ecp_curves.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484
  1. /*
  2. * Elliptic curves over GF(p): curve-specific data and functions
  3. *
  4. * Copyright The Mbed TLS Contributors
  5. * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
  6. *
  7. * This file is provided under the Apache License 2.0, or the
  8. * GNU General Public License v2.0 or later.
  9. *
  10. * **********
  11. * Apache License 2.0:
  12. *
  13. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  14. * not use this file except in compliance with the License.
  15. * You may obtain a copy of the License at
  16. *
  17. * http://www.apache.org/licenses/LICENSE-2.0
  18. *
  19. * Unless required by applicable law or agreed to in writing, software
  20. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  21. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  22. * See the License for the specific language governing permissions and
  23. * limitations under the License.
  24. *
  25. * **********
  26. *
  27. * **********
  28. * GNU General Public License v2.0 or later:
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful,
  36. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  38. * GNU General Public License for more details.
  39. *
  40. * You should have received a copy of the GNU General Public License along
  41. * with this program; if not, write to the Free Software Foundation, Inc.,
  42. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  43. *
  44. * **********
  45. */
  46. #if !defined(MBEDTLS_CONFIG_FILE)
  47. #include "mbedtls/config.h"
  48. #else
  49. #include MBEDTLS_CONFIG_FILE
  50. #endif
  51. #if defined(MBEDTLS_ECP_C)
  52. #include "mbedtls/ecp.h"
  53. #include "mbedtls/platform_util.h"
  54. #include "mbedtls/bn_mul.h"
  55. #include <string.h>
  56. #if !defined(MBEDTLS_ECP_ALT)
  57. /* Parameter validation macros based on platform_util.h */
  58. #define ECP_VALIDATE_RET( cond ) \
  59. MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
  60. #define ECP_VALIDATE( cond ) \
  61. MBEDTLS_INTERNAL_VALIDATE( cond )
  62. #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
  63. !defined(inline) && !defined(__cplusplus)
  64. #define inline __inline
  65. #endif
  66. #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)}
  67. #define ECP_MPI_INIT_ARRAY(x) \
  68. ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
  69. /*
  70. * Note: the constants are in little-endian order
  71. * to be directly usable in MPIs
  72. */
  73. /*
  74. * Domain parameters for secp192r1
  75. */
  76. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  77. static const mbedtls_mpi_uint secp192r1_p[] = {
  78. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  79. MBEDTLS_BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  80. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  81. };
  82. static const mbedtls_mpi_uint secp192r1_b[] = {
  83. MBEDTLS_BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
  84. MBEDTLS_BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
  85. MBEDTLS_BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
  86. };
  87. static const mbedtls_mpi_uint secp192r1_gx[] = {
  88. MBEDTLS_BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
  89. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
  90. MBEDTLS_BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
  91. };
  92. static const mbedtls_mpi_uint secp192r1_gy[] = {
  93. MBEDTLS_BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
  94. MBEDTLS_BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
  95. MBEDTLS_BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
  96. };
  97. static const mbedtls_mpi_uint secp192r1_n[] = {
  98. MBEDTLS_BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
  99. MBEDTLS_BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
  100. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  101. };
  102. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  103. /*
  104. * Domain parameters for secp224r1
  105. */
  106. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  107. static const mbedtls_mpi_uint secp224r1_p[] = {
  108. MBEDTLS_BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  109. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  110. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  111. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  112. };
  113. static const mbedtls_mpi_uint secp224r1_b[] = {
  114. MBEDTLS_BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
  115. MBEDTLS_BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
  116. MBEDTLS_BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
  117. MBEDTLS_BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
  118. };
  119. static const mbedtls_mpi_uint secp224r1_gx[] = {
  120. MBEDTLS_BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
  121. MBEDTLS_BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
  122. MBEDTLS_BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
  123. MBEDTLS_BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
  124. };
  125. static const mbedtls_mpi_uint secp224r1_gy[] = {
  126. MBEDTLS_BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
  127. MBEDTLS_BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
  128. MBEDTLS_BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
  129. MBEDTLS_BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
  130. };
  131. static const mbedtls_mpi_uint secp224r1_n[] = {
  132. MBEDTLS_BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
  133. MBEDTLS_BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
  134. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  135. MBEDTLS_BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  136. };
  137. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  138. /*
  139. * Domain parameters for secp256r1
  140. */
  141. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  142. static const mbedtls_mpi_uint secp256r1_p[] = {
  143. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  144. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  145. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  146. MBEDTLS_BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  147. };
  148. static const mbedtls_mpi_uint secp256r1_b[] = {
  149. MBEDTLS_BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
  150. MBEDTLS_BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
  151. MBEDTLS_BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
  152. MBEDTLS_BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
  153. };
  154. static const mbedtls_mpi_uint secp256r1_gx[] = {
  155. MBEDTLS_BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
  156. MBEDTLS_BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
  157. MBEDTLS_BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
  158. MBEDTLS_BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
  159. };
  160. static const mbedtls_mpi_uint secp256r1_gy[] = {
  161. MBEDTLS_BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
  162. MBEDTLS_BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
  163. MBEDTLS_BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
  164. MBEDTLS_BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
  165. };
  166. static const mbedtls_mpi_uint secp256r1_n[] = {
  167. MBEDTLS_BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
  168. MBEDTLS_BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
  169. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  170. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  171. };
  172. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  173. /*
  174. * Domain parameters for secp384r1
  175. */
  176. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  177. static const mbedtls_mpi_uint secp384r1_p[] = {
  178. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
  179. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
  180. MBEDTLS_BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  181. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  182. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  183. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  184. };
  185. static const mbedtls_mpi_uint secp384r1_b[] = {
  186. MBEDTLS_BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
  187. MBEDTLS_BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
  188. MBEDTLS_BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
  189. MBEDTLS_BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
  190. MBEDTLS_BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
