btMatrix3x3.h 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. /*
  2. Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
  3. This software is provided 'as-is', without any express or implied warranty.
  4. In no event will the authors be held liable for any damages arising from the use of this software.
  5. Permission is granted to anyone to use this software for any purpose,
  6. including commercial applications, and to alter it and redistribute it freely,
  7. subject to the following restrictions:
  8. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  9. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  10. 3. This notice may not be removed or altered from any source distribution.
  11. */
  12. #ifndef BT_MATRIX3x3_H
  13. #define BT_MATRIX3x3_H
  14. #include "btVector3.h"
  15. #include "btQuaternion.h"
  16. #include <stdio.h>
  17. #ifdef BT_USE_SSE
  18. //const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
  19. //const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
  20. #define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f))
  21. #endif
  22. #if defined(BT_USE_SSE)
  23. #define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
  24. #define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
  25. #define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
  26. #elif defined(BT_USE_NEON)
  27. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
  28. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
  29. const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
  30. #endif
  31. #ifdef BT_USE_DOUBLE_PRECISION
  32. #define btMatrix3x3Data btMatrix3x3DoubleData
  33. #else
  34. #define btMatrix3x3Data btMatrix3x3FloatData
  35. #endif //BT_USE_DOUBLE_PRECISION
  36. /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
  37. * Make sure to only include a pure orthogonal matrix without scaling. */
  38. ATTRIBUTE_ALIGNED16(class)
  39. btMatrix3x3
  40. {
  41. ///Data storage for the matrix, each vector is a row of the matrix
  42. btVector3 m_el[3];
  43. public:
  44. /** @brief No initializaion constructor */
  45. btMatrix3x3() {}
  46. // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
  47. /**@brief Constructor from Quaternion */
  48. explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
  49. /*
  50. template <typename btScalar>
  51. Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  52. {
  53. setEulerYPR(yaw, pitch, roll);
  54. }
  55. */
  56. /** @brief Constructor with row major formatting */
  57. btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  58. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  59. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  60. {
  61. setValue(xx, xy, xz,
  62. yx, yy, yz,
  63. zx, zy, zz);
  64. }
  65. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  66. SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2)
  67. {
  68. m_el[0].mVec128 = v0;
  69. m_el[1].mVec128 = v1;
  70. m_el[2].mVec128 = v2;
  71. }
  72. SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
  73. {
  74. m_el[0] = v0;
  75. m_el[1] = v1;
  76. m_el[2] = v2;
  77. }
  78. // Copy constructor
  79. SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
  80. {
  81. m_el[0].mVec128 = rhs.m_el[0].mVec128;
  82. m_el[1].mVec128 = rhs.m_el[1].mVec128;
  83. m_el[2].mVec128 = rhs.m_el[2].mVec128;
  84. }
  85. // Assignment Operator
  86. SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
  87. {
  88. m_el[0].mVec128 = m.m_el[0].mVec128;
  89. m_el[1].mVec128 = m.m_el[1].mVec128;
  90. m_el[2].mVec128 = m.m_el[2].mVec128;
  91. return *this;
  92. }
  93. #else
  94. /** @brief Copy constructor */
  95. SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other)
  96. {
  97. m_el[0] = other.m_el[0];
  98. m_el[1] = other.m_el[1];
  99. m_el[2] = other.m_el[2];
  100. }
  101. /** @brief Assignment Operator */
  102. SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
  103. {
  104. m_el[0] = other.m_el[0];
  105. m_el[1] = other.m_el[1];
  106. m_el[2] = other.m_el[2];
  107. return *this;
  108. }
  109. SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
  110. {
  111. m_el[0] = v0;
  112. m_el[1] = v1;
  113. m_el[2] = v2;
  114. }
  115. #endif
  116. /** @brief Get a column of the matrix as a vector
  117. * @param i Column number 0 indexed */
  118. SIMD_FORCE_INLINE btVector3 getColumn(int i) const
  119. {
  120. return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]);
  121. }
  122. /** @brief Get a row of the matrix as a vector
  123. * @param i Row number 0 indexed */
  124. SIMD_FORCE_INLINE const btVector3& getRow(int i) const
  125. {
  126. btFullAssert(0 <= i && i < 3);
  127. return m_el[i];
  128. }
  129. /** @brief Get a mutable reference to a row of the matrix as a vector
  130. * @param i Row number 0 indexed */
  131. SIMD_FORCE_INLINE btVector3& operator[](int i)
  132. {
  133. btFullAssert(0 <= i && i < 3);
  134. return m_el[i];
  135. }
  136. /** @brief Get a const reference to a row of the matrix as a vector
  137. * @param i Row number 0 indexed */
  138. SIMD_FORCE_INLINE const btVector3& operator[](int i) const
  139. {
  140. btFullAssert(0 <= i && i < 3);
  141. return m_el[i];
  142. }
  143. /** @brief Multiply by the target matrix on the right
  144. * @param m Rotation matrix to be applied
  145. * Equivilant to this = this * m */
  146. btMatrix3x3& operator*=(const btMatrix3x3& m);
  147. /** @brief Adds by the target matrix on the right
  148. * @param m matrix to be applied
  149. * Equivilant to this = this + m */
