the origin with one vertex at (1,1,1)
- * and the rest at similarly symmetric points.
- */
- Manifold Manifold::Tetrahedron() {
- return Manifold(std::make_shared<Impl>(Impl::Shape::Tetrahedron));
- }
- /**
- * Constructs a unit cube (edge lengths all one), by default in the first
- * octant, touching the origin. If any dimensions in size are negative, or if
- * all are zero, an empty Manifold will be returned.
- *
- * @param size The X, Y, and Z dimensions of the box.
- * @param center Set to true to shift the center to the origin.
- */
- Manifold Manifold::Cube(vec3 size, bool center) {
- if (size.x < 0.0 || size.y < 0.0 || size.z < 0.0 || la::length(size) == 0.) {
- return Invalid();
- }
- mat3x4 m({{size.x, 0.0, 0.0}, {0.0, size.y, 0.0}, {0.0, 0.0, size.z}},
- center ? (-size / 2.0) : vec3(0.0));
- return Manifold(std::make_shared<Impl>(Manifold::Impl::Shape::Cube, m));
- }
- /**
- * A convenience constructor for the common case of extruding a circle. Can also
- * form cones if both radii are specified.
- *
- * @param height Z-extent
- * @param radiusLow Radius of bottom circle. Must be positive.
- * @param radiusHigh Radius of top circle. Can equal zero. Default is equal to
- * radiusLow.
- * @param circularSegments How many line segments to use around the circle.
- * Default is calculated by the static Defaults.
- * @param center Set to true to shift the center to the origin. Default is
- * origin at the bottom.
- */
- Manifold Manifold::Cylinder(double height, double radiusLow, double radiusHigh,
- int circularSegments, bool center) {
- if (height <= 0.0 || radiusLow <= 0.0) {
- return Invalid();
- }
- const double scale = radiusHigh >= 0.0 ? radiusHigh / radiusLow : 1.0;
- const double radius = fmax(radiusLow, radiusHigh);
- const int n = circularSegments > 2 ? circularSegments
- : Quality::GetCircularSegments(radius);
- SimplePolygon circle(n);
- const double dPhi = 360.0 / n;
- for (int i = 0; i < n; ++i) {
- circle[i] = {radiusLow * cosd(dPhi * i), radiusLow * sind(dPhi * i)};
- }
- Manifold cylinder = Manifold::Extrude({circle}, height, 0, 0.0, vec2(scale));
- if (center)
- cylinder = cylinder.Translate(vec3(0.0, 0.0, -height / 2.0)).AsOriginal();
- return cylinder;
- }
- /**
- * Constructs a geodesic sphere of a given radius.
- *
- * @param radius Radius of the sphere. Must be positive.
- * @param circularSegments Number of segments along its
- * diameter. This number will always be rounded up to the nearest factor of
- * four, as this sphere is constructed by refining an octahedron. This means
- * there are a circle of vertices on all three of the axis planes. Default is
- * calculated by the static Defaults.
- */
- Manifold Manifold::Sphere(double radius, int circularSegments) {
- if (radius <= 0.0) {
- return Invalid();
- }
- int n = circularSegments > 0 ? (circularSegments + 3) / 4
- : Quality::GetCircularSegments(radius) / 4;
- auto pImpl_ = std::make_shared<Impl>(Impl::Shape::Octahedron);
- pImpl_->Subdivide([n](vec3, vec4, vec4) { return n - 1; });
- for_each_n(autoPolicy(pImpl_->NumVert(), 1e5), pImpl_->vertPos_.begin(),
- pImpl_->NumVert(), [radius](vec3& v) {
- v = la::cos(kHalfPi * (1.0 - v));
- v = radius * la::normalize(v);
- if (std::isnan(v.x)) v = vec3(0.0);
- });
- pImpl_->Finish();
- // Ignore preceding octahedron.
- pImpl_->InitializeOriginal();
- return Manifold(pImpl_);
- }
- /**
- * Constructs a manifold from a set of polygons by extruding them along the
- * Z-axis.
- * Note that high twistDegrees with small nDivisions may cause
- * self-intersection. This is not checked here and it is up to the user to
- * choose the correct parameters.
