2
0

mesh_storage.cpp 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifdef GLES3_ENABLED
  31. #include "mesh_storage.h"
  32. #include "material_storage.h"
  33. #include "utilities.h"
  34. using namespace GLES3;
  35. MeshStorage *MeshStorage::singleton = nullptr;
  36. MeshStorage *MeshStorage::get_singleton() {
  37. return singleton;
  38. }
  39. MeshStorage::MeshStorage() {
  40. singleton = this;
  41. }
  42. MeshStorage::~MeshStorage() {
  43. singleton = nullptr;
  44. }
  45. /* MESH API */
  46. RID MeshStorage::mesh_allocate() {
  47. return mesh_owner.allocate_rid();
  48. }
  49. void MeshStorage::mesh_initialize(RID p_rid) {
  50. mesh_owner.initialize_rid(p_rid, Mesh());
  51. }
  52. void MeshStorage::mesh_free(RID p_rid) {
  53. mesh_clear(p_rid);
  54. mesh_set_shadow_mesh(p_rid, RID());
  55. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  56. ERR_FAIL_COND(!mesh);
  57. mesh->dependency.deleted_notify(p_rid);
  58. if (mesh->instances.size()) {
  59. ERR_PRINT("deleting mesh with active instances");
  60. }
  61. if (mesh->shadow_owners.size()) {
  62. for (Mesh *E : mesh->shadow_owners) {
  63. Mesh *shadow_owner = E;
  64. shadow_owner->shadow_mesh = RID();
  65. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  66. }
  67. }
  68. mesh_owner.free(p_rid);
  69. }
  70. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  71. ERR_FAIL_COND(p_blend_shape_count < 0);
  72. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  73. ERR_FAIL_COND(!mesh);
  74. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  75. WARN_PRINT_ONCE("blend shapes not supported by GLES3 renderer yet");
  76. mesh->blend_shape_count = p_blend_shape_count;
  77. }
  78. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  79. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  80. ERR_FAIL_COND_V(!mesh, false);
  81. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  82. }
  83. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  84. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  85. ERR_FAIL_COND(!mesh);
  86. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  87. #ifdef DEBUG_ENABLED
  88. //do a validation, to catch errors first
  89. {
  90. uint32_t stride = 0;
  91. uint32_t attrib_stride = 0;
  92. uint32_t skin_stride = 0;
  93. // TODO: I think this should be <=, but it is copied from RendererRD, will have to verify later
  94. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  95. if ((p_surface.format & (1 << i))) {
  96. switch (i) {
  97. case RS::ARRAY_VERTEX: {
  98. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  99. stride += sizeof(float) * 2;
  100. } else {
  101. stride += sizeof(float) * 3;
  102. }
  103. } break;
  104. case RS::ARRAY_NORMAL: {
  105. stride += sizeof(uint16_t) * 2;
  106. } break;
  107. case RS::ARRAY_TANGENT: {
  108. stride += sizeof(uint16_t) * 2;
  109. } break;
  110. case RS::ARRAY_COLOR: {
  111. attrib_stride += sizeof(uint32_t);
  112. } break;
  113. case RS::ARRAY_TEX_UV: {
  114. attrib_stride += sizeof(float) * 2;
  115. } break;
  116. case RS::ARRAY_TEX_UV2: {
  117. attrib_stride += sizeof(float) * 2;
  118. } break;
  119. case RS::ARRAY_CUSTOM0:
  120. case RS::ARRAY_CUSTOM1:
  121. case RS::ARRAY_CUSTOM2:
  122. case RS::ARRAY_CUSTOM3: {
  123. int idx = i - RS::ARRAY_CUSTOM0;
  124. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  125. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  126. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  127. attrib_stride += fmtsize[fmt];
  128. } break;
  129. case RS::ARRAY_WEIGHTS:
  130. case RS::ARRAY_BONES: {
  131. //uses a separate array
  132. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  133. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  134. } break;
  135. }
  136. }
  137. }
  138. int expected_size = stride * p_surface.vertex_count;
  139. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  140. int bs_expected_size = expected_size * mesh->blend_shape_count;
  141. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  142. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  143. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  144. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  145. expected_size = skin_stride * p_surface.vertex_count;
  146. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  147. }
