btQuaternion.h 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /*
  2. Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
  3. This software is provided 'as-is', without any express or implied warranty.
  4. In no event will the authors be held liable for any damages arising from the use of this software.
  5. Permission is granted to anyone to use this software for any purpose,
  6. including commercial applications, and to alter it and redistribute it freely,
  7. subject to the following restrictions:
  8. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  9. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  10. 3. This notice may not be removed or altered from any source distribution.
  11. */
  12. #ifndef BT_SIMD__QUATERNION_H_
  13. #define BT_SIMD__QUATERNION_H_
  14. #include "btVector3.h"
  15. #include "btQuadWord.h"
  16. #ifdef BT_USE_DOUBLE_PRECISION
  17. #define btQuaternionData btQuaternionDoubleData
  18. #define btQuaternionDataName "btQuaternionDoubleData"
  19. #else
  20. #define btQuaternionData btQuaternionFloatData
  21. #define btQuaternionDataName "btQuaternionFloatData"
  22. #endif //BT_USE_DOUBLE_PRECISION
  23. #ifdef BT_USE_SSE
  24. //const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
  25. #define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f))
  26. #endif
  27. #if defined(BT_USE_SSE)
  28. #define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
  29. #define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))
  30. #elif defined(BT_USE_NEON)
  31. const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
  32. const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
  33. #endif
  34. /**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
  35. class btQuaternion : public btQuadWord
  36. {
  37. public:
  38. /**@brief No initialization constructor */
  39. btQuaternion() {}
  40. #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
  41. // Set Vector
  42. SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
  43. {
  44. mVec128 = vec;
  45. }
  46. // Copy constructor
  47. SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
  48. {
  49. mVec128 = rhs.mVec128;
  50. }
  51. // Assignment Operator
  52. SIMD_FORCE_INLINE btQuaternion&
  53. operator=(const btQuaternion& v)
  54. {
  55. mVec128 = v.mVec128;
  56. return *this;
  57. }
  58. #endif
  59. // template <typename btScalar>
  60. // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
  61. /**@brief Constructor from scalars */
  62. btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
  63. : btQuadWord(_x, _y, _z, _w)
  64. {
  65. }
  66. /**@brief Axis angle Constructor
  67. * @param axis The axis which the rotation is around
  68. * @param angle The magnitude of the rotation around the angle (Radians) */
  69. btQuaternion(const btVector3& _axis, const btScalar& _angle)
  70. {
  71. setRotation(_axis, _angle);
  72. }
  73. /**@brief Constructor from Euler angles
  74. * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
  75. * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
  76. * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
  77. btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  78. {
  79. #ifndef BT_EULER_DEFAULT_ZYX
  80. setEuler(yaw, pitch, roll);
  81. #else
  82. setEulerZYX(yaw, pitch, roll);
  83. #endif
  84. }
  85. /**@brief Set the rotation using axis angle notation
  86. * @param axis The axis around which to rotate
  87. * @param angle The magnitude of the rotation in Radians */
  88. void setRotation(const btVector3& axis, const btScalar& _angle)
  89. {
  90. btScalar d = axis.length();
  91. btAssert(d != btScalar(0.0));
  92. btScalar s = btSin(_angle * btScalar(0.5)) / d;
  93. setValue(axis.x() * s, axis.y() * s, axis.z() * s,
  94. btCos(_angle * btScalar(0.5)));
  95. }
  96. /**@brief Set the quaternion using Euler angles
  97. * @param yaw Angle around Y
  98. * @param pitch Angle around X
  99. * @param roll Angle around Z */
  100. void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  101. {
  102. btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
  103. btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
  104. btScalar halfRoll = btScalar(roll) * btScalar(0.5);
  105. btScalar cosYaw = btCos(halfYaw);
  106. btScalar sinYaw = btSin(halfYaw);
  107. btScalar cosPitch = btCos(halfPitch);
  108. btScalar sinPitch = btSin(halfPitch);
  109. btScalar cosRoll = btCos(halfRoll);
  110. btScalar sinRoll = btSin(halfRoll);
  111. setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
  112. cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
  113. sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
  114. cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
  115. }