  150. btMatrix3x3& operator+=(const btMatrix3x3& m);
  151. /** @brief Substractss by the target matrix on the right
  152. * @param m matrix to be applied
  153. * Equivilant to this = this - m */
  154. btMatrix3x3& operator-=(const btMatrix3x3& m);
  155. /** @brief Set from the rotational part of a 4x4 OpenGL matrix
  156. * @param m A pointer to the beginning of the array of scalars*/
  157. void setFromOpenGLSubMatrix(const btScalar* m)
  158. {
  159. m_el[0].setValue(m[0], m[4], m[8]);
  160. m_el[1].setValue(m[1], m[5], m[9]);
  161. m_el[2].setValue(m[2], m[6], m[10]);
  162. }
  163. /** @brief Set the values of the matrix explicitly (row major)
  164. * @param xx Top left
  165. * @param xy Top Middle
  166. * @param xz Top Right
  167. * @param yx Middle Left
  168. * @param yy Middle Middle
  169. * @param yz Middle Right
  170. * @param zx Bottom Left
  171. * @param zy Bottom Middle
  172. * @param zz Bottom Right*/
  173. void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  174. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  175. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  176. {
  177. m_el[0].setValue(xx, xy, xz);
  178. m_el[1].setValue(yx, yy, yz);
  179. m_el[2].setValue(zx, zy, zz);
  180. }
  181. /** @brief Set the matrix from a quaternion
  182. * @param q The Quaternion to match */
  183. void setRotation(const btQuaternion& q)
  184. {
  185. btScalar d = q.length2();
  186. btFullAssert(d != btScalar(0.0));
  187. btScalar s = btScalar(2.0) / d;
  188. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  189. __m128 vs, Q = q.get128();
  190. __m128i Qi = btCastfTo128i(Q);
  191. __m128 Y, Z;
  192. __m128 V1, V2, V3;
  193. __m128 V11, V21, V31;
  194. __m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
  195. __m128i NQi = btCastfTo128i(NQ);
  196. V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3))); // Y X Z W
  197. V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3)); // -X -X Y W
  198. V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3))); // Z Y X W
  199. V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
  200. V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3))); // Y Y X W
  201. V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
  202. V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3)); // X Z -X -W
  203. V2 = V2 * V1; //
  204. V1 = V1 * V11; //
  205. V3 = V3 * V31; //
  206. V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3)); // -Z -W Y W
  207. V11 = V11 * V21; //
  208. V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
  209. V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3)); // W W -Y -W
  210. V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
  211. Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3))); // -W -Z -X -W
  212. Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3))); // Y X Y W
  213. vs = _mm_load_ss(&s);
  214. V21 = V21 * Y;
  215. V31 = V31 * Z;
  216. V1 = V1 + V11;
  217. V2 = V2 + V21;
  218. V3 = V3 + V31;
  219. vs = bt_splat3_ps(vs, 0);
  220. // s ready
  221. V1 = V1 * vs;
  222. V2 = V2 * vs;
  223. V3 = V3 * vs;
  224. V1 = V1 + v1000;
  225. V2 = V2 + v0100;
  226. V3 = V3 + v0010;
  227. m_el[0] = V1;
  228. m_el[1] = V2;
  229. m_el[2] = V3;
  230. #else
  231. btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
  232. btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
  233. btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
  234. btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
  235. setValue(
  236. btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
  237. xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
  238. xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
  239. #endif
  240. }
  241. /** @brief Set the matrix from euler angles using YPR around YXZ respectively
  242. * @param yaw Yaw about Y axis
  243. * @param pitch Pitch about X axis
  244. * @param roll Roll about Z axis
  245. */
  246. void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  247. {
  248. setEulerZYX(roll, pitch, yaw);
  249. }
  250. /** @brief Set the matrix from euler angles YPR around ZYX axes
  251. * @param eulerX Roll about X axis
  252. * @param eulerY Pitch around Y axis
  253. * @param eulerZ Yaw about Z axis
  254. *
  255. * These angles are used to produce a rotation matrix. The euler
  256. * angles are applied in ZYX order. I.e a vector is first rotated
  257. * about X then Y and then Z
  258. **/
  259. void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ)
  260. {
  261. ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
  262. btScalar ci(btCos(eulerX));
  263. btScalar cj(btCos(eulerY));
  264. btScalar ch(btCos(eulerZ));
  265. btScalar si(btSin(eulerX));
  266. btScalar sj(btSin(eulerY));
  267. btScalar sh(btSin(eulerZ));
  268. btScalar cc = ci * ch;
  269. btScalar cs = ci * sh;
  270. btScalar sc = si * ch;
  271. btScalar ss = si * sh;
  272. setValue(cj * ch, sj * sc - cs, sj * cc + ss,
  273. cj * sh, sj * ss + cc, sj * cs - sc,
  274. -sj, cj * si, cj * ci);
  275. }
  276. /**@brief Set the matrix to the identity */
  277. void setIdentity()
  278. {
  279. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  280. m_el[0] = v1000;
  281. m_el[1] = v0100;
  282. m_el[2] = v0010;
  283. #else
  284. setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
  285. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  286. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  287. #endif
  288. }
  289. static const btMatrix3x3& getIdentity()
  290. {
  291. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  292. static const btMatrix3x3