  191. MBEDTLS_BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
  192. };
  193. static const mbedtls_mpi_uint secp384r1_gx[] = {
  194. MBEDTLS_BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
  195. MBEDTLS_BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
  196. MBEDTLS_BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
  197. MBEDTLS_BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
  198. MBEDTLS_BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
  199. MBEDTLS_BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
  200. };
  201. static const mbedtls_mpi_uint secp384r1_gy[] = {
  202. MBEDTLS_BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
  203. MBEDTLS_BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
  204. MBEDTLS_BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
  205. MBEDTLS_BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
  206. MBEDTLS_BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
  207. MBEDTLS_BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
  208. };
  209. static const mbedtls_mpi_uint secp384r1_n[] = {
  210. MBEDTLS_BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
  211. MBEDTLS_BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
  212. MBEDTLS_BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
  213. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  214. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  215. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  216. };
  217. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  218. /*
  219. * Domain parameters for secp521r1
  220. */
  221. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  222. static const mbedtls_mpi_uint secp521r1_p[] = {
  223. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  224. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  225. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  226. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  227. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  228. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  229. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  230. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  231. MBEDTLS_BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  232. };
  233. static const mbedtls_mpi_uint secp521r1_b[] = {
  234. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
  235. MBEDTLS_BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
  236. MBEDTLS_BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
  237. MBEDTLS_BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
  238. MBEDTLS_BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
  239. MBEDTLS_BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
  240. MBEDTLS_BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
  241. MBEDTLS_BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
  242. MBEDTLS_BYTES_TO_T_UINT_2( 0x51, 0x00 ),
  243. };
  244. static const mbedtls_mpi_uint secp521r1_gx[] = {
  245. MBEDTLS_BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
  246. MBEDTLS_BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
  247. MBEDTLS_BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
  248. MBEDTLS_BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
  249. MBEDTLS_BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
  250. MBEDTLS_BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
  251. MBEDTLS_BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
  252. MBEDTLS_BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
  253. MBEDTLS_BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
  254. };
  255. static const mbedtls_mpi_uint secp521r1_gy[] = {
  256. MBEDTLS_BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
  257. MBEDTLS_BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
  258. MBEDTLS_BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
  259. MBEDTLS_BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
  260. MBEDTLS_BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
  261. MBEDTLS_BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
  262. MBEDTLS_BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
  263. MBEDTLS_BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
  264. MBEDTLS_BYTES_TO_T_UINT_2( 0x18, 0x01 ),
  265. };
  266. static const mbedtls_mpi_uint secp521r1_n[] = {
  267. MBEDTLS_BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
  268. MBEDTLS_BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
  269. MBEDTLS_BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
  270. MBEDTLS_BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
  271. MBEDTLS_BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  272. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  273. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  274. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  275. MBEDTLS_BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
  276. };
  277. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  278. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  279. static const mbedtls_mpi_uint secp192k1_p[] = {
  280. MBEDTLS_BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  281. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  282. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  283. };
  284. static const mbedtls_mpi_uint secp192k1_a[] = {
  285. MBEDTLS_BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  286. };
  287. static const mbedtls_mpi_uint secp192k1_b[] = {
  288. MBEDTLS_BYTES_TO_T_UINT_2( 0x03, 0x00 ),
  289. };
  290. static const mbedtls_mpi_uint secp192k1_gx[] = {
  291. MBEDTLS_BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
  292. MBEDTLS_BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
  293. MBEDTLS_BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
  294. };
  295. static const mbedtls_mpi_uint secp192k1_gy[] = {
  296. MBEDTLS_BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
  297. MBEDTLS_BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
  298. MBEDTLS_BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
  299. };
  300. static const mbedtls_mpi_uint secp192k1_n[] = {
  301. MBEDTLS_BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
  302. MBEDTLS_BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
  303. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  304. };
  305. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  306. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  307. static const mbedtls_mpi_uint secp224k1_p[] = {
  308. MBEDTLS_BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  309. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  310. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  311. MBEDTLS_BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
  312. };
  313. static const mbedtls_mpi_uint secp224k1_a[] = {
  314. MBEDTLS_BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  315. };
  316. static const mbedtls_mpi_uint secp224k1_b[] = {
  317. MBEDTLS_BYTES_TO_T_UINT_2( 0x05, 0x00 ),
  318. };
  319. static const mbedtls_mpi_uint secp224k1_gx[] = {
  320. MBEDTLS_BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
  321. MBEDTLS_BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
  322. MBEDTLS_BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
  323. MBEDTLS_BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
  324. };
  325. static const mbedtls_mpi_uint secp224k1_gy[] = {
  326. MBEDTLS_BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
  327. MBEDTLS_BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
  328. MBEDTLS_BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
  329. MBEDTLS_BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
  330. };
  331. static const mbedtls_mpi_uint secp224k1_n[] = {
  332. MBEDTLS_BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
  333. MBEDTLS_BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
  334. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
  335. MBEDTLS_BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
  336. };
  337. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  338. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  339. static const mbedtls_mpi_uint secp256k1_p[] = {
  340. MBEDTLS_BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
  341. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  342. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  343. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  344. };
  345. static const mbedtls_mpi_uint secp256k1_a[] = {