  148. }
  149. #endif
  150. Mesh::Surface *s = memnew(Mesh::Surface);
  151. s->format = p_surface.format;
  152. s->primitive = p_surface.primitive;
  153. if (p_surface.vertex_data.size()) {
  154. glGenBuffers(1, &s->vertex_buffer);
  155. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  156. glBufferData(GL_ARRAY_BUFFER, p_surface.vertex_data.size(), p_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  157. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  158. s->vertex_buffer_size = p_surface.vertex_data.size();
  159. }
  160. if (p_surface.attribute_data.size()) {
  161. glGenBuffers(1, &s->attribute_buffer);
  162. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  163. glBufferData(GL_ARRAY_BUFFER, p_surface.attribute_data.size(), p_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  164. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  165. s->attribute_buffer_size = p_surface.attribute_data.size();
  166. }
  167. if (p_surface.skin_data.size()) {
  168. glGenBuffers(1, &s->skin_buffer);
  169. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  170. glBufferData(GL_ARRAY_BUFFER, p_surface.skin_data.size(), p_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  171. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  172. s->skin_buffer_size = p_surface.skin_data.size();
  173. }
  174. s->vertex_count = p_surface.vertex_count;
  175. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  176. mesh->has_bone_weights = true;
  177. }
  178. if (p_surface.index_count) {
  179. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  180. glGenBuffers(1, &s->index_buffer);
  181. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
  182. glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.index_data.size(), p_surface.index_data.ptr(), GL_STATIC_DRAW);
  183. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  184. s->index_count = p_surface.index_count;
  185. s->index_buffer_size = p_surface.index_data.size();
  186. if (p_surface.lods.size()) {
  187. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  188. s->lod_count = p_surface.lods.size();
  189. for (int i = 0; i < p_surface.lods.size(); i++) {
  190. glGenBuffers(1, &s->lods[i].index_buffer);
  191. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
  192. glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.lods[i].index_data.size(), p_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW);
  193. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  194. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  195. s->lods[i].index_count = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  196. s->lods[i].index_buffer_size = p_surface.lods[i].index_data.size();
  197. }
  198. }
  199. }
  200. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  201. s->aabb = p_surface.aabb;
  202. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  203. if (mesh->blend_shape_count > 0) {
  204. //s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  205. }
  206. if (mesh->surface_count == 0) {
  207. mesh->bone_aabbs = p_surface.bone_aabbs;
  208. mesh->aabb = p_surface.aabb;
  209. } else {
  210. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  211. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  212. // Each surface may affect different numbers of bones.
  213. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  214. }
  215. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  216. const AABB &bone = p_surface.bone_aabbs[i];
  217. if (bone.has_volume()) {
  218. mesh->bone_aabbs.write[i].merge_with(bone);
  219. }
  220. }
  221. mesh->aabb.merge_with(p_surface.aabb);
  222. }
  223. s->material = p_surface.material;
  224. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  225. mesh->surfaces[mesh->surface_count] = s;
  226. mesh->surface_count++;
  227. for (MeshInstance *mi : mesh->instances) {
  228. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  229. }
  230. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  231. for (Mesh *E : mesh->shadow_owners) {
  232. Mesh *shadow_owner = E;
  233. shadow_owner->shadow_mesh = RID();
  234. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  235. }
  236. mesh->material_cache.clear();
  237. }
  238. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  239. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  240. ERR_FAIL_COND_V(!mesh, -1);
