123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Vector3" category="Built-In Types" version="3.1.2">
- <brief_description>
- Vector class, which performs basic 3D vector math operations.
- </brief_description>
- <description>
- Vector3 is one of the core classes of the engine, and includes several built-in helper functions to perform basic vector math operations.
- </description>
- <tutorials>
- <link>https://docs.godotengine.org/en/3.1/tutorials/math/index.html</link>
- </tutorials>
- <methods>
- <method name="Vector3">
- <return type="Vector3">
- </return>
- <argument index="0" name="x" type="float">
- </argument>
- <argument index="1" name="y" type="float">
- </argument>
- <argument index="2" name="z" type="float">
- </argument>
- <description>
- Returns a Vector3 with the given components.
- </description>
- </method>
- <method name="abs">
- <return type="Vector3">
- </return>
- <description>
- Returns a new vector with all components in absolute values (i.e. positive).
- </description>
- </method>
- <method name="angle_to">
- <return type="float">
- </return>
- <argument index="0" name="to" type="Vector3">
- </argument>
- <description>
- Returns the minimum angle to the given vector.
- </description>
- </method>
- <method name="bounce">
- <return type="Vector3">
- </return>
- <argument index="0" name="n" type="Vector3">
- </argument>
- <description>
- Returns the vector "bounced off" from a plane defined by the given normal.
- </description>
- </method>
- <method name="ceil">
- <return type="Vector3">
- </return>
- <description>
- Returns a new vector with all components rounded up.
- </description>
- </method>
- <method name="cross">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the cross product with [code]b[/code].
- </description>
- </method>
- <method name="cubic_interpolate">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <argument index="1" name="pre_a" type="Vector3">
- </argument>
- <argument index="2" name="post_b" type="Vector3">
- </argument>
- <argument index="3" name="t" type="float">
- </argument>
- <description>
- Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
- </description>
- </method>
- <method name="direction_to">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the normalized vector pointing from this vector to [code]b[/code].
- </description>
- </method>
- <method name="distance_squared_to">
- <return type="float">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the squared distance to [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula.
- </description>
- </method>
- <method name="distance_to">
- <return type="float">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the distance to [code]b[/code].
- </description>
- </method>
- <method name="dot">
- <return type="float">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the dot product with [code]b[/code].
- </description>
- </method>
- <method name="floor">
- <return type="Vector3">
- </return>
- <description>
- Returns a new vector with all components rounded down.
- </description>
- </method>
- <method name="inverse">
- <return type="Vector3">
- </return>
- <description>
- Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code].
- </description>
- </method>
- <method name="is_normalized">
- <return type="bool">
- </return>
- <description>
- Returns [code]true[/code] if the vector is normalized.
- </description>
- </method>
- <method name="length">
- <return type="float">
- </return>
- <description>
- Returns the vector's length.
- </description>
- </method>
- <method name="length_squared">
- <return type="float">
- </return>
- <description>
- Returns the vector's length squared. Prefer this function over [method length] if you need to sort vectors or need the squared length for some formula.
- </description>
- </method>
- <method name="linear_interpolate">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <argument index="1" name="t" type="float">
- </argument>
- <description>
- Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation..
- </description>
- </method>
- <method name="max_axis">
- <return type="int">
- </return>
- <description>
- Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants.
- </description>
- </method>
- <method name="min_axis">
- <return type="int">
- </return>
- <description>
- Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants.
- </description>
- </method>
- <method name="normalized">
- <return type="Vector3">
- </return>
- <description>
- Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
- </description>
- </method>
- <method name="outer">
- <return type="Basis">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the outer product with [code]b[/code].
- </description>
- </method>
- <method name="project">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <description>
- Returns the vector projected onto the vector [code]b[/code].
- </description>
- </method>
- <method name="reflect">
- <return type="Vector3">
- </return>
- <argument index="0" name="n" type="Vector3">
- </argument>
- <description>
- Returns the vector reflected from a plane defined by the given normal.
- </description>
- </method>
- <method name="rotated">
- <return type="Vector3">
- </return>
- <argument index="0" name="axis" type="Vector3">
- </argument>
- <argument index="1" name="phi" type="float">
- </argument>
- <description>
- Rotates the vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
- </description>
- </method>
- <method name="round">
- <return type="Vector3">
- </return>
- <description>
- Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
- </description>
- </method>
- <method name="slerp">
- <return type="Vector3">
- </return>
- <argument index="0" name="b" type="Vector3">
- </argument>
- <argument index="1" name="t" type="float">
- </argument>
- <description>
- Returns the result of SLERP between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
- Both vectors need to be normalized.
- </description>
- </method>
- <method name="slide">
- <return type="Vector3">
- </return>
- <argument index="0" name="n" type="Vector3">
- </argument>
- <description>
- Returns the component of the vector along a plane defined by the given normal.
- </description>
- </method>
- <method name="snapped">
- <return type="Vector3">
- </return>
- <argument index="0" name="by" type="Vector3">
- </argument>
- <description>
- Returns a copy of the vector, snapped to the lowest neared multiple.
- </description>
- </method>
- <method name="to_diagonal_matrix">
- <return type="Basis">
- </return>
- <description>
- Returns a diagonal matrix with the vector as main diagonal.
- </description>
- </method>
- </methods>
- <members>
- <member name="x" type="float" setter="" getter="">
- The vector's x component. Also accessible by using the index position [code][0][/code].
- </member>
- <member name="y" type="float" setter="" getter="">
- The vector's y component. Also accessible by using the index position [code][1][/code].
- </member>
- <member name="z" type="float" setter="" getter="">
- The vector's z component. Also accessible by using the index position [code][2][/code].
- </member>
- </members>
- <constants>
- <constant name="AXIS_X" value="0">
- Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis].
- </constant>
- <constant name="AXIS_Y" value="1">
- Enumerated value for the Y axis.
- </constant>
- <constant name="AXIS_Z" value="2">
- Enumerated value for the Z axis.
- </constant>
- <constant name="ZERO" value="Vector3( 0, 0, 0 )">
- Zero vector.
- </constant>
- <constant name="ONE" value="Vector3( 1, 1, 1 )">
- One vector.
- </constant>
- <constant name="INF" value="Vector3( inf, inf, inf )">
- Infinite vector.
- </constant>
- <constant name="LEFT" value="Vector3( -1, 0, 0 )">
- Left unit vector.
- </constant>
- <constant name="RIGHT" value="Vector3( 1, 0, 0 )">
- Right unit vector.
- </constant>
- <constant name="UP" value="Vector3( 0, 1, 0 )">
- Up unit vector.
- </constant>
- <constant name="DOWN" value="Vector3( 0, -1, 0 )">
- Down unit vector.
- </constant>
- <constant name="FORWARD" value="Vector3( 0, 0, -1 )">
- Forward unit vector.
- </constant>
- <constant name="BACK" value="Vector3( 0, 0, 1 )">
- Back unit vector.
- </constant>
- </constants>
- </class>
|