  346. MBEDTLS_BYTES_TO_T_UINT_2( 0x00, 0x00 ),
  347. };
  348. static const mbedtls_mpi_uint secp256k1_b[] = {
  349. MBEDTLS_BYTES_TO_T_UINT_2( 0x07, 0x00 ),
  350. };
  351. static const mbedtls_mpi_uint secp256k1_gx[] = {
  352. MBEDTLS_BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
  353. MBEDTLS_BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
  354. MBEDTLS_BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
  355. MBEDTLS_BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
  356. };
  357. static const mbedtls_mpi_uint secp256k1_gy[] = {
  358. MBEDTLS_BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
  359. MBEDTLS_BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
  360. MBEDTLS_BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
  361. MBEDTLS_BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
  362. };
  363. static const mbedtls_mpi_uint secp256k1_n[] = {
  364. MBEDTLS_BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
  365. MBEDTLS_BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
  366. MBEDTLS_BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  367. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
  368. };
  369. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  370. /*
  371. * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
  372. */
  373. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  374. static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
  375. MBEDTLS_BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
  376. MBEDTLS_BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
  377. MBEDTLS_BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  378. MBEDTLS_BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  379. };
  380. static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
  381. MBEDTLS_BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
  382. MBEDTLS_BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
  383. MBEDTLS_BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
  384. MBEDTLS_BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
  385. };
  386. static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
  387. MBEDTLS_BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
  388. MBEDTLS_BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
  389. MBEDTLS_BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
  390. MBEDTLS_BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
  391. };
  392. static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
  393. MBEDTLS_BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
  394. MBEDTLS_BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
  395. MBEDTLS_BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
  396. MBEDTLS_BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
  397. };
  398. static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
  399. MBEDTLS_BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
  400. MBEDTLS_BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
  401. MBEDTLS_BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
  402. MBEDTLS_BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
  403. };
  404. static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
  405. MBEDTLS_BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
  406. MBEDTLS_BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
  407. MBEDTLS_BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
  408. MBEDTLS_BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
  409. };
  410. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  411. /*
  412. * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
  413. */
  414. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  415. static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
  416. MBEDTLS_BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
  417. MBEDTLS_BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
  418. MBEDTLS_BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
  419. MBEDTLS_BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  420. MBEDTLS_BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  421. MBEDTLS_BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  422. };
  423. static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
  424. MBEDTLS_BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  425. MBEDTLS_BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
  426. MBEDTLS_BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
  427. MBEDTLS_BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
  428. MBEDTLS_BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
  429. MBEDTLS_BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
  430. };
  431. static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
  432. MBEDTLS_BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
  433. MBEDTLS_BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
  434. MBEDTLS_BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
  435. MBEDTLS_BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
  436. MBEDTLS_BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
  437. MBEDTLS_BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
  438. };
  439. static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
  440. MBEDTLS_BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
  441. MBEDTLS_BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
  442. MBEDTLS_BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
  443. MBEDTLS_BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
  444. MBEDTLS_BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
  445. MBEDTLS_BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
  446. };
  447. static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
  448. MBEDTLS_BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
  449. MBEDTLS_BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
  450. MBEDTLS_BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
  451. MBEDTLS_BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
  452. MBEDTLS_BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
  453. MBEDTLS_BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
  454. };
  455. static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
  456. MBEDTLS_BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
  457. MBEDTLS_BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
  458. MBEDTLS_BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
  459. MBEDTLS_BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
  460. MBEDTLS_BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
  461. MBEDTLS_BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
  462. };
  463. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  464. /*
  465. * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
  466. */
  467. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  468. static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
  469. MBEDTLS_BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
  470. MBEDTLS_BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
  471. MBEDTLS_BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
  472. MBEDTLS_BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
  473. MBEDTLS_BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  474. MBEDTLS_BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  475. MBEDTLS_BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  476. MBEDTLS_BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  477. };
  478. static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
  479. MBEDTLS_BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
  480. MBEDTLS_BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
  481. MBEDTLS_BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
  482. MBEDTLS_BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
  483. MBEDTLS_BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
  484. MBEDTLS_BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
  485. MBEDTLS_BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
  486. MBEDTLS_BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
  487. };
  488. static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
  489. MBEDTLS_BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
  490. MBEDTLS_BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
  491. MBEDTLS_BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
  492. MBEDTLS_BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
  493. MBEDTLS_BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
  494. MBEDTLS_BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