  116. /**@brief Set the quaternion using euler angles
  117. * @param yaw Angle around Z
  118. * @param pitch Angle around Y
  119. * @param roll Angle around X */
  120. void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX)
  121. {
  122. btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);
  123. btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);
  124. btScalar halfRoll = btScalar(rollX) * btScalar(0.5);
  125. btScalar cosYaw = btCos(halfYaw);
  126. btScalar sinYaw = btSin(halfYaw);
  127. btScalar cosPitch = btCos(halfPitch);
  128. btScalar sinPitch = btSin(halfPitch);
  129. btScalar cosRoll = btCos(halfRoll);
  130. btScalar sinRoll = btSin(halfRoll);
  131. setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
  132. cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
  133. cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
  134. cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
  135. }
  136. /**@brief Get the euler angles from this quaternion
  137. * @param yaw Angle around Z
  138. * @param pitch Angle around Y
  139. * @param roll Angle around X */
  140. void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const
  141. {
  142. btScalar squ;
  143. btScalar sqx;
  144. btScalar sqy;
  145. btScalar sqz;
  146. btScalar sarg;
  147. sqx = m_floats[0] * m_floats[0];
  148. sqy = m_floats[1] * m_floats[1];
  149. sqz = m_floats[2] * m_floats[2];
  150. squ = m_floats[3] * m_floats[3];
  151. sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
  152. // If the pitch angle is PI/2 or -PI/2, we can only compute
  153. // the sum roll + yaw. However, any combination that gives
  154. // the right sum will produce the correct orientation, so we
  155. // set rollX = 0 and compute yawZ.
  156. if (sarg <= -btScalar(0.99999))
  157. {
  158. pitchY = btScalar(-0.5) * SIMD_PI;
  159. rollX = 0;
  160. yawZ = btScalar(2) * btAtan2(m_floats[0], -m_floats[1]);
  161. }
  162. else if (sarg >= btScalar(0.99999))
  163. {
  164. pitchY = btScalar(0.5) * SIMD_PI;
  165. rollX = 0;
  166. yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]);
  167. }
  168. else
  169. {
  170. pitchY = btAsin(sarg);
  171. rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
  172. yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
  173. }
  174. }
  175. /**@brief Add two quaternions
  176. * @param q The quaternion to add to this one */
  177. SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
  178. {
  179. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  180. mVec128 = _mm_add_ps(mVec128, q.mVec128);
  181. #elif defined(BT_USE_NEON)
  182. mVec128 = vaddq_f32(mVec128, q.mVec128);
  183. #else
  184. m_floats[0] += q.x();
  185. m_floats[1] += q.y();
  186. m_floats[2] += q.z();
  187. m_floats[3] += q.m_floats[3];
  188. #endif
  189. return *this;
  190. }
  191. /**@brief Subtract out a quaternion
  192. * @param q The quaternion to subtract from this one */
  193. btQuaternion& operator-=(const btQuaternion& q)
  194. {
  195. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  196. mVec128 = _mm_sub_ps(mVec128, q.mVec128);
  197. #elif defined(BT_USE_NEON)
  198. mVec128 = vsubq_f32(mVec128, q.mVec128);
  199. #else
  200. m_floats[0] -= q.x();
  201. m_floats[1] -= q.y();
  202. m_floats[2] -= q.z();
  203. m_floats[3] -= q.m_floats[3];
  204. #endif
  205. return *this;
  206. }
  207. /**@brief Scale this quaternion
  208. * @param s The scalar to scale by */
  209. btQuaternion& operator*=(const btScalar& s)
  210. {
  211. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  212. __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
  213. vs = bt_pshufd_ps(vs, 0); // (S S S S)
  214. mVec128 = _mm_mul_ps(mVec128, vs);
  215. #elif defined(BT_USE_NEON)
  216. mVec128 = vmulq_n_f32(mVec128, s);
  217. #else
  218. m_floats[0] *= s;
  219. m_floats[1] *= s;
  220. m_floats[2] *= s;
  221. m_floats[3] *= s;
  222. #endif
  223. return *this;
  224. }
  225. /**@brief Multiply this quaternion by q on the right
  226. * @param q The other quaternion
  227. * Equivilant to this = this * q */
  228. btQuaternion& operator*=(const btQuaternion& q)
  229. {
  230. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  231. __m128 vQ2 = q.get128();
  232. __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0, 1, 2, 0));
  233. __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));
  234. A1 = A1 * B1;
  235. __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 1));
  236. __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
  237. A2 = A2 * B2;
  238. B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2, 0, 1, 2));
  239. B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
  240. B1 = B1 * B2; // A3 *= B3
  241. mVec128 = bt_splat_ps(mVec128, 3); // A0