- *
- * @param crossSection A set of non-overlapping polygons to extrude.
- * @param height Z-extent of extrusion.
- * @param nDivisions Number of extra copies of the crossSection to insert into
- * the shape vertically; especially useful in combination with twistDegrees to
- * avoid interpolation artifacts. Default is none.
- * @param twistDegrees Amount to twist the top crossSection relative to the
- * bottom, interpolated linearly for the divisions in between.
- * @param scaleTop Amount to scale the top (independently in X and Y). If the
- * scale is {0, 0}, a pure cone is formed with only a single vertex at the top.
- * Note that scale is applied after twist.
- * Default {1, 1}.
- */
- Manifold Manifold::Extrude(const Polygons& crossSection, double height,
- int nDivisions, double twistDegrees, vec2 scaleTop) {
- ZoneScoped;
- if (crossSection.size() == 0 || height <= 0.0) {
- return Invalid();
- }
- scaleTop.x = std::max(scaleTop.x, 0.0);
- scaleTop.y = std::max(scaleTop.y, 0.0);
- auto pImpl_ = std::make_shared<Impl>();
- ++nDivisions;
- auto& vertPos = pImpl_->vertPos_;
- Vec<ivec3> triVertsDH;
- auto& triVerts = triVertsDH;
- int nCrossSection = 0;
- bool isCone = scaleTop.x == 0.0 && scaleTop.y == 0.0;
- size_t idx = 0;
- PolygonsIdx polygonsIndexed;
- for (auto& poly : crossSection) {
- nCrossSection += poly.size();
- SimplePolygonIdx simpleIndexed;
- for (const vec2& polyVert : poly) {
- vertPos.push_back({polyVert.x, polyVert.y, 0.0});
- simpleIndexed.push_back({polyVert, static_cast<int>(idx++)});
- }
- polygonsIndexed.push_back(simpleIndexed);
- }
- for (int i = 1; i < nDivisions + 1; ++i) {
- double alpha = i / double(nDivisions);
- double phi = alpha * twistDegrees;
- vec2 scale = la::lerp(vec2(1.0), scaleTop, alpha);
- mat2 rotation({cosd(phi), sind(phi)}, {-sind(phi), cosd(phi)});
- mat2 transform = mat2({scale.x, 0.0}, {0.0, scale.y}) * rotation;
- size_t j = 0;
- size_t idx = 0;
- for (const auto& poly : crossSection) {
- for (size_t vert = 0; vert < poly.size(); ++vert) {
- size_t offset = idx + nCrossSection * i;
- size_t thisVert = vert + offset;
- size_t lastVert = (vert == 0 ? poly.size() : vert) - 1 + offset;
- if (i == nDivisions && isCone) {
- triVerts.push_back(ivec3(nCrossSection * i + j,
- lastVert - nCrossSection,
- thisVert - nCrossSection));
- } else {
- vec2 pos = transform * poly[vert];
- vertPos.push_back({pos.x, pos.y, height * alpha});
- triVerts.push_back(
- ivec3(thisVert, lastVert, thisVert - nCrossSection));
- triVerts.push_back(ivec3(lastVert, lastVert - nCrossSection,
- thisVert - nCrossSection));
- }
- }
- ++j;
- idx += poly.size();
- }
- }
- if (isCone)
- for (size_t j = 0; j < crossSection.size();
- ++j) // Duplicate vertex for Genus
- vertPos.push_back({0.0, 0.0, height});
- std::vector<ivec3> top = TriangulateIdx(polygonsIndexed);
- for (const ivec3& tri : top) {
- triVerts.push_back({tri[0], tri[2], tri[1]});
- if (!isCone) triVerts.push_back(tri + nCrossSection * nDivisions);
- }
- pImpl_->CreateHalfedges(triVertsDH);
- pImpl_->Finish();
- pImpl_->InitializeOriginal();
- pImpl_->MarkCoplanar();
- return Manifold(pImpl_);
- }
- /**
- * Constructs a manifold from a set of polygons by revolving this cross-section
- * around its Y-axis and then setting this as the Z-axis of the resulting
- * manifold. If the polygons cross the Y-axis, only the part on the positive X
- * side is used. Geometrically valid input will result in geometrically valid
- * output.