  495. MBEDTLS_BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
  496. MBEDTLS_BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
  497. };
  498. static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
  499. MBEDTLS_BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
  500. MBEDTLS_BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
  501. MBEDTLS_BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
  502. MBEDTLS_BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
  503. MBEDTLS_BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
  504. MBEDTLS_BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
  505. MBEDTLS_BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
  506. MBEDTLS_BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
  507. };
  508. static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
  509. MBEDTLS_BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
  510. MBEDTLS_BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
  511. MBEDTLS_BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
  512. MBEDTLS_BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
  513. MBEDTLS_BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
  514. MBEDTLS_BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
  515. MBEDTLS_BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
  516. MBEDTLS_BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
  517. };
  518. static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
  519. MBEDTLS_BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
  520. MBEDTLS_BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
  521. MBEDTLS_BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
  522. MBEDTLS_BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
  523. MBEDTLS_BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
  524. MBEDTLS_BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
  525. MBEDTLS_BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
  526. MBEDTLS_BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
  527. };
  528. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  529. /*
  530. * Create an MPI from embedded constants
  531. * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
  532. */
  533. static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
  534. {
  535. X->s = 1;
  536. X->n = len / sizeof( mbedtls_mpi_uint );
  537. X->p = (mbedtls_mpi_uint *) p;
  538. }
  539. /*
  540. * Set an MPI to static value 1
  541. */
  542. static inline void ecp_mpi_set1( mbedtls_mpi *X )
  543. {
  544. static mbedtls_mpi_uint one[] = { 1 };
  545. X->s = 1;
  546. X->n = 1;
  547. X->p = one;
  548. }
  549. /*
  550. * Make group available from embedded constants
  551. */
  552. static int ecp_group_load( mbedtls_ecp_group *grp,
  553. const mbedtls_mpi_uint *p, size_t plen,
  554. const mbedtls_mpi_uint *a, size_t alen,
  555. const mbedtls_mpi_uint *b, size_t blen,
  556. const mbedtls_mpi_uint *gx, size_t gxlen,
  557. const mbedtls_mpi_uint *gy, size_t gylen,
  558. const mbedtls_mpi_uint *n, size_t nlen)
  559. {
  560. ecp_mpi_load( &grp->P, p, plen );
  561. if( a != NULL )
  562. ecp_mpi_load( &grp->A, a, alen );
  563. ecp_mpi_load( &grp->B, b, blen );
  564. ecp_mpi_load( &grp->N, n, nlen );
  565. ecp_mpi_load( &grp->G.X, gx, gxlen );
  566. ecp_mpi_load( &grp->G.Y, gy, gylen );
  567. ecp_mpi_set1( &grp->G.Z );
  568. grp->pbits = mbedtls_mpi_bitlen( &grp->P );
  569. grp->nbits = mbedtls_mpi_bitlen( &grp->N );
  570. grp->h = 1;
  571. return( 0 );
  572. }
  573. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  574. /* Forward declarations */
  575. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  576. static int ecp_mod_p192( mbedtls_mpi * );
  577. #endif
  578. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  579. static int ecp_mod_p224( mbedtls_mpi * );
  580. #endif
  581. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  582. static int ecp_mod_p256( mbedtls_mpi * );
  583. #endif
  584. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  585. static int ecp_mod_p384( mbedtls_mpi * );
  586. #endif
  587. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  588. static int ecp_mod_p521( mbedtls_mpi * );
  589. #endif
  590. #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
  591. #else
  592. #define NIST_MODP( P )
  593. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  594. /* Additional forward declarations */
  595. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  596. static int ecp_mod_p255( mbedtls_mpi * );
  597. #endif
  598. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  599. static int ecp_mod_p448( mbedtls_mpi * );
  600. #endif
  601. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  602. static int ecp_mod_p192k1( mbedtls_mpi * );
  603. #endif
  604. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  605. static int ecp_mod_p224k1( mbedtls_mpi * );
  606. #endif
  607. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  608. static int ecp_mod_p256k1( mbedtls_mpi * );
  609. #endif
  610. #define LOAD_GROUP_A( G ) ecp_group_load( grp, \
  611. G ## _p, sizeof( G ## _p ), \
  612. G ## _a, sizeof( G ## _a ), \
  613. G ## _b, sizeof( G ## _b ), \
  614. G ## _gx, sizeof( G ## _gx ), \
  615. G ## _gy, sizeof( G ## _gy ), \
  616. G ## _n, sizeof( G ## _n ) )
  617. #define LOAD_GROUP( G ) ecp_group_load( grp, \
  618. G ## _p, sizeof( G ## _p ), \
  619. NULL, 0, \
  620. G ## _b, sizeof( G ## _b ), \
  621. G ## _gx, sizeof( G ## _gx ), \
  622. G ## _gy, sizeof( G ## _gy ), \
  623. G ## _n, sizeof( G ## _n ) )
  624. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  625. /* Constants used by ecp_use_curve25519() */
  626. static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
  627. static const unsigned char curve25519_part_of_n[] = {
  628. 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
  629. 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
  630. };
  631. /*
  632. * Specialized function for creating the Curve25519 group
  633. */
  634. static int ecp_use_curve25519( mbedtls_ecp_group *grp )
  635. {
  636. int ret;
  637. /* Actually ( A + 2 ) / 4 */
  638. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->A, curve25519_a24 ) );
  639. /* P = 2^255 - 19 */
  640. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
  641. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
  642. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
  643. grp->pbits = mbedtls_mpi_bitlen( &grp->P );
  644. /* N = 2^252 + 27742317777372353535851937790883648493 */
  645. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &grp->N,
  646. curve25519_part_of_n, sizeof( curve25519_part_of_n ) ) );
  647. MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
  648. /* Y intentionally not set, since we use x/z coordinates.
  649. * This is used as a marker to identify Montgomery curves! */
  650. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
  651. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
  652. mbedtls_mpi_free( &grp->G.Y );
  653. /* Actually, the required msb for private keys */
  654. grp->nbits = 254;
  655. cleanup:
  656. if( ret != 0 )
  657. mbedtls_ecp_group_free( grp );
  658. return( ret );
  659. }
  660. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  661. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  662. /* Constants used by ecp_use_curve448() */
  663. static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
  664. static const unsigned char curve448_part_of_n[] = {
  665. 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
  666. 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
  667. 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
  668. 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
  669. };
  670. /*
  671. * Specialized function for creating the Curve448 group
  672. */
  673. static int ecp_use_curve448( mbedtls_ecp_group *grp )
  674. {
  675. mbedtls_mpi Ns;
  676. int ret;
  677. mbedtls_mpi_init( &Ns );
  678. /* Actually ( A + 2 ) / 4 */
  679. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->A, curve448_a24 ) );
  680. /* P = 2^448 - 2^224 - 1 */
  681. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
  682. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
  683. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
  684. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
  685. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
  686. grp->pbits = mbedtls_mpi_bitlen( &grp->P );
  687. /* Y intentionally not set, since we use x/z coordinates.