  293. identityMatrix(v1000, v0100, v0010);
  294. #else
  295. static const btMatrix3x3
  296. identityMatrix(
  297. btScalar(1.0), btScalar(0.0), btScalar(0.0),
  298. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  299. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  300. #endif
  301. return identityMatrix;
  302. }
  303. /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
  304. * @param m The array to be filled */
  305. void getOpenGLSubMatrix(btScalar * m) const
  306. {
  307. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  308. __m128 v0 = m_el[0].mVec128;
  309. __m128 v1 = m_el[1].mVec128;
  310. __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
  311. __m128* vm = (__m128*)m;
  312. __m128 vT;
  313. v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
  314. vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
  315. v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
  316. v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
  317. v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
  318. v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
  319. vm[0] = v0;
  320. vm[1] = v1;
  321. vm[2] = v2;
  322. #elif defined(BT_USE_NEON)
  323. // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
  324. static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
  325. float32x4_t* vm = (float32x4_t*)m;
  326. float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
  327. float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
  328. float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
  329. float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
  330. float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
  331. float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
  332. vm[0] = v0;
  333. vm[1] = v1;
  334. vm[2] = v2;
  335. #else
  336. m[0] = btScalar(m_el[0].x());
  337. m[1] = btScalar(m_el[1].x());
  338. m[2] = btScalar(m_el[2].x());
  339. m[3] = btScalar(0.0);
  340. m[4] = btScalar(m_el[0].y());
  341. m[5] = btScalar(m_el[1].y());
  342. m[6] = btScalar(m_el[2].y());
  343. m[7] = btScalar(0.0);
  344. m[8] = btScalar(m_el[0].z());
  345. m[9] = btScalar(m_el[1].z());
  346. m[10] = btScalar(m_el[2].z());
  347. m[11] = btScalar(0.0);
  348. #endif
  349. }
  350. /**@brief Get the matrix represented as a quaternion
  351. * @param q The quaternion which will be set */
  352. void getRotation(btQuaternion & q) const
  353. {
  354. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  355. btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
  356. btScalar s, x;
  357. union {
  358. btSimdFloat4 vec;
  359. btScalar f[4];
  360. } temp;
  361. if (trace > btScalar(0.0))
  362. {
  363. x = trace + btScalar(1.0);
  364. temp.f[0] = m_el[2].y() - m_el[1].z();
  365. temp.f[1] = m_el[0].z() - m_el[2].x();
  366. temp.f[2] = m_el[1].x() - m_el[0].y();
  367. temp.f[3] = x;
  368. //temp.f[3]= s * btScalar(0.5);
  369. }
  370. else
  371. {
  372. int i, j, k;
  373. if (m_el[0].x() < m_el[1].y())
  374. {
  375. if (m_el[1].y() < m_el[2].z())
  376. {
  377. i = 2;
  378. j = 0;
  379. k = 1;
  380. }
  381. else
  382. {
  383. i = 1;
  384. j = 2;
  385. k = 0;
  386. }
  387. }
  388. else
  389. {
  390. if (m_el[0].x() < m_el[2].z())
  391. {
  392. i = 2;
  393. j = 0;
  394. k = 1;
  395. }
  396. else
  397. {
  398. i = 0;
  399. j = 1;
  400. k = 2;
  401. }
  402. }
  403. x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
  404. temp.f[3] = (m_el[k][j] - m_el[j][k]);
  405. temp.f[j] = (m_el[j][i] + m_el[i][j]);
  406. temp.f[k] = (m_el[k][i] + m_el[i][k]);
  407. temp.f[i] = x;
  408. //temp.f[i] = s * btScalar(0.5);
  409. }
  410. s = btSqrt(x);
  411. q.set128(temp.vec);
  412. s = btScalar(0.5) / s;
  413. q *= s;
  414. #else
  415. btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
  416. btScalar temp[4];
  417. if (trace > btScalar(0.0))
  418. {
  419. btScalar s = btSqrt(trace + btScalar(1.0));
  420. temp[3] = (s * btScalar(0.5));
  421. s = btScalar(0.5) / s;
  422. temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
  423. temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
  424. temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
  425. }
  426. else
  427. {
  428. int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
  429. int j = (i + 1) % 3;
  430. int k = (i + 2) % 3;
  431. btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
  432. temp[i] = s * btScalar(0.5);
  433. s = btScalar(0.5) / s;
  434. temp[3] = (m_el[k][j] - m_el[j][k]) * s;
  435. temp[j] = (m_el[j][i] + m_el[i][j]) * s;
  436. temp[k] = (m_el[k][i] + m_el[i][k]) * s;
  437. }
  438. q.setValue(temp[0], temp[1], temp[2], temp[3]);
  439. #endif
  440. }
  441. /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
  442. * @param yaw Yaw around Y axis
  443. * @param pitch Pitch around X axis
  444. * @param roll around Z axis */
  445. void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const
  446. {
  447. // first use the normal calculus
  448. yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
  449. pitch = btScalar(btAsin(-m_el[2].x()));
  450. roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
  451. // on pitch = +/-HalfPI
  452. if (btFabs(pitch) == SIMD_HALF_PI)
  453. {
  454. if (yaw > 0)
  455. yaw -= SIMD_PI;
  456. else
  457. yaw += SIMD_PI;
  458. if (roll > 0)
  459. roll -= SIMD_PI;
  460. else
  461. roll += SIMD_PI;
  462. }
  463. };
  464. /**@brief Get the matrix represented as euler angles around ZYX
  465. * @param yaw Yaw around Z axis