  242. mVec128 = mVec128 * vQ2; // A0 * B0
  243. A1 = A1 + A2; // AB12
  244. mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
  245. A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
  246. mVec128 = mVec128 + A1; // AB03 + AB12
  247. #elif defined(BT_USE_NEON)
  248. float32x4_t vQ1 = mVec128;
  249. float32x4_t vQ2 = q.get128();
  250. float32x4_t A0, A1, B1, A2, B2, A3, B3;
  251. float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
  252. {
  253. float32x2x2_t tmp;
  254. tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
  255. vQ1zx = tmp.val[0];
  256. tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
  257. vQ2zx = tmp.val[0];
  258. }
  259. vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
  260. vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
  261. vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
  262. vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
  263. A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
  264. B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
  265. A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
  266. B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
  267. A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
  268. B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
  269. A1 = vmulq_f32(A1, B1);
  270. A2 = vmulq_f32(A2, B2);
  271. A3 = vmulq_f32(A3, B3); // A3 *= B3
  272. A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
  273. A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
  274. A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
  275. // change the sign of the last element
  276. A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
  277. A0 = vaddq_f32(A0, A1); // AB03 + AB12
  278. mVec128 = A0;
  279. #else
  280. setValue(
  281. m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
  282. m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
  283. m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
  284. m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
  285. #endif
  286. return *this;
  287. }
  288. /**@brief Return the dot product between this quaternion and another
  289. * @param q The other quaternion */
  290. btScalar dot(const btQuaternion& q) const
  291. {
  292. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  293. __m128 vd;
  294. vd = _mm_mul_ps(mVec128, q.mVec128);
  295. __m128 t = _mm_movehl_ps(vd, vd);
  296. vd = _mm_add_ps(vd, t);
  297. t = _mm_shuffle_ps(vd, vd, 0x55);
  298. vd = _mm_add_ss(vd, t);
  299. return _mm_cvtss_f32(vd);
  300. #elif defined(BT_USE_NEON)
  301. float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
  302. float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
  303. x = vpadd_f32(x, x);
  304. return vget_lane_f32(x, 0);
  305. #else
  306. return m_floats[0] * q.x() +
  307. m_floats[1] * q.y() +
  308. m_floats[2] * q.z() +
  309. m_floats[3] * q.m_floats[3];
  310. #endif
  311. }
  312. /**@brief Return the length squared of the quaternion */
  313. btScalar length2() const
  314. {
  315. return dot(*this);
  316. }
  317. /**@brief Return the length of the quaternion */
  318. btScalar length() const
  319. {
  320. return btSqrt(length2());
  321. }
  322. btQuaternion& safeNormalize()
  323. {
  324. btScalar l2 = length2();
  325. if (l2 > SIMD_EPSILON)
  326. {
  327. normalize();
  328. }
  329. return *this;
  330. }
  331. /**@brief Normalize the quaternion
  332. * Such that x^2 + y^2 + z^2 +w^2 = 1 */
  333. btQuaternion& normalize()
  334. {
  335. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  336. __m128 vd;
  337. vd = _mm_mul_ps(mVec128, mVec128);
  338. __m128 t = _mm_movehl_ps(vd, vd);
  339. vd = _mm_add_ps(vd, t);
  340. t = _mm_shuffle_ps(vd, vd, 0x55);
  341. vd = _mm_add_ss(vd, t);
  342. vd = _mm_sqrt_ss(vd);
  343. vd = _mm_div_ss(vOnes, vd);
  344. vd = bt_pshufd_ps(vd, 0); // splat
  345. mVec128 = _mm_mul_ps(mVec128, vd);
  346. return *this;
  347. #else
  348. return *this /= length();
  349. #endif
  350. }
  351. /**@brief Return a scaled version of this quaternion
  352. * @param s The scale factor */
  353. SIMD_FORCE_INLINE btQuaternion
  354. operator*(const btScalar& s) const
  355. {
  356. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  357. __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
  358. vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
  359. return btQuaternion(_mm_mul_ps(mVec128, vs));
  360. #elif defined(BT_USE_NEON)
  361. return btQuaternion(vmulq_n_f32(mVec128, s));
  362. #else
  363. return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
  364. #endif
  365. }
  366. /**@brief Return an inversely scaled versionof this quaternion
  367. * @param s The inverse scale factor */
  368. btQuaternion operator/(const btScalar& s) const