  688. * This is used as a marker to identify Montgomery curves! */
  689. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
  690. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
  691. mbedtls_mpi_free( &grp->G.Y );
  692. /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
  693. MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
  694. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &Ns,
  695. curve448_part_of_n, sizeof( curve448_part_of_n ) ) );
  696. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
  697. /* Actually, the required msb for private keys */
  698. grp->nbits = 447;
  699. cleanup:
  700. mbedtls_mpi_free( &Ns );
  701. if( ret != 0 )
  702. mbedtls_ecp_group_free( grp );
  703. return( ret );
  704. }
  705. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  706. /*
  707. * Set a group using well-known domain parameters
  708. */
  709. int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
  710. {
  711. ECP_VALIDATE_RET( grp != NULL );
  712. mbedtls_ecp_group_free( grp );
  713. grp->id = id;
  714. switch( id )
  715. {
  716. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  717. case MBEDTLS_ECP_DP_SECP192R1:
  718. NIST_MODP( p192 );
  719. return( LOAD_GROUP( secp192r1 ) );
  720. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  721. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  722. case MBEDTLS_ECP_DP_SECP224R1:
  723. NIST_MODP( p224 );
  724. return( LOAD_GROUP( secp224r1 ) );
  725. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  726. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  727. case MBEDTLS_ECP_DP_SECP256R1:
  728. NIST_MODP( p256 );
  729. return( LOAD_GROUP( secp256r1 ) );
  730. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  731. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  732. case MBEDTLS_ECP_DP_SECP384R1:
  733. NIST_MODP( p384 );
  734. return( LOAD_GROUP( secp384r1 ) );
  735. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  736. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  737. case MBEDTLS_ECP_DP_SECP521R1:
  738. NIST_MODP( p521 );
  739. return( LOAD_GROUP( secp521r1 ) );
  740. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  741. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  742. case MBEDTLS_ECP_DP_SECP192K1:
  743. grp->modp = ecp_mod_p192k1;
  744. return( LOAD_GROUP_A( secp192k1 ) );
  745. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  746. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  747. case MBEDTLS_ECP_DP_SECP224K1:
  748. grp->modp = ecp_mod_p224k1;
  749. return( LOAD_GROUP_A( secp224k1 ) );
  750. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  751. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  752. case MBEDTLS_ECP_DP_SECP256K1:
  753. grp->modp = ecp_mod_p256k1;
  754. return( LOAD_GROUP_A( secp256k1 ) );
  755. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  756. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  757. case MBEDTLS_ECP_DP_BP256R1:
  758. return( LOAD_GROUP_A( brainpoolP256r1 ) );
  759. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  760. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  761. case MBEDTLS_ECP_DP_BP384R1:
  762. return( LOAD_GROUP_A( brainpoolP384r1 ) );
  763. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  764. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  765. case MBEDTLS_ECP_DP_BP512R1:
  766. return( LOAD_GROUP_A( brainpoolP512r1 ) );
  767. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  768. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  769. case MBEDTLS_ECP_DP_CURVE25519:
  770. grp->modp = ecp_mod_p255;
  771. return( ecp_use_curve25519( grp ) );
  772. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  773. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  774. case MBEDTLS_ECP_DP_CURVE448:
  775. grp->modp = ecp_mod_p448;
  776. return( ecp_use_curve448( grp ) );
  777. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  778. default:
  779. mbedtls_ecp_group_free( grp );
  780. return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
  781. }
  782. }
  783. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  784. /*
  785. * Fast reduction modulo the primes used by the NIST curves.
  786. *
  787. * These functions are critical for speed, but not needed for correct
  788. * operations. So, we make the choice to heavily rely on the internals of our
  789. * bignum library, which creates a tight coupling between these functions and
  790. * our MPI implementation. However, the coupling between the ECP module and
  791. * MPI remains loose, since these functions can be deactivated at will.
  792. */
  793. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  794. /*
  795. * Compared to the way things are presented in FIPS 186-3 D.2,
  796. * we proceed in columns, from right (least significant chunk) to left,
  797. * adding chunks to N in place, and keeping a carry for the next chunk.
  798. * This avoids moving things around in memory, and uselessly adding zeros,
  799. * compared to the more straightforward, line-oriented approach.
  800. *
  801. * For this prime we need to handle data in chunks of 64 bits.