  466. * @param pitch Pitch around Y axis
  467. * @param roll around X axis
  468. * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
  469. void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const
  470. {
  471. struct Euler
  472. {
  473. btScalar yaw;
  474. btScalar pitch;
  475. btScalar roll;
  476. };
  477. Euler euler_out;
  478. Euler euler_out2; //second solution
  479. //get the pointer to the raw data
  480. // Check that pitch is not at a singularity
  481. if (btFabs(m_el[2].x()) >= 1)
  482. {
  483. euler_out.yaw = 0;
  484. euler_out2.yaw = 0;
  485. // From difference of angles formula
  486. btScalar delta = btAtan2(m_el[0].x(), m_el[0].z());
  487. if (m_el[2].x() > 0) //gimbal locked up
  488. {
  489. euler_out.pitch = SIMD_PI / btScalar(2.0);
  490. euler_out2.pitch = SIMD_PI / btScalar(2.0);
  491. euler_out.roll = euler_out.pitch + delta;
  492. euler_out2.roll = euler_out.pitch + delta;
  493. }
  494. else // gimbal locked down
  495. {
  496. euler_out.pitch = -SIMD_PI / btScalar(2.0);
  497. euler_out2.pitch = -SIMD_PI / btScalar(2.0);
  498. euler_out.roll = -euler_out.pitch + delta;
  499. euler_out2.roll = -euler_out.pitch + delta;
  500. }
  501. }
  502. else
  503. {
  504. euler_out.pitch = -btAsin(m_el[2].x());
  505. euler_out2.pitch = SIMD_PI - euler_out.pitch;
  506. euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch),
  507. m_el[2].z() / btCos(euler_out.pitch));
  508. euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch),
  509. m_el[2].z() / btCos(euler_out2.pitch));
  510. euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch),
  511. m_el[0].x() / btCos(euler_out.pitch));
  512. euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch),
  513. m_el[0].x() / btCos(euler_out2.pitch));
  514. }
  515. if (solution_number == 1)
  516. {
  517. yaw = euler_out.yaw;
  518. pitch = euler_out.pitch;
  519. roll = euler_out.roll;
  520. }
  521. else
  522. {
  523. yaw = euler_out2.yaw;
  524. pitch = euler_out2.pitch;
  525. roll = euler_out2.roll;
  526. }
  527. }
  528. /**@brief Create a scaled copy of the matrix
  529. * @param s Scaling vector The elements of the vector will scale each column */
  530. btMatrix3x3 scaled(const btVector3& s) const
  531. {
  532. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  533. return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
  534. #else
  535. return btMatrix3x3(
  536. m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
  537. m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
  538. m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
  539. #endif
  540. }
  541. /**@brief Return the determinant of the matrix */
  542. btScalar determinant() const;
  543. /**@brief Return the adjoint of the matrix */
  544. btMatrix3x3 adjoint() const;
  545. /**@brief Return the matrix with all values non negative */
  546. btMatrix3x3 absolute() const;
  547. /**@brief Return the transpose of the matrix */
  548. btMatrix3x3 transpose() const;
  549. /**@brief Return the inverse of the matrix */
  550. btMatrix3x3 inverse() const;
  551. /// Solve A * x = b, where b is a column vector. This is more efficient
  552. /// than computing the inverse in one-shot cases.
  553. ///Solve33 is from Box2d, thanks to Erin Catto,
  554. btVector3 solve33(const btVector3& b) const
  555. {
  556. btVector3 col1 = getColumn(0);
  557. btVector3 col2 = getColumn(1);
  558. btVector3 col3 = getColumn(2);
  559. btScalar det = btDot(col1, btCross(col2, col3));
  560. if (btFabs(det) > SIMD_EPSILON)
  561. {
  562. det = 1.0f / det;
  563. }
  564. btVector3 x;
  565. x[0] = det * btDot(b, btCross(col2, col3));
  566. x[1] = det * btDot(col1, btCross(b, col3));
  567. x[2] = det * btDot(col1, btCross(col2, b));
  568. return x;
  569. }
  570. btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
  571. btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
  572. SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
  573. {
  574. return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
  575. }
  576. SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
  577. {
  578. return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
  579. }
  580. SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
  581. {
  582. return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
  583. }
  584. ///extractRotation is from "A robust method to extract the rotational part of deformations"
  585. ///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
  586. ///decomposes a matrix A in a orthogonal matrix R and a
  587. ///symmetric matrix S:
  588. ///A = R*S.
  589. ///note that R can include both rotation and scaling.
  590. SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100)
  591. {
  592. int iter = 0;
  593. btScalar w;
  594. const btMatrix3x3& A = *this;
  595. for (iter = 0; iter < maxIter; iter++)
  596. {
  597. btMatrix3x3 R(q);
  598. btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
  599. tolerance);
  600. w = omega.norm();
  601. if (w < tolerance)
  602. break;
  603. q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) *
  604. q;
  605. q.normalize();
  606. }
  607. }
  608. /**@brief diagonalizes this matrix by the Jacobi method.
  609. * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
  610. * coordinate system, i.e., old_this = rot * new_this * rot^T.
  611. * @param threshold See iteration
  612. * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
  613. * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
  614. *
  615. * Note that this matrix is assumed to be symmetric.