  369. {
  370. btAssert(s != btScalar(0.0));
  371. return *this * (btScalar(1.0) / s);
  372. }
  373. /**@brief Inversely scale this quaternion
  374. * @param s The scale factor */
  375. btQuaternion& operator/=(const btScalar& s)
  376. {
  377. btAssert(s != btScalar(0.0));
  378. return *this *= btScalar(1.0) / s;
  379. }
  380. /**@brief Return a normalized version of this quaternion */
  381. btQuaternion normalized() const
  382. {
  383. return *this / length();
  384. }
  385. /**@brief Return the ***half*** angle between this quaternion and the other
  386. * @param q The other quaternion */
  387. btScalar angle(const btQuaternion& q) const
  388. {
  389. btScalar s = btSqrt(length2() * q.length2());
  390. btAssert(s != btScalar(0.0));
  391. return btAcos(dot(q) / s);
  392. }
  393. /**@brief Return the angle between this quaternion and the other along the shortest path
  394. * @param q The other quaternion */
  395. btScalar angleShortestPath(const btQuaternion& q) const
  396. {
  397. btScalar s = btSqrt(length2() * q.length2());
  398. btAssert(s != btScalar(0.0));
  399. if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
  400. return btAcos(dot(-q) / s) * btScalar(2.0);
  401. else
  402. return btAcos(dot(q) / s) * btScalar(2.0);
  403. }
  404. /**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
  405. btScalar getAngle() const
  406. {
  407. btScalar s = btScalar(2.) * btAcos(m_floats[3]);
  408. return s;
  409. }
  410. /**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */
  411. btScalar getAngleShortestPath() const
  412. {
  413. btScalar s;
  414. if (m_floats[3] >= 0)
  415. s = btScalar(2.) * btAcos(m_floats[3]);
  416. else
  417. s = btScalar(2.) * btAcos(-m_floats[3]);
  418. return s;
  419. }
  420. /**@brief Return the axis of the rotation represented by this quaternion */
  421. btVector3 getAxis() const
  422. {
  423. btScalar s_squared = 1.f - m_floats[3] * m_floats[3];
  424. if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
  425. return btVector3(1.0, 0.0, 0.0); // Arbitrary
  426. btScalar s = 1.f / btSqrt(s_squared);
  427. return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
  428. }
  429. /**@brief Return the inverse of this quaternion */
  430. btQuaternion inverse() const
  431. {
  432. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  433. return btQuaternion(_mm_xor_ps(mVec128, vQInv));
  434. #elif defined(BT_USE_NEON)
  435. return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
  436. #else
  437. return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
  438. #endif
  439. }
  440. /**@brief Return the sum of this quaternion and the other
  441. * @param q2 The other quaternion */
  442. SIMD_FORCE_INLINE btQuaternion
  443. operator+(const btQuaternion& q2) const
  444. {
  445. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  446. return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
  447. #elif defined(BT_USE_NEON)
  448. return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
  449. #else
  450. const btQuaternion& q1 = *this;
  451. return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
  452. #endif
  453. }
  454. /**@brief Return the difference between this quaternion and the other
  455. * @param q2 The other quaternion */
  456. SIMD_FORCE_INLINE btQuaternion
  457. operator-(const btQuaternion& q2) const
  458. {
  459. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  460. return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
  461. #elif defined(BT_USE_NEON)
  462. return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
  463. #else
  464. const btQuaternion& q1 = *this;
  465. return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
  466. #endif
  467. }
  468. /**@brief Return the negative of this quaternion
  469. * This simply negates each element */
  470. SIMD_FORCE_INLINE btQuaternion operator-() const
  471. {
  472. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  473. return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
  474. #elif defined(BT_USE_NEON)
  475. return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask));
  476. #else
  477. const btQuaternion& q2 = *this;
  478. return btQuaternion(-q2.x(), -q2.y(), -q2.z(), -q2.m_floats[3]);
  479. #endif
  480. }
  481. /**@todo document this and it's use */
  482. SIMD_FORCE_INLINE btQuaternion farthest(const btQuaternion& qd) const
  483. {
  484. btQuaternion diff, sum;
  485. diff = *this - qd;
  486. sum = *this + qd;
  487. if (diff.dot(diff) > sum.dot(sum))
  488. return qd;
  489. return (-qd);
  490. }
  491. /**@todo document this and it's use */
  492. SIMD_FORCE_INLINE btQuaternion nearest(const btQuaternion& qd) const
  493. {
  494. btQuaternion diff, sum;