  241. return mesh->blend_shape_count;
  242. }
  243. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  244. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  245. ERR_FAIL_COND(!mesh);
  246. ERR_FAIL_INDEX((int)p_mode, 2);
  247. mesh->blend_shape_mode = p_mode;
  248. }
  249. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  250. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  251. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  252. return mesh->blend_shape_mode;
  253. }
  254. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  255. }
  256. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  257. }
  258. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  259. }
  260. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  261. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  262. ERR_FAIL_COND(!mesh);
  263. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  264. mesh->surfaces[p_surface]->material = p_material;
  265. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  266. mesh->material_cache.clear();
  267. }
  268. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  269. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  270. ERR_FAIL_COND_V(!mesh, RID());
  271. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  272. return mesh->surfaces[p_surface]->material;
  273. }
  274. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  275. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  276. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  277. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  278. Mesh::Surface &s = *mesh->surfaces[p_surface];
  279. RS::SurfaceData sd;
  280. sd.format = s.format;
  281. if (s.vertex_buffer != 0) {
  282. sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
  283. }
  284. if (s.attribute_buffer != 0) {
  285. sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
  286. }
  287. if (s.skin_buffer != 0) {
  288. sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
  289. }
  290. sd.vertex_count = s.vertex_count;
  291. sd.index_count = s.index_count;
  292. sd.primitive = s.primitive;
  293. if (sd.index_count) {
  294. sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
  295. }
  296. sd.aabb = s.aabb;
  297. for (uint32_t i = 0; i < s.lod_count; i++) {
  298. RS::SurfaceData::LOD lod;
  299. lod.edge_length = s.lods[i].edge_length;
  300. lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
  301. sd.lods.push_back(lod);
  302. }
  303. sd.bone_aabbs = s.bone_aabbs;
  304. glBindBuffer(GL_ARRAY_BUFFER, 0);
  305. return sd;
  306. }
  307. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  308. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  309. ERR_FAIL_COND_V(!mesh, 0);
  310. return mesh->surface_count;
  311. }
  312. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  313. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  314. ERR_FAIL_COND(!mesh);
  315. mesh->custom_aabb = p_aabb;
  316. }
  317. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  318. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  319. ERR_FAIL_COND_V(!mesh, AABB());
  320. return mesh->custom_aabb;
  321. }
  322. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  323. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  324. ERR_FAIL_COND_V(!mesh, AABB());
  325. if (mesh->custom_aabb != AABB()) {
  326. return mesh->custom_aabb;
  327. }
  328. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  329. if (!skeleton || skeleton->size == 0) {
  330. return mesh->aabb;
  331. }
  332. // Calculate AABB based on Skeleton
  333. AABB aabb;
  334. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  335. AABB laabb;
  336. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  337. int bs = mesh->surfaces[i]->bone_aabbs.size();
  338. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  339. int sbs = skeleton->size;
  340. ERR_CONTINUE(bs > sbs);
  341. const float *baseptr = skeleton->data.ptr();
  342. bool first = true;
  343. if (skeleton->use_2d) {
  344. for (int j = 0; j < bs; j++) {
  345. if (skbones[0].size == Vector3()) {
  346. continue; //bone is unused
  347. }
  348. const float *dataptr = baseptr + j * 8;
  349. Transform3D mtx;
  350. mtx.basis.rows[0].x = dataptr[0];
  351. mtx.basis.rows[1].x = dataptr[1];