  616. */
  617. void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps)
  618. {
  619. rot.setIdentity();
  620. for (int step = maxSteps; step > 0; step--)
  621. {
  622. // find off-diagonal element [p][q] with largest magnitude
  623. int p = 0;
  624. int q = 1;
  625. int r = 2;
  626. btScalar max = btFabs(m_el[0][1]);
  627. btScalar v = btFabs(m_el[0][2]);
  628. if (v > max)
  629. {
  630. q = 2;
  631. r = 1;
  632. max = v;
  633. }
  634. v = btFabs(m_el[1][2]);
  635. if (v > max)
  636. {
  637. p = 1;
  638. q = 2;
  639. r = 0;
  640. max = v;
  641. }
  642. btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
  643. if (max <= t)
  644. {
  645. if (max <= SIMD_EPSILON * t)
  646. {
  647. return;
  648. }
  649. step = 1;
  650. }
  651. // compute Jacobi rotation J which leads to a zero for element [p][q]
  652. btScalar mpq = m_el[p][q];
  653. btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
  654. btScalar theta2 = theta * theta;
  655. btScalar cos;
  656. btScalar sin;
  657. if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
  658. {
  659. t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
  660. : 1 / (theta - btSqrt(1 + theta2));
  661. cos = 1 / btSqrt(1 + t * t);
  662. sin = cos * t;
  663. }
  664. else
  665. {
  666. // approximation for large theta-value, i.e., a nearly diagonal matrix
  667. t = 1 / (theta * (2 + btScalar(0.5) / theta2));
  668. cos = 1 - btScalar(0.5) * t * t;
  669. sin = cos * t;
  670. }
  671. // apply rotation to matrix (this = J^T * this * J)
  672. m_el[p][q] = m_el[q][p] = 0;
  673. m_el[p][p] -= t * mpq;
  674. m_el[q][q] += t * mpq;
  675. btScalar mrp = m_el[r][p];
  676. btScalar mrq = m_el[r][q];
  677. m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
  678. m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
  679. // apply rotation to rot (rot = rot * J)
  680. for (int i = 0; i < 3; i++)
  681. {
  682. btVector3& row = rot[i];
  683. mrp = row[p];
  684. mrq = row[q];
  685. row[p] = cos * mrp - sin * mrq;
  686. row[q] = cos * mrq + sin * mrp;
  687. }
  688. }
  689. }
  690. /**@brief Calculate the matrix cofactor
  691. * @param r1 The first row to use for calculating the cofactor
  692. * @param c1 The first column to use for calculating the cofactor
  693. * @param r1 The second row to use for calculating the cofactor
  694. * @param c1 The second column to use for calculating the cofactor
  695. * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
  696. */
  697. btScalar cofac(int r1, int c1, int r2, int c2) const
  698. {
  699. return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
  700. }
  701. void serialize(struct btMatrix3x3Data & dataOut) const;
  702. void serializeFloat(struct btMatrix3x3FloatData & dataOut) const;
  703. void deSerialize(const struct btMatrix3x3Data& dataIn);
  704. void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
  705. void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
  706. };
  707. SIMD_FORCE_INLINE btMatrix3x3&
  708. btMatrix3x3::operator*=(const btMatrix3x3& m)
  709. {
  710. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  711. __m128 rv00, rv01, rv02;
  712. __m128 rv10, rv11, rv12;
  713. __m128 rv20, rv21, rv22;
  714. __m128 mv0, mv1, mv2;
  715. rv02 = m_el[0].mVec128;
  716. rv12 = m_el[1].mVec128;
  717. rv22 = m_el[2].mVec128;
  718. mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
  719. mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
  720. mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
  721. // rv0
  722. rv00 = bt_splat_ps(rv02, 0);
  723. rv01 = bt_splat_ps(rv02, 1);
  724. rv02 = bt_splat_ps(rv02, 2);
  725. rv00 = _mm_mul_ps(rv00, mv0);
  726. rv01 = _mm_mul_ps(rv01, mv1);
  727. rv02 = _mm_mul_ps(rv02, mv2);
  728. // rv1
  729. rv10 = bt_splat_ps(rv12, 0);
  730. rv11 = bt_splat_ps(rv12, 1);
  731. rv12 = bt_splat_ps(rv12, 2);
  732. rv10 = _mm_mul_ps(rv10, mv0);
  733. rv11 = _mm_mul_ps(rv11, mv1);
  734. rv12 = _mm_mul_ps(rv12, mv2);
  735. // rv2
  736. rv20 = bt_splat_ps(rv22, 0);
  737. rv21 = bt_splat_ps(rv22, 1);
  738. rv22 = bt_splat_ps(rv22, 2);
  739. rv20 = _mm_mul_ps(rv20, mv0);
  740. rv21 = _mm_mul_ps(rv21, mv1);
  741. rv22 = _mm_mul_ps(rv22, mv2);
  742. rv00 = _mm_add_ps(rv00, rv01);
  743. rv10 = _mm_add_ps(rv10, rv11);
  744. rv20 = _mm_add_ps(rv20, rv21);
  745. m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
  746. m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
  747. m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
  748. #elif defined(BT_USE_NEON)
  749. float32x4_t rv0, rv1, rv2;
  750. float32x4_t v0, v1, v2;
  751. float32x4_t mv0, mv1, mv2;
  752. v0 = m_el[0].mVec128;
  753. v1 = m_el[1].mVec128;
  754. v2 = m_el[2].mVec128;
  755. mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
  756. mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
  757. mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
  758. rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
  759. rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
  760. rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
  761. rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
  762. rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
  763. rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
  764. rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
  765. rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
  766. rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
  767. m_el[0].mVec128 = rv0;
  768. m_el[1].mVec128 = rv1;
  769. m_el[2].mVec128 = rv2;
  770. #else
  771. setValue(
  772. m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
  773. m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
  774. m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
  775. #endif
  776. return *this;
  777. }
  778. SIMD_FORCE_INLINE btMatrix3x3&
  779. btMatrix3x3::operator+=(const btMatrix3x3& m)
  780. {
  781. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  782. m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
  783. m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
  784. m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