  495. diff = *this - qd;
  496. sum = *this + qd;
  497. if (diff.dot(diff) < sum.dot(sum))
  498. return qd;
  499. return (-qd);
  500. }
  501. /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
  502. * @param q The other quaternion to interpolate with
  503. * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
  504. * Slerp interpolates assuming constant velocity. */
  505. btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
  506. {
  507. const btScalar magnitude = btSqrt(length2() * q.length2());
  508. btAssert(magnitude > btScalar(0));
  509. const btScalar product = dot(q) / magnitude;
  510. const btScalar absproduct = btFabs(product);
  511. if (absproduct < btScalar(1.0 - SIMD_EPSILON))
  512. {
  513. // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
  514. const btScalar theta = btAcos(absproduct);
  515. const btScalar d = btSin(theta);
  516. btAssert(d > btScalar(0));
  517. const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
  518. const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d;
  519. const btScalar s1 = btSin(sign * t * theta) / d;
  520. return btQuaternion(
  521. (m_floats[0] * s0 + q.x() * s1),
  522. (m_floats[1] * s0 + q.y() * s1),
  523. (m_floats[2] * s0 + q.z() * s1),
  524. (m_floats[3] * s0 + q.w() * s1));
  525. }
  526. else
  527. {
  528. return *this;
  529. }
  530. }
  531. static const btQuaternion& getIdentity()
  532. {
  533. static const btQuaternion identityQuat(btScalar(0.), btScalar(0.), btScalar(0.), btScalar(1.));
  534. return identityQuat;
  535. }
  536. SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
  537. SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const;
  538. SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn);
  539. SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn);
  540. SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const;
  541. SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn);
  542. SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const;
  543. SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn);
  544. };
  545. /**@brief Return the product of two quaternions */
  546. SIMD_FORCE_INLINE btQuaternion
  547. operator*(const btQuaternion& q1, const btQuaternion& q2)
  548. {
  549. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  550. __m128 vQ1 = q1.get128();
  551. __m128 vQ2 = q2.get128();
  552. __m128 A0, A1, B1, A2, B2;
  553. A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x // vtrn
  554. B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X // vdup vext
  555. A1 = A1 * B1;
  556. A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); // Y Z X Y // vext
  557. B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); // z x Y Y // vtrn vdup
  558. A2 = A2 * B2;
  559. B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); // z x Y Z // vtrn vext
  560. B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); // Y Z x z // vext vtrn
  561. B1 = B1 * B2; // A3 *= B3
  562. A0 = bt_splat_ps(vQ1, 3); // A0
  563. A0 = A0 * vQ2; // A0 * B0
  564. A1 = A1 + A2; // AB12
  565. A0 = A0 - B1; // AB03 = AB0 - AB3
  566. A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
  567. A0 = A0 + A1; // AB03 + AB12
  568. return btQuaternion(A0);
  569. #elif defined(BT_USE_NEON)
  570. float32x4_t vQ1 = q1.get128();
  571. float32x4_t vQ2 = q2.get128();
  572. float32x4_t A0, A1, B1, A2, B2, A3, B3;
  573. float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
  574. {
  575. float32x2x2_t tmp;
  576. tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
  577. vQ1zx = tmp.val[0];
  578. tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
  579. vQ2zx = tmp.val[0];
  580. }
  581. vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
  582. vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
  583. vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
  584. vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
  585. A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
  586. B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
  587. A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
  588. B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
  589. A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
  590. B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
  591. A1 = vmulq_f32(A1, B1);
  592. A2 = vmulq_f32(A2, B2);
  593. A3 = vmulq_f32(A3, B3); // A3 *= B3
  594. A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
  595. A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
  596. A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
  597. // change the sign of the last element
  598. A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
  599. A0 = vaddq_f32(A0, A1); // AB03 + AB12
  600. return btQuaternion(A0);