  802. * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
  803. * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
  804. */
  805. /* Add 64-bit chunks (dst += src) and update carry */
  806. static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
  807. {
  808. unsigned char i;
  809. mbedtls_mpi_uint c = 0;
  810. for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
  811. {
  812. *dst += c; c = ( *dst < c );
  813. *dst += *src; c += ( *dst < *src );
  814. }
  815. *carry += c;
  816. }
  817. /* Add carry to a 64-bit chunk and update carry */
  818. static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
  819. {
  820. unsigned char i;
  821. for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
  822. {
  823. *dst += *carry;
  824. *carry = ( *dst < *carry );
  825. }
  826. }
  827. #define WIDTH 8 / sizeof( mbedtls_mpi_uint )
  828. #define A( i ) N->p + (i) * WIDTH
  829. #define ADD( i ) add64( p, A( i ), &c )
  830. #define NEXT p += WIDTH; carry64( p, &c )
  831. #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
  832. /*
  833. * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
  834. */
  835. static int ecp_mod_p192( mbedtls_mpi *N )
  836. {
  837. int ret;
  838. mbedtls_mpi_uint c = 0;
  839. mbedtls_mpi_uint *p, *end;
  840. /* Make sure we have enough blocks so that A(5) is legal */
  841. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
  842. p = N->p;
  843. end = p + N->n;
  844. ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
  845. ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
  846. ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
  847. cleanup:
  848. return( ret );
  849. }
  850. #undef WIDTH
  851. #undef A
  852. #undef ADD
  853. #undef NEXT
  854. #undef LAST
  855. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  856. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  857. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  858. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  859. /*
  860. * The reader is advised to first understand ecp_mod_p192() since the same
  861. * general structure is used here, but with additional complications:
  862. * (1) chunks of 32 bits, and (2) subtractions.
  863. */
  864. /*
  865. * For these primes, we need to handle data in chunks of 32 bits.
  866. * This makes it more complicated if we use 64 bits limbs in MPI,
  867. * which prevents us from using a uniform access method as for p192.
  868. *
  869. * So, we define a mini abstraction layer to access 32 bit chunks,
  870. * load them in 'cur' for work, and store them back from 'cur' when done.
  871. *
  872. * While at it, also define the size of N in terms of 32-bit chunks.
  873. */
  874. #define LOAD32 cur = A( i );
  875. #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
  876. #define MAX32 N->n
  877. #define A( j ) N->p[j]
  878. #define STORE32 N->p[i] = cur;
  879. #else /* 64-bit */
  880. #define MAX32 N->n * 2
  881. #define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
  882. (uint32_t)( N->p[(j)/2] )
  883. #define STORE32 \
  884. if( i % 2 ) { \
  885. N->p[i/2] &= 0x00000000FFFFFFFF; \
  886. N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
  887. } else { \
  888. N->p[i/2] &= 0xFFFFFFFF00000000; \
  889. N->p[i/2] |= (mbedtls_mpi_uint) cur; \
  890. }
  891. #endif /* sizeof( mbedtls_mpi_uint ) */
  892. /*
  893. * Helpers for addition and subtraction of chunks, with signed carry.
  894. */
  895. static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
  896. {
  897. *dst += src;
  898. *carry += ( *dst < src );
  899. }
  900. static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
  901. {
  902. *carry -= ( *dst < src );
  903. *dst -= src;
  904. }
  905. #define ADD( j ) add32( &cur, A( j ), &c );
  906. #define SUB( j ) sub32( &cur, A( j ), &c );
  907. /*
  908. * Helpers for the main 'loop'
  909. * (see fix_negative for the motivation of C)
  910. */
  911. #define INIT( b ) \
  912. int ret; \
  913. signed char c = 0, cc; \
  914. uint32_t cur; \
  915. size_t i = 0, bits = (b); \
  916. mbedtls_mpi C; \
  917. mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
  918. \
  919. C.s = 1; \
  920. C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1; \
  921. C.p = Cp; \
  922. memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
  923. \
  924. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 / \
  925. sizeof( mbedtls_mpi_uint ) ) ); \
  926. LOAD32;
  927. #define NEXT \
  928. STORE32; i++; LOAD32; \
  929. cc = c; c = 0; \
  930. if( cc < 0 ) \
  931. sub32( &cur, -cc, &c ); \
  932. else \
  933. add32( &cur, cc, &c ); \
  934. #define LAST \
  935. STORE32; i++; \
  936. cur = c > 0 ? c : 0; STORE32; \
  937. cur = 0; while( ++i < MAX32 ) { STORE32; } \
  938. if( c < 0 ) MBEDTLS_MPI_CHK( fix_negative( N, c, &C, bits ) );
  939. /*
  940. * If the result is negative, we get it in the form
  941. * c * 2^bits + N, with c negative and N positive shorter than 'bits'
  942. */
  943. static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
  944. {
  945. int ret;
  946. /* C = - c * 2^bits */
  947. #if !defined(MBEDTLS_HAVE_INT64)
  948. ((void) bits);
  949. #else
  950. if( bits == 224 )
  951. C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
  952. else
  953. #endif
  954. C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
  955. /* N = - ( C - N ) */
  956. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
  957. N->s = -1;
  958. cleanup:
  959. return( ret );
  960. }
  961. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  962. /*
  963. * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
  964. */
  965. static int ecp_mod_p224( mbedtls_mpi *N )
  966. {
  967. INIT( 224 );
  968. SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
  969. SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
  970. SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
  971. SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
  972. SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
  973. SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
  974. SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
  975. cleanup:
  976. return( ret );
  977. }
  978. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  979. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  980. /*
  981. * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
  982. */
  983. static int ecp_mod_p256( mbedtls_mpi *N )