- *
- * @param crossSection A set of non-overlapping polygons to revolve.
- * @param circularSegments Number of segments along its diameter. Default is
- * calculated by the static Defaults.
- * @param revolveDegrees Number of degrees to revolve. Default is 360 degrees.
- */
- Manifold Manifold::Revolve(const Polygons& crossSection, int circularSegments,
- double revolveDegrees) {
- ZoneScoped;
- Polygons polygons;
- double radius = 0;
- for (const SimplePolygon& poly : crossSection) {
- size_t i = 0;
- while (i < poly.size() && poly[i].x < 0) {
- ++i;
- }
- if (i == poly.size()) {
- continue;
- }
- polygons.push_back({});
- const size_t start = i;
- do {
- if (poly[i].x >= 0) {
- polygons.back().push_back(poly[i]);
- radius = std::max(radius, poly[i].x);
- }
- const size_t next = i + 1 == poly.size() ? 0 : i + 1;
- if ((poly[next].x < 0) != (poly[i].x < 0)) {
- const double y = poly[next].y - poly[next].x *
- (poly[i].y - poly[next].y) /
- (poly[i].x - poly[next].x);
- polygons.back().push_back({0, y});
- }
- i = next;
- } while (i != start);
- }
- if (polygons.empty()) {
- return Invalid();
- }
- if (revolveDegrees > 360.0) {
- revolveDegrees = 360.0;
- }
- const bool isFullRevolution = revolveDegrees == 360.0;
- const int nDivisions =
- circularSegments > 2
- ? circularSegments
- : Quality::GetCircularSegments(radius) * revolveDegrees / 360;
- auto pImpl_ = std::make_shared<Impl>();
- auto& vertPos = pImpl_->vertPos_;
- Vec<ivec3> triVertsDH;
- auto& triVerts = triVertsDH;
- std::vector<int> startPoses;
- std::vector<int> endPoses;
- const double dPhi = revolveDegrees / nDivisions;
- // first and last slice are distinguished if not a full revolution.
- const int nSlices = isFullRevolution ? nDivisions : nDivisions + 1;
- for (const auto& poly : polygons) {
- size_t nPosVerts = 0;
- size_t nRevolveAxisVerts = 0;
- for (auto& pt : poly) {
- if (pt.x > 0) {
- nPosVerts++;
- } else {
- nRevolveAxisVerts++;
- }
- }
- for (size_t polyVert = 0; polyVert < poly.size(); ++polyVert) {
- const size_t startPosIndex = vertPos.size();
- if (!isFullRevolution) startPoses.push_back(startPosIndex);
- const vec2 currPolyVertex = poly[polyVert];
- const vec2 prevPolyVertex =
- poly[polyVert == 0 ? poly.size() - 1 : polyVert - 1];
- const int prevStartPosIndex =
- startPosIndex +
- (polyVert == 0 ? nRevolveAxisVerts + (nSlices * nPosVerts) : 0) +
- (prevPolyVertex.x == 0.0 ? -1 : -nSlices);
- for (int slice = 0; slice < nSlices; ++slice) {
- const double phi = slice * dPhi;
- if (slice == 0 || currPolyVertex.x > 0) {
- vertPos.push_back({currPolyVertex.x * cosd(phi),
- currPolyVertex.x * sind(phi), currPolyVertex.y});
- }
- if (isFullRevolution || slice > 0) {
- const int lastSlice = (slice == 0 ? nDivisions : slice) - 1;
- if (currPolyVertex.x > 0.0) {
- triVerts.push_back(ivec3(
- startPosIndex + slice, startPosIndex + lastSlice,
- // "Reuse" vertex of first slice if it lies on the revolve axis
- (prevPolyVertex.x == 0.0 ? prevStartPosIndex
- : prevStartPosIndex + lastSlice)));
- }
- if (prevPolyVertex.x > 0.0) {
- triVerts.push_back(
- ivec3(prevStartPosIndex + lastSlice, prevStartPosIndex + slice,
- (currPolyVertex.x == 0.0 ? startPosIndex
- : startPosIndex + slice)));
- }
- }
- }
- if (!isFullRevolution) endPoses.push_back(vertPos.size() - 1);
- }
- }
- // Add front and back triangles if not a full revolution.