  601. #else
  602. return btQuaternion(
  603. q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
  604. q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
  605. q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
  606. q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
  607. #endif
  608. }
  609. SIMD_FORCE_INLINE btQuaternion
  610. operator*(const btQuaternion& q, const btVector3& w)
  611. {
  612. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  613. __m128 vQ1 = q.get128();
  614. __m128 vQ2 = w.get128();
  615. __m128 A1, B1, A2, B2, A3, B3;
  616. A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3, 3, 3, 0));
  617. B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0, 1, 2, 0));
  618. A1 = A1 * B1;
  619. A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
  620. B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
  621. A2 = A2 * B2;
  622. A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
  623. B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
  624. A3 = A3 * B3; // A3 *= B3
  625. A1 = A1 + A2; // AB12
  626. A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
  627. A1 = A1 - A3; // AB123 = AB12 - AB3
  628. return btQuaternion(A1);
  629. #elif defined(BT_USE_NEON)
  630. float32x4_t vQ1 = q.get128();
  631. float32x4_t vQ2 = w.get128();
  632. float32x4_t A1, B1, A2, B2, A3, B3;
  633. float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
  634. vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
  635. {
  636. float32x2x2_t tmp;
  637. tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
  638. vQ2zx = tmp.val[0];
  639. tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
  640. vQ1zx = tmp.val[0];
  641. }
  642. vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
  643. vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
  644. vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
  645. A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
  646. B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
  647. A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
  648. B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
  649. A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
  650. B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
  651. A1 = vmulq_f32(A1, B1);
  652. A2 = vmulq_f32(A2, B2);
  653. A3 = vmulq_f32(A3, B3); // A3 *= B3
  654. A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
  655. // change the sign of the last element
  656. A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
  657. A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
  658. return btQuaternion(A1);
  659. #else
  660. return btQuaternion(
  661. q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
  662. q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
  663. q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
  664. -q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
  665. #endif
  666. }
  667. SIMD_FORCE_INLINE btQuaternion
  668. operator*(const btVector3& w, const btQuaternion& q)
  669. {
  670. #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  671. __m128 vQ1 = w.get128();
  672. __m128 vQ2 = q.get128();
  673. __m128 A1, B1, A2, B2, A3, B3;
  674. A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x
  675. B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X
  676. A1 = A1 * B1;
  677. A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
  678. B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
  679. A2 = A2 * B2;
  680. A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
  681. B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
  682. A3 = A3 * B3; // A3 *= B3
  683. A1 = A1 + A2; // AB12
  684. A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
  685. A1 = A1 - A3; // AB123 = AB12 - AB3
  686. return btQuaternion(A1);
  687. #elif defined(BT_USE_NEON)
  688. float32x4_t vQ1 = w.get128();
  689. float32x4_t vQ2 = q.get128();
  690. float32x4_t A1, B1, A2, B2, A3, B3;
  691. float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
  692. {
  693. float32x2x2_t tmp;
  694. tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
  695. vQ1zx = tmp.val[0];
  696. tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
  697. vQ2zx = tmp.val[0];
  698. }
  699. vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
  700. vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
  701. vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
  702. vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
  703. A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
  704. B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
  705. A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
  706. B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