  984. {
  985. INIT( 256 );
  986. ADD( 8 ); ADD( 9 );
  987. SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
  988. ADD( 9 ); ADD( 10 );
  989. SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
  990. ADD( 10 ); ADD( 11 );
  991. SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
  992. ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
  993. SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
  994. ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
  995. SUB( 9 ); SUB( 10 ); NEXT; // A4
  996. ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
  997. SUB( 10 ); SUB( 11 ); NEXT; // A5
  998. ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
  999. SUB( 8 ); SUB( 9 ); NEXT; // A6
  1000. ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
  1001. SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
  1002. cleanup:
  1003. return( ret );
  1004. }
  1005. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  1006. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  1007. /*
  1008. * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
  1009. */
  1010. static int ecp_mod_p384( mbedtls_mpi *N )
  1011. {
  1012. INIT( 384 );
  1013. ADD( 12 ); ADD( 21 ); ADD( 20 );
  1014. SUB( 23 ); NEXT; // A0
  1015. ADD( 13 ); ADD( 22 ); ADD( 23 );
  1016. SUB( 12 ); SUB( 20 ); NEXT; // A2
  1017. ADD( 14 ); ADD( 23 );
  1018. SUB( 13 ); SUB( 21 ); NEXT; // A2
  1019. ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
  1020. SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
  1021. ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
  1022. SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
  1023. ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
  1024. SUB( 16 ); NEXT; // A5
  1025. ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
  1026. SUB( 17 ); NEXT; // A6
  1027. ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
  1028. SUB( 18 ); NEXT; // A7
  1029. ADD( 20 ); ADD( 17 ); ADD( 16 );
  1030. SUB( 19 ); NEXT; // A8
  1031. ADD( 21 ); ADD( 18 ); ADD( 17 );
  1032. SUB( 20 ); NEXT; // A9
  1033. ADD( 22 ); ADD( 19 ); ADD( 18 );
  1034. SUB( 21 ); NEXT; // A10
  1035. ADD( 23 ); ADD( 20 ); ADD( 19 );
  1036. SUB( 22 ); LAST; // A11
  1037. cleanup:
  1038. return( ret );
  1039. }
  1040. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1041. #undef A
  1042. #undef LOAD32
  1043. #undef STORE32
  1044. #undef MAX32
  1045. #undef INIT
  1046. #undef NEXT
  1047. #undef LAST
  1048. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
  1049. MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
  1050. MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1051. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  1052. /*
  1053. * Here we have an actual Mersenne prime, so things are more straightforward.
  1054. * However, chunks are aligned on a 'weird' boundary (521 bits).
  1055. */
  1056. /* Size of p521 in terms of mbedtls_mpi_uint */
  1057. #define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
  1058. /* Bits to keep in the most significant mbedtls_mpi_uint */
  1059. #define P521_MASK 0x01FF
  1060. /*
  1061. * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
  1062. * Write N as A1 + 2^521 A0, return A0 + A1
  1063. */
  1064. static int ecp_mod_p521( mbedtls_mpi *N )
  1065. {
  1066. int ret;
  1067. size_t i;
  1068. mbedtls_mpi M;
  1069. mbedtls_mpi_uint Mp[P521_WIDTH + 1];
  1070. /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
  1071. * we need to hold bits 513 to 1056, which is 34 limbs, that is
  1072. * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
  1073. if( N->n < P521_WIDTH )
  1074. return( 0 );
  1075. /* M = A1 */
  1076. M.s = 1;
  1077. M.n = N->n - ( P521_WIDTH - 1 );
  1078. if( M.n > P521_WIDTH + 1 )
  1079. M.n = P521_WIDTH + 1;
  1080. M.p = Mp;
  1081. memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
  1082. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
  1083. /* N = A0 */
  1084. N->p[P521_WIDTH - 1] &= P521_MASK;
  1085. for( i = P521_WIDTH; i < N->n; i++ )
  1086. N->p[i] = 0;
  1087. /* N = A0 + A1 */
  1088. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1089. cleanup:
  1090. return( ret );
  1091. }
  1092. #undef P521_WIDTH
  1093. #undef P521_MASK
  1094. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  1095. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  1096. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  1097. /* Size of p255 in terms of mbedtls_mpi_uint */
  1098. #define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
  1099. /*
  1100. * Fast quasi-reduction modulo p255 = 2^255 - 19
  1101. * Write N as A0 + 2^255 A1, return A0 + 19 * A1
  1102. */
  1103. static int ecp_mod_p255( mbedtls_mpi *N )
  1104. {
  1105. int ret;
  1106. size_t i;
  1107. mbedtls_mpi M;
  1108. mbedtls_mpi_uint Mp[P255_WIDTH + 2];
  1109. if( N->n < P255_WIDTH )
  1110. return( 0 );
  1111. /* M = A1 */
  1112. M.s = 1;
  1113. M.n = N->n - ( P255_WIDTH - 1 );
  1114. if( M.n > P255_WIDTH + 1 )
  1115. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  1116. M.p = Mp;
  1117. memset( Mp, 0, sizeof Mp );
  1118. memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
  1119. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
  1120. M.n++; /* Make room for multiplication by 19 */
  1121. /* N = A0 */
  1122. MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
  1123. for( i = P255_WIDTH; i < N->n; i++ )
  1124. N->p[i] = 0;
  1125. /* N = A0 + 19 * A1 */
  1126. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
  1127. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1128. cleanup:
  1129. return( ret );
  1130. }
  1131. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  1132. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  1133. /* Size of p448 in terms of mbedtls_mpi_uint */
  1134. #define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
  1135. /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
  1136. #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
  1137. #define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) )
  1138. #define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
  1139. #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
  1140. /*
  1141. * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
  1142. * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
  1143. * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