  352. mtx.origin.x = dataptr[3];
  353. mtx.basis.rows[0].y = dataptr[4];
  354. mtx.basis.rows[1].y = dataptr[5];
  355. mtx.origin.y = dataptr[7];
  356. AABB baabb = mtx.xform(skbones[j]);
  357. if (first) {
  358. laabb = baabb;
  359. first = false;
  360. } else {
  361. laabb.merge_with(baabb);
  362. }
  363. }
  364. } else {
  365. for (int j = 0; j < bs; j++) {
  366. if (skbones[0].size == Vector3()) {
  367. continue; //bone is unused
  368. }
  369. const float *dataptr = baseptr + j * 12;
  370. Transform3D mtx;
  371. mtx.basis.rows[0][0] = dataptr[0];
  372. mtx.basis.rows[0][1] = dataptr[1];
  373. mtx.basis.rows[0][2] = dataptr[2];
  374. mtx.origin.x = dataptr[3];
  375. mtx.basis.rows[1][0] = dataptr[4];
  376. mtx.basis.rows[1][1] = dataptr[5];
  377. mtx.basis.rows[1][2] = dataptr[6];
  378. mtx.origin.y = dataptr[7];
  379. mtx.basis.rows[2][0] = dataptr[8];
  380. mtx.basis.rows[2][1] = dataptr[9];
  381. mtx.basis.rows[2][2] = dataptr[10];
  382. mtx.origin.z = dataptr[11];
  383. AABB baabb = mtx.xform(skbones[j]);
  384. if (first) {
  385. laabb = baabb;
  386. first = false;
  387. } else {
  388. laabb.merge_with(baabb);
  389. }
  390. }
  391. }
  392. if (laabb.size == Vector3()) {
  393. laabb = mesh->surfaces[i]->aabb;
  394. }
  395. } else {
  396. laabb = mesh->surfaces[i]->aabb;
  397. }
  398. if (i == 0) {
  399. aabb = laabb;
  400. } else {
  401. aabb.merge_with(laabb);
  402. }
  403. }
  404. return aabb;
  405. }
  406. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  407. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  408. ERR_FAIL_COND(!mesh);
  409. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  410. if (shadow_mesh) {
  411. shadow_mesh->shadow_owners.erase(mesh);
  412. }
  413. mesh->shadow_mesh = p_shadow_mesh;
  414. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  415. if (shadow_mesh) {
  416. shadow_mesh->shadow_owners.insert(mesh);
  417. }
  418. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  419. }
  420. void MeshStorage::mesh_clear(RID p_mesh) {
  421. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  422. ERR_FAIL_COND(!mesh);
  423. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  424. Mesh::Surface &s = *mesh->surfaces[i];
  425. if (s.vertex_buffer != 0) {
  426. glDeleteBuffers(1, &s.vertex_buffer);
  427. s.vertex_buffer = 0;
  428. }
  429. if (s.version_count != 0) {
  430. for (uint32_t j = 0; j < s.version_count; j++) {
  431. glDeleteVertexArrays(1, &s.versions[j].vertex_array);
  432. s.versions[j].vertex_array = 0;
  433. }
  434. }
  435. if (s.attribute_buffer != 0) {
  436. glDeleteBuffers(1, &s.attribute_buffer);
  437. s.attribute_buffer = 0;
  438. }
  439. if (s.skin_buffer != 0) {
  440. glDeleteBuffers(1, &s.skin_buffer);
  441. s.skin_buffer = 0;
  442. }
  443. if (s.index_buffer != 0) {
  444. glDeleteBuffers(1, &s.index_buffer);
  445. s.index_buffer = 0;
  446. }
  447. memdelete(mesh->surfaces[i]);
  448. }
  449. if (mesh->surfaces) {
  450. memfree(mesh->surfaces);
  451. }
  452. mesh->surfaces = nullptr;
  453. mesh->surface_count = 0;
  454. mesh->material_cache.clear();
  455. //clear instance data
  456. for (MeshInstance *mi : mesh->instances) {
  457. _mesh_instance_clear(mi);
  458. }
  459. mesh->has_bone_weights = false;
  460. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  461. for (Mesh *E : mesh->shadow_owners) {
  462. Mesh *shadow_owner = E;
  463. shadow_owner->shadow_mesh = RID();
  464. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  465. }
  466. }
  467. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  468. Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
  469. int attributes_stride = 0;
  470. int vertex_stride = 0;
  471. int skin_stride = 0;
  472. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  473. if (!(s->format & (1 << i))) {
  474. attribs[i].enabled = false;
  475. attribs[i].integer = false;
  476. continue;
  477. }
  478. attribs[i].enabled = true;
  479. attribs[i].integer = false;
  480. switch (i) {
  481. case RS::ARRAY_VERTEX: {
  482. attribs[i].offset = vertex_stride;
  483. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  484. attribs[i].size = 2;
  485. } else {
  486. attribs[i].size = 3;
  487. }
  488. attribs[i].type = GL_FLOAT;
  489. vertex_stride += attribs[i].size * sizeof(float);