- if (!isFullRevolution) {
- std::vector<ivec3> frontTriangles = Triangulate(polygons, pImpl_->epsilon_);
- for (auto& t : frontTriangles) {
- triVerts.push_back({startPoses[t.x], startPoses[t.y], startPoses[t.z]});
- }
- for (auto& t : frontTriangles) {
- triVerts.push_back({endPoses[t.z], endPoses[t.y], endPoses[t.x]});
- }
- }
- pImpl_->CreateHalfedges(triVertsDH);
- pImpl_->Finish();
- pImpl_->InitializeOriginal();
- pImpl_->MarkCoplanar();
- return Manifold(pImpl_);
- }
- /**
- * Constructs a new manifold from a vector of other manifolds. This is a purely
- * topological operation, so care should be taken to avoid creating
- * overlapping results. It is the inverse operation of Decompose().
- *
- * @param manifolds A vector of Manifolds to lazy-union together.
- */
- Manifold Manifold::Compose(const std::vector<Manifold>& manifolds) {
- std::vector<std::shared_ptr<CsgLeafNode>> children;
- for (const auto& manifold : manifolds) {
- children.push_back(manifold.pNode_->ToLeafNode());
- }
- return Manifold(CsgLeafNode::Compose(children));
- }
- /**
- * This operation returns a vector of Manifolds that are topologically
- * disconnected. If everything is connected, the vector is length one,
- * containing a copy of the original. It is the inverse operation of Compose().
- */
- std::vector<Manifold> Manifold::Decompose() const {
- ZoneScoped;
- DisjointSets uf(NumVert());
- // Graph graph;
- auto pImpl_ = GetCsgLeafNode().GetImpl();
- for (const Halfedge& halfedge : pImpl_->halfedge_) {
- if (halfedge.IsForward()) uf.unite(halfedge.startVert, halfedge.endVert);
- }
- std::vector<int> componentIndices;
- const int numComponents = uf.connectedComponents(componentIndices);
- if (numComponents == 1) {
- std::vector<Manifold> meshes(1);
- meshes[0] = *this;
- return meshes;
- }
- Vec<int> vertLabel(componentIndices);
- const int numVert = NumVert();
- std::vector<Manifold> meshes;
- for (int i = 0; i < numComponents; ++i) {
- auto impl = std::make_shared<Impl>();
- // inherit original object's precision
- impl->epsilon_ = pImpl_->epsilon_;
- impl->tolerance_ = pImpl_->tolerance_;
- Vec<int> vertNew2Old(numVert);
- const int nVert =
- copy_if(countAt(0), countAt(numVert), vertNew2Old.begin(),
- [i, &vertLabel](int v) { return vertLabel[v] == i; }) -
- vertNew2Old.begin();
- impl->vertPos_.resize(nVert);
- vertNew2Old.resize(nVert);
- gather(vertNew2Old.begin(), vertNew2Old.end(), pImpl_->vertPos_.begin(),
- impl->vertPos_.begin());
- Vec<int> faceNew2Old(NumTri());
- const auto& halfedge = pImpl_->halfedge_;
- const int nFace =
- copy_if(countAt(0_uz), countAt(NumTri()), faceNew2Old.begin(),
- [i, &vertLabel, &halfedge](int face) {
- return vertLabel[halfedge[3 * face].startVert] == i;
- }) -
- faceNew2Old.begin();
- if (nFace == 0) continue;
- faceNew2Old.resize(nFace);
- impl->GatherFaces(*pImpl_, faceNew2Old);
- impl->ReindexVerts(vertNew2Old, pImpl_->NumVert());
- impl->Finish();
- meshes.push_back(Manifold(impl));
- }
- return meshes;
- }
- } // namespace manifold
|