  785. #else
  786. setValue(
  787. m_el[0][0] + m.m_el[0][0],
  788. m_el[0][1] + m.m_el[0][1],
  789. m_el[0][2] + m.m_el[0][2],
  790. m_el[1][0] + m.m_el[1][0],
  791. m_el[1][1] + m.m_el[1][1],
  792. m_el[1][2] + m.m_el[1][2],
  793. m_el[2][0] + m.m_el[2][0],
  794. m_el[2][1] + m.m_el[2][1],
  795. m_el[2][2] + m.m_el[2][2]);
  796. #endif
  797. return *this;
  798. }
  799. SIMD_FORCE_INLINE btMatrix3x3
  800. operator*(const btMatrix3x3& m, const btScalar& k)
  801. {
  802. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  803. __m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80);
  804. return btMatrix3x3(
  805. _mm_mul_ps(m[0].mVec128, vk),
  806. _mm_mul_ps(m[1].mVec128, vk),
  807. _mm_mul_ps(m[2].mVec128, vk));
  808. #elif defined(BT_USE_NEON)
  809. return btMatrix3x3(
  810. vmulq_n_f32(m[0].mVec128, k),
  811. vmulq_n_f32(m[1].mVec128, k),
  812. vmulq_n_f32(m[2].mVec128, k));
  813. #else
  814. return btMatrix3x3(
  815. m[0].x() * k, m[0].y() * k, m[0].z() * k,
  816. m[1].x() * k, m[1].y() * k, m[1].z() * k,
  817. m[2].x() * k, m[2].y() * k, m[2].z() * k);
  818. #endif
  819. }
  820. SIMD_FORCE_INLINE btMatrix3x3
  821. operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
  822. {
  823. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  824. return btMatrix3x3(
  825. m1[0].mVec128 + m2[0].mVec128,
  826. m1[1].mVec128 + m2[1].mVec128,
  827. m1[2].mVec128 + m2[2].mVec128);
  828. #else
  829. return btMatrix3x3(
  830. m1[0][0] + m2[0][0],
  831. m1[0][1] + m2[0][1],
  832. m1[0][2] + m2[0][2],
  833. m1[1][0] + m2[1][0],
  834. m1[1][1] + m2[1][1],
  835. m1[1][2] + m2[1][2],
  836. m1[2][0] + m2[2][0],
  837. m1[2][1] + m2[2][1],
  838. m1[2][2] + m2[2][2]);
  839. #endif
  840. }
  841. SIMD_FORCE_INLINE btMatrix3x3
  842. operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
  843. {
  844. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  845. return btMatrix3x3(
  846. m1[0].mVec128 - m2[0].mVec128,
  847. m1[1].mVec128 - m2[1].mVec128,
  848. m1[2].mVec128 - m2[2].mVec128);
  849. #else
  850. return btMatrix3x3(
  851. m1[0][0] - m2[0][0],
  852. m1[0][1] - m2[0][1],
  853. m1[0][2] - m2[0][2],
  854. m1[1][0] - m2[1][0],
  855. m1[1][1] - m2[1][1],
  856. m1[1][2] - m2[1][2],
  857. m1[2][0] - m2[2][0],
  858. m1[2][1] - m2[2][1],
  859. m1[2][2] - m2[2][2]);
  860. #endif
  861. }
  862. SIMD_FORCE_INLINE btMatrix3x3&
  863. btMatrix3x3::operator-=(const btMatrix3x3& m)
  864. {
  865. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  866. m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
  867. m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
  868. m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
  869. #else
  870. setValue(
  871. m_el[0][0] - m.m_el[0][0],
  872. m_el[0][1] - m.m_el[0][1],
  873. m_el[0][2] - m.m_el[0][2],
  874. m_el[1][0] - m.m_el[1][0],
  875. m_el[1][1] - m.m_el[1][1],
  876. m_el[1][2] - m.m_el[1][2],
  877. m_el[2][0] - m.m_el[2][0],
  878. m_el[2][1] - m.m_el[2][1],
  879. m_el[2][2] - m.m_el[2][2]);
  880. #endif
  881. return *this;
  882. }
  883. SIMD_FORCE_INLINE btScalar
  884. btMatrix3x3::determinant() const
  885. {
  886. return btTriple((*this)[0], (*this)[1], (*this)[2]);
  887. }
  888. SIMD_FORCE_INLINE btMatrix3x3
  889. btMatrix3x3::absolute() const
  890. {
  891. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  892. return btMatrix3x3(
  893. _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
  894. _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
  895. _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
  896. #elif defined(BT_USE_NEON)
  897. return btMatrix3x3(
  898. (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
  899. (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
  900. (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
  901. #else
  902. return btMatrix3x3(
  903. btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
  904. btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
  905. btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
  906. #endif
  907. }
  908. SIMD_FORCE_INLINE btMatrix3x3
  909. btMatrix3x3::transpose() const
  910. {
  911. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  912. __m128 v0 = m_el[0].mVec128;
  913. __m128 v1 = m_el[1].mVec128;
  914. __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
  915. __m128 vT;
  916. v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
  917. vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
  918. v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
  919. v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
  920. v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
  921. v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
  922. return btMatrix3x3(v0, v1, v2);
  923. #elif defined(BT_USE_NEON)
  924. // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
  925. static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
  926. float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
  927. float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
  928. float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
  929. float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
  930. float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
  931. float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
  932. return btMatrix3x3(v0, v1, v2);
  933. #else
  934. return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
  935. m_el[0].y(), m_el[1].y(), m_el[2].y(),
  936. m_el[0].z(), m_el[1].z(), m_el[2].z());
  937. #endif
  938. }
  939. SIMD_FORCE_INLINE btMatrix3x3
  940. btMatrix3x3::adjoint() const
  941. {
  942. return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
  943. cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
  944. cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
  945. }
  946. SIMD_FORCE_INLINE btMatrix3x3
  947. btMatrix3x3::inverse() const
  948. {
  949. btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
  950. btScalar det = (*this)[0].dot(co);
  951. //btFullAssert(det != btScalar(0.0));
  952. btAssert(det != btScalar(0.0));