  707. A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
  708. B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
  709. A1 = vmulq_f32(A1, B1);
  710. A2 = vmulq_f32(A2, B2);
  711. A3 = vmulq_f32(A3, B3); // A3 *= B3
  712. A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
  713. // change the sign of the last element
  714. A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
  715. A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
  716. return btQuaternion(A1);
  717. #else
  718. return btQuaternion(
  719. +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
  720. +w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
  721. +w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
  722. -w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
  723. #endif
  724. }
  725. /**@brief Calculate the dot product between two quaternions */
  726. SIMD_FORCE_INLINE btScalar
  727. dot(const btQuaternion& q1, const btQuaternion& q2)
  728. {
  729. return q1.dot(q2);
  730. }
  731. /**@brief Return the length of a quaternion */
  732. SIMD_FORCE_INLINE btScalar
  733. length(const btQuaternion& q)
  734. {
  735. return q.length();
  736. }
  737. /**@brief Return the angle between two quaternions*/
  738. SIMD_FORCE_INLINE btScalar
  739. btAngle(const btQuaternion& q1, const btQuaternion& q2)
  740. {
  741. return q1.angle(q2);
  742. }
  743. /**@brief Return the inverse of a quaternion*/
  744. SIMD_FORCE_INLINE btQuaternion
  745. inverse(const btQuaternion& q)
  746. {
  747. return q.inverse();
  748. }
  749. /**@brief Return the result of spherical linear interpolation betwen two quaternions
  750. * @param q1 The first quaternion
  751. * @param q2 The second quaternion
  752. * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
  753. * Slerp assumes constant velocity between positions. */
  754. SIMD_FORCE_INLINE btQuaternion
  755. slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
  756. {
  757. return q1.slerp(q2, t);
  758. }
  759. SIMD_FORCE_INLINE btVector3
  760. quatRotate(const btQuaternion& rotation, const btVector3& v)
  761. {
  762. btQuaternion q = rotation * v;
  763. q *= rotation.inverse();
  764. #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
  765. return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
  766. #elif defined(BT_USE_NEON)
  767. return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
  768. #else
  769. return btVector3(q.getX(), q.getY(), q.getZ());
  770. #endif
  771. }
  772. SIMD_FORCE_INLINE btQuaternion
  773. shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
  774. {
  775. btVector3 c = v0.cross(v1);
  776. btScalar d = v0.dot(v1);
  777. if (d < -1.0 + SIMD_EPSILON)
  778. {
  779. btVector3 n, unused;
  780. btPlaneSpace1(v0, n, unused);
  781. return btQuaternion(n.x(), n.y(), n.z(), 0.0f); // just pick any vector that is orthogonal to v0
  782. }
  783. btScalar s = btSqrt((1.0f + d) * 2.0f);
  784. btScalar rs = 1.0f / s;
  785. return btQuaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f);
  786. }
  787. SIMD_FORCE_INLINE btQuaternion
  788. shortestArcQuatNormalize2(btVector3& v0, btVector3& v1)
  789. {
  790. v0.normalize();
  791. v1.normalize();
  792. return shortestArcQuat(v0, v1);
  793. }
  794. struct btQuaternionFloatData
  795. {
  796. float m_floats[4];
  797. };
  798. struct btQuaternionDoubleData
  799. {
  800. double m_floats[4];
  801. };
  802. SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const
  803. {
  804. ///could also do a memcpy, check if it is worth it
  805. for (int i = 0; i < 4; i++)
  806. dataOut.m_floats[i] = float(m_floats[i]);
  807. }
  808. SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn)
  809. {
  810. for (int i = 0; i < 4; i++)
  811. m_floats[i] = btScalar(dataIn.m_floats[i]);
  812. }
  813. SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const
  814. {
  815. ///could also do a memcpy, check if it is worth it
  816. for (int i = 0; i < 4; i++)
  817. dataOut.m_floats[i] = double(m_floats[i]);
  818. }
  819. SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn)
  820. {
  821. for (int i = 0; i < 4; i++)
  822. m_floats[i] = btScalar(dataIn.m_floats[i]);
  823. }
  824. SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const
  825. {
  826. ///could also do a memcpy, check if it is worth it
  827. for (int i = 0; i < 4; i++)
  828. dataOut.m_floats[i] = m_floats[i];
  829. }
  830. SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn)
  831. {
  832. for (int i = 0; i < 4; i++)
  833. m_floats[i] = (btScalar)dataIn.m_floats[i];
  834. }
  835. SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn)
  836. {
  837. for (int i = 0; i < 4; i++)
  838. m_floats[i] = (btScalar)dataIn.m_floats[i];
  839. }
  840. #endif //BT_SIMD__QUATERNION_H_