  490. attribs[i].normalized = GL_FALSE;
  491. } break;
  492. case RS::ARRAY_NORMAL: {
  493. attribs[i].offset = vertex_stride;
  494. attribs[i].size = 2;
  495. attribs[i].type = GL_UNSIGNED_SHORT;
  496. vertex_stride += sizeof(uint16_t) * 2;
  497. attribs[i].normalized = GL_TRUE;
  498. } break;
  499. case RS::ARRAY_TANGENT: {
  500. attribs[i].offset = vertex_stride;
  501. attribs[i].size = 2;
  502. attribs[i].type = GL_UNSIGNED_SHORT;
  503. vertex_stride += sizeof(uint16_t) * 2;
  504. attribs[i].normalized = GL_TRUE;
  505. } break;
  506. case RS::ARRAY_COLOR: {
  507. attribs[i].offset = attributes_stride;
  508. attribs[i].size = 4;
  509. attribs[i].type = GL_UNSIGNED_BYTE;
  510. attributes_stride += 4;
  511. attribs[i].normalized = GL_TRUE;
  512. } break;
  513. case RS::ARRAY_TEX_UV: {
  514. attribs[i].offset = attributes_stride;
  515. attribs[i].size = 2;
  516. attribs[i].type = GL_FLOAT;
  517. attributes_stride += 2 * sizeof(float);
  518. attribs[i].normalized = GL_FALSE;
  519. } break;
  520. case RS::ARRAY_TEX_UV2: {
  521. attribs[i].offset = attributes_stride;
  522. attribs[i].size = 2;
  523. attribs[i].type = GL_FLOAT;
  524. attributes_stride += 2 * sizeof(float);
  525. attribs[i].normalized = GL_FALSE;
  526. } break;
  527. case RS::ARRAY_CUSTOM0:
  528. case RS::ARRAY_CUSTOM1:
  529. case RS::ARRAY_CUSTOM2:
  530. case RS::ARRAY_CUSTOM3: {
  531. attribs[i].offset = attributes_stride;
  532. int idx = i - RS::ARRAY_CUSTOM0;
  533. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  534. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  535. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  536. GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
  537. GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
  538. attribs[i].type = gl_type[fmt];
  539. attributes_stride += fmtsize[fmt];
  540. attribs[i].size = fmtsize[fmt] / sizeof(float);
  541. attribs[i].normalized = norm[fmt];
  542. } break;
  543. case RS::ARRAY_BONES: {
  544. attribs[i].offset = skin_stride;
  545. attribs[i].size = 4;
  546. attribs[i].type = GL_UNSIGNED_SHORT;
  547. attributes_stride += 4 * sizeof(uint16_t);
  548. attribs[i].normalized = GL_FALSE;
  549. attribs[i].integer = true;
  550. } break;
  551. case RS::ARRAY_WEIGHTS: {
  552. attribs[i].offset = skin_stride;
  553. attribs[i].size = 4;
  554. attribs[i].type = GL_UNSIGNED_SHORT;
  555. attributes_stride += 4 * sizeof(uint16_t);
  556. attribs[i].normalized = GL_TRUE;
  557. } break;
  558. }
  559. }
  560. glGenVertexArrays(1, &v.vertex_array);
  561. glBindVertexArray(v.vertex_array);
  562. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  563. if (!attribs[i].enabled) {
  564. glDisableVertexAttribArray(i);
  565. continue;
  566. }
  567. if (i <= RS::ARRAY_TANGENT) {
  568. attribs[i].stride = vertex_stride;
  569. if (mis) {
  570. glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
  571. } else {
  572. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  573. }
  574. } else if (i <= RS::ARRAY_CUSTOM3) {
  575. attribs[i].stride = attributes_stride;
  576. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  577. } else {
  578. attribs[i].stride = skin_stride;
  579. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  580. }
  581. if (attribs[i].integer) {
  582. glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  583. } else {
  584. glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  585. }
  586. glEnableVertexAttribArray(i);
  587. }
  588. // Do not bind index here as we want to switch between index buffers for LOD
  589. glBindVertexArray(0);
  590. glBindBuffer(GL_ARRAY_BUFFER, 0);
  591. v.input_mask = p_input_mask;
  592. }
  593. /* MESH INSTANCE API */
  594. RID MeshStorage::mesh_instance_create(RID p_base) {
  595. Mesh *mesh = mesh_owner.get_or_null(p_base);
  596. ERR_FAIL_COND_V(!mesh, RID());
  597. RID rid = mesh_instance_owner.make_rid();
  598. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  599. mi->mesh = mesh;
  600. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  601. _mesh_instance_add_surface(mi, mesh, i);
  602. }
  603. mi->I = mesh->instances.push_back(mi);
  604. mi->dirty = true;
  605. return rid;
  606. }
  607. void MeshStorage::mesh_instance_free(RID p_rid) {