  1144. * implementation of Curve448, which uses its own special 56-bit limbs rather
  1145. * than a generic bignum library. We could squeeze some extra speed out on
  1146. * 32-bit machines by splitting N up into 32-bit limbs and doing the
  1147. * arithmetic using the limbs directly as we do for the NIST primes above,
  1148. * but for 64-bit targets it should use half the number of operations if we do
  1149. * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
  1150. */
  1151. static int ecp_mod_p448( mbedtls_mpi *N )
  1152. {
  1153. int ret;
  1154. size_t i;
  1155. mbedtls_mpi M, Q;
  1156. mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
  1157. if( N->n <= P448_WIDTH )
  1158. return( 0 );
  1159. /* M = A1 */
  1160. M.s = 1;
  1161. M.n = N->n - ( P448_WIDTH );
  1162. if( M.n > P448_WIDTH )
  1163. /* Shouldn't be called with N larger than 2^896! */
  1164. return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
  1165. M.p = Mp;
  1166. memset( Mp, 0, sizeof( Mp ) );
  1167. memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
  1168. /* N = A0 */
  1169. for( i = P448_WIDTH; i < N->n; i++ )
  1170. N->p[i] = 0;
  1171. /* N += A1 */
  1172. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
  1173. /* Q = B1, N += B1 */
  1174. Q = M;
  1175. Q.p = Qp;
  1176. memcpy( Qp, Mp, sizeof( Qp ) );
  1177. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
  1178. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
  1179. /* M = (B0 + B1) * 2^224, N += M */
  1180. if( sizeof( mbedtls_mpi_uint ) > 4 )
  1181. Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
  1182. for( i = P224_WIDTH_MAX; i < M.n; ++i )
  1183. Mp[i] = 0;
  1184. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
  1185. M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
  1186. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
  1187. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
  1188. cleanup:
  1189. return( ret );
  1190. }
  1191. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  1192. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  1193. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  1194. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1195. /*
  1196. * Fast quasi-reduction modulo P = 2^s - R,
  1197. * with R about 33 bits, used by the Koblitz curves.
  1198. *
  1199. * Write N as A0 + 2^224 A1, return A0 + R * A1.
  1200. * Actually do two passes, since R is big.
  1201. */
  1202. #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
  1203. #define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
  1204. static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
  1205. size_t adjust, size_t shift, mbedtls_mpi_uint mask )
  1206. {
  1207. int ret;
  1208. size_t i;
  1209. mbedtls_mpi M, R;
  1210. mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
  1211. if( N->n < p_limbs )
  1212. return( 0 );
  1213. /* Init R */
  1214. R.s = 1;
  1215. R.p = Rp;
  1216. R.n = P_KOBLITZ_R;
  1217. /* Common setup for M */
  1218. M.s = 1;
  1219. M.p = Mp;
  1220. /* M = A1 */
  1221. M.n = N->n - ( p_limbs - adjust );
  1222. if( M.n > p_limbs + adjust )
  1223. M.n = p_limbs + adjust;
  1224. memset( Mp, 0, sizeof Mp );
  1225. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
  1226. if( shift != 0 )
  1227. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
  1228. M.n += R.n; /* Make room for multiplication by R */
  1229. /* N = A0 */
  1230. if( mask != 0 )
  1231. N->p[p_limbs - 1] &= mask;
  1232. for( i = p_limbs; i < N->n; i++ )
  1233. N->p[i] = 0;
  1234. /* N = A0 + R * A1 */
  1235. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
  1236. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1237. /* Second pass */
  1238. /* M = A1 */
  1239. M.n = N->n - ( p_limbs - adjust );
  1240. if( M.n > p_limbs + adjust )
  1241. M.n = p_limbs + adjust;
  1242. memset( Mp, 0, sizeof Mp );
  1243. memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
  1244. if( shift != 0 )
  1245. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
  1246. M.n += R.n; /* Make room for multiplication by R */
  1247. /* N = A0 */
  1248. if( mask != 0 )
  1249. N->p[p_limbs - 1] &= mask;
  1250. for( i = p_limbs; i < N->n; i++ )
  1251. N->p[i] = 0;
  1252. /* N = A0 + R * A1 */
  1253. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
  1254. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
  1255. cleanup:
  1256. return( ret );
  1257. }
  1258. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
  1259. MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
  1260. MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
  1261. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  1262. /*
  1263. * Fast quasi-reduction modulo p192k1 = 2^192 - R,
  1264. * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
  1265. */
  1266. static int ecp_mod_p192k1( mbedtls_mpi *N )
  1267. {
  1268. static mbedtls_mpi_uint Rp[] = {
  1269. MBEDTLS_BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
  1270. 0x00 ) };
  1271. return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0,
  1272. 0 ) );
  1273. }
  1274. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  1275. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  1276. /*
  1277. * Fast quasi-reduction modulo p224k1 = 2^224 - R,
  1278. * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
  1279. */
  1280. static int ecp_mod_p224k1( mbedtls_mpi *N )
  1281. {
  1282. static mbedtls_mpi_uint Rp[] = {
  1283. MBEDTLS_BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
  1284. 0x00 ) };
  1285. #if defined(MBEDTLS_HAVE_INT64)
  1286. return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
  1287. #else
  1288. return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0,
  1289. 0 ) );
  1290. #endif
  1291. }
  1292. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  1293. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1294. /*
  1295. * Fast quasi-reduction modulo p256k1 = 2^256 - R,
  1296. * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
  1297. */
  1298. static int ecp_mod_p256k1( mbedtls_mpi *N )
  1299. {
  1300. static mbedtls_mpi_uint Rp[] = {
  1301. MBEDTLS_BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
  1302. 0x00 ) };
  1303. return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0,
  1304. 0 ) );
  1305. }
  1306. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  1307. #endif /* !MBEDTLS_ECP_ALT */
  1308. #endif /* MBEDTLS_ECP_C */