  953. btScalar s = btScalar(1.0) / det;
  954. return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
  955. co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
  956. co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
  957. }
  958. SIMD_FORCE_INLINE btMatrix3x3
  959. btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
  960. {
  961. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  962. // zeros w
  963. // static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
  964. __m128 row = m_el[0].mVec128;
  965. __m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask);
  966. __m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask);
  967. __m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask);
  968. __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
  969. __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
  970. __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
  971. row = m_el[1].mVec128;
  972. r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
  973. r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
  974. r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
  975. row = m_el[2].mVec128;
  976. r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
  977. r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
  978. r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
  979. return btMatrix3x3(r0, r1, r2);
  980. #elif defined BT_USE_NEON
  981. // zeros w
  982. static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
  983. float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask);
  984. float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask);
  985. float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask);
  986. float32x4_t row = m_el[0].mVec128;
  987. float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0);
  988. float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1);
  989. float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0);
  990. row = m_el[1].mVec128;
  991. r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0);
  992. r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1);
  993. r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0);
  994. row = m_el[2].mVec128;
  995. r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0);
  996. r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1);
  997. r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0);
  998. return btMatrix3x3(r0, r1, r2);
  999. #else
  1000. return btMatrix3x3(
  1001. m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
  1002. m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
  1003. m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
  1004. m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
  1005. m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
  1006. m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
  1007. m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
  1008. m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
  1009. m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
  1010. #endif
  1011. }
  1012. SIMD_FORCE_INLINE btMatrix3x3
  1013. btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
  1014. {
  1015. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1016. __m128 a0 = m_el[0].mVec128;
  1017. __m128 a1 = m_el[1].mVec128;
  1018. __m128 a2 = m_el[2].mVec128;
  1019. btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
  1020. __m128 mx = mT[0].mVec128;
  1021. __m128 my = mT[1].mVec128;
  1022. __m128 mz = mT[2].mVec128;
  1023. __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
  1024. __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
  1025. __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
  1026. r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
  1027. r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
  1028. r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
  1029. r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
  1030. r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
  1031. r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
  1032. return btMatrix3x3(r0, r1, r2);
  1033. #elif defined BT_USE_NEON
  1034. float32x4_t a0 = m_el[0].mVec128;
  1035. float32x4_t a1 = m_el[1].mVec128;
  1036. float32x4_t a2 = m_el[2].mVec128;
  1037. btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
  1038. float32x4_t mx = mT[0].mVec128;
  1039. float32x4_t my = mT[1].mVec128;
  1040. float32x4_t mz = mT[2].mVec128;
  1041. float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0);
  1042. float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0);
  1043. float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0);
  1044. r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1);
  1045. r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1);
  1046. r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1);
  1047. r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0);
  1048. r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0);
  1049. r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0);
  1050. return btMatrix3x3(r0, r1, r2);
  1051. #else
  1052. return btMatrix3x3(
  1053. m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
  1054. m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
  1055. m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
  1056. #endif
  1057. }
  1058. SIMD_FORCE_INLINE btVector3
  1059. operator*(const btMatrix3x3& m, const btVector3& v)
  1060. {
  1061. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  1062. return v.dot3(m[0], m[1], m[2]);
  1063. #else
  1064. return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
  1065. #endif
  1066. }
  1067. SIMD_FORCE_INLINE btVector3
  1068. operator*(const btVector3& v, const btMatrix3x3& m)
  1069. {
  1070. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1071. const __m128 vv = v.mVec128;
  1072. __m128 c0 = bt_splat_ps(vv, 0);
  1073. __m128 c1 = bt_splat_ps(vv, 1);
  1074. __m128 c2 = bt_splat_ps(vv, 2);
  1075. c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask));
  1076. c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask));
  1077. c0 = _mm_add_ps(c0, c1);
  1078. c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask));
  1079. return btVector3(_mm_add_ps(c0, c2));
  1080. #elif defined(BT_USE_NEON)
  1081. const float32x4_t vv = v.mVec128;
  1082. const float32x2_t vlo = vget_low_f32(vv);
  1083. const float32x2_t vhi = vget_high_f32(vv);
  1084. float32x4_t c0, c1, c2;
  1085. c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
  1086. c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
  1087. c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
  1088. c0 = vmulq_lane_f32(c0, vlo, 0);
  1089. c1 = vmulq_lane_f32(c1, vlo, 1);
  1090. c2 = vmulq_lane_f32(c2, vhi, 0);
  1091. c0 = vaddq_f32(c0, c1);
  1092. c0 = vaddq_f32(c0, c2);
  1093. return btVector3(c0);
  1094. #else
  1095. return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
  1096. #endif
  1097. }
  1098. SIMD_FORCE_INLINE btMatrix3x3
  1099. operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
  1100. {
  1101. #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1102. __m128 m10 = m1[0].mVec128;
  1103. __m128 m11 = m1[1].mVec128;
  1104. __m128 m12 = m1[2].mVec128;
  1105. __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
  1106. __m128 c0 = bt_splat_ps(m10, 0);
  1107. __m128 c1 = bt_splat_ps(m11, 0);
  1108. __m128 c2 = bt_splat_ps(m12, 0);
  1109. c0 = _mm_mul_ps(c0, m2v);
  1110. c1 = _mm_mul_ps(c1, m2v);
  1111. c2 = _mm_mul_ps(c2, m2v);
  1112. m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
  1113. __m128 c0_1 = bt_splat_ps(m10, 1);
  1114. __m128 c1_1 = bt_splat_ps(m11, 1);
  1115. __m128 c2_1 = bt_splat_ps(m12, 1);
  1116. c0_1 = _mm_mul_ps(c0_1, m2v);
  1117. c1_1 = _mm_mul_ps(c1_1, m2v);
  1118. c2_1 = _mm_mul_ps(c2_1, m2v);
  1119. m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
  1120. c0 = _mm_add_ps(c0, c0_1);
  1121. c1 = _mm_add_ps(c1, c1_1);
  1122. c2 = _mm_add_ps(c2, c2_1);
  1123. m10 = bt_splat_ps(m10, 2);
  1124. m11 = bt_splat_ps(m11, 2);
  1125. m12 = bt_splat_ps(m12, 2);
  1126. m10 = _mm_mul_ps(m10, m2v);
  1127. m11 = _mm_mul_ps(m11, m2v);
  1128. m12 = _mm_mul_ps(m12, m2v);
  1129. c0 = _mm_add_ps(c0, m10);
  1130. c1 = _mm_add_ps(c1, m11);
  1131. c2 = _mm_add_ps(c2, m12);
  1132. return btMatrix3x3(c0, c1, c2);
  1133. #elif defined(BT_USE_NEON)
  1134. float32x4_t rv0, rv1, rv2;
  1135. float32x4_t v0, v1, v2;
  1136. float32x4_t mv0, mv1, mv2;
  1137. v0 = m1[0].mVec128;
  1138. v1 = m1[1].mVec128;
  1139. v2 = m1[2].mVec128;
  1140. mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
  1141. mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
  1142. mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
  1143. rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
  1144. rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
  1145. rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
  1146. rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
  1147. rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
  1148. rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
  1149. rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
  1150. rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
  1151. rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
  1152. return btMatrix3x3(rv0, rv1, rv2);
  1153. #else
  1154. return btMatrix3x3(
  1155. m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]),
  1156. m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]),
  1157. m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2]));
  1158. #endif
  1159. }
  1160. /*
  1161. SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
  1162. return btMatrix3x3(
  1163. m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
  1164. m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
  1165. m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
  1166. m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
  1167. m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
  1168. m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
  1169. m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
  1170. m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
  1171. m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
  1172. }
  1173. */
  1174. /**@brief Equality operator between two matrices
  1175. * It will test all elements are equal. */
  1176. SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
  1177. {
  1178. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
  1179. __m128 c0, c1, c2;
  1180. c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
  1181. c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
  1182. c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
  1183. c0 = _mm_and_ps(c0, c1);
  1184. c0 = _mm_and_ps(c0, c2);
  1185. int m = _mm_movemask_ps((__m128)c0);
  1186. return (0x7 == (m & 0x7));
  1187. #else
  1188. return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
  1189. m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
  1190. m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]);
  1191. #endif
  1192. }
  1193. ///for serialization
  1194. struct btMatrix3x3FloatData
  1195. {
  1196. btVector3FloatData m_el[3];
  1197. };
  1198. ///for serialization
  1199. struct btMatrix3x3DoubleData
  1200. {
  1201. btVector3DoubleData m_el[3];
  1202. };
  1203. SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
  1204. {
  1205. for (int i = 0; i < 3; i++)
  1206. m_el[i].serialize(dataOut.m_el[i]);
  1207. }
  1208. SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
  1209. {
  1210. for (int i = 0; i < 3; i++)
  1211. m_el[i].serializeFloat(dataOut.m_el[i]);
  1212. }
  1213. SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
  1214. {
  1215. for (int i = 0; i < 3; i++)
  1216. m_el[i].deSerialize(dataIn.m_el[i]);
  1217. }
  1218. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
  1219. {
  1220. for (int i = 0; i < 3; i++)
  1221. m_el[i].deSerializeFloat(dataIn.m_el[i]);
  1222. }
  1223. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
  1224. {
  1225. for (int i = 0; i < 3; i++)
  1226. m_el[i].deSerializeDouble(dataIn.m_el[i]);
  1227. }
  1228. #endif //BT_MATRIX3x3_H