  608. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  609. _mesh_instance_clear(mi);
  610. mi->mesh->instances.erase(mi->I);
  611. mi->I = nullptr;
  612. mesh_instance_owner.free(p_rid);
  613. }
  614. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  615. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  616. if (mi->skeleton == p_skeleton) {
  617. return;
  618. }
  619. mi->skeleton = p_skeleton;
  620. mi->skeleton_version = 0;
  621. mi->dirty = true;
  622. }
  623. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  624. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  625. ERR_FAIL_COND(!mi);
  626. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  627. mi->blend_weights[p_shape] = p_weight;
  628. mi->weights_dirty = true;
  629. }
  630. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  631. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  632. if (mi->surfaces[i].version_count != 0) {
  633. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  634. glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array);
  635. mi->surfaces[i].versions[j].vertex_array = 0;
  636. }
  637. memfree(mi->surfaces[i].versions);
  638. }
  639. if (mi->surfaces[i].vertex_buffer != 0) {
  640. glDeleteBuffers(1, &mi->surfaces[i].vertex_buffer);
  641. mi->surfaces[i].vertex_buffer = 0;
  642. }
  643. }
  644. mi->surfaces.clear();
  645. if (mi->blend_weights_buffer != 0) {
  646. glDeleteBuffers(1, &mi->blend_weights_buffer);
  647. mi->blend_weights_buffer = 0;
  648. }
  649. mi->blend_weights.clear();
  650. mi->weights_dirty = false;
  651. mi->skeleton_version = 0;
  652. }
  653. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  654. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer == 0) {
  655. mi->blend_weights.resize(mesh->blend_shape_count);
  656. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  657. mi->blend_weights[i] = 0;
  658. }
  659. // Todo allocate buffer for blend_weights and copy data to it
  660. //mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  661. mi->weights_dirty = true;
  662. }
  663. MeshInstance::Surface s;
  664. if (mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) {
  665. //surface warrants transform
  666. //s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  667. }
  668. mi->surfaces.push_back(s);
  669. mi->dirty = true;
  670. }
  671. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  672. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  673. bool needs_update = mi->dirty;
  674. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  675. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  676. needs_update = true;
  677. }
  678. if (mi->array_update_list.in_list()) {
  679. return;
  680. }
  681. if (!needs_update && mi->skeleton.is_valid()) {
  682. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  683. if (sk && sk->version != mi->skeleton_version) {
  684. needs_update = true;
  685. }
  686. }
  687. if (needs_update) {
  688. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  689. }
  690. }
  691. void MeshStorage::update_mesh_instances() {
  692. while (dirty_mesh_instance_weights.first()) {
  693. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  694. if (mi->blend_weights_buffer != 0) {
  695. //RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  696. }
  697. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  698. mi->weights_dirty = false;
  699. }
  700. if (dirty_mesh_instance_arrays.first() == nullptr) {
  701. return; //nothing to do
  702. }
  703. // Process skeletons and blend shapes using transform feedback
  704. // TODO: Implement when working on skeletons and blend shapes
  705. }
  706. /* MULTIMESH API */
  707. RID MeshStorage::multimesh_allocate() {
  708. return multimesh_owner.allocate_rid();
  709. }
  710. void MeshStorage::multimesh_initialize(RID p_rid) {
  711. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  712. }
  713. void MeshStorage::multimesh_free(RID p_rid) {
  714. _update_dirty_multimeshes();
  715. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  716. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  717. multimesh->dependency.deleted_notify(p_rid);
  718. multimesh_owner.free(p_rid);
  719. }
  720. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  721. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  722. ERR_FAIL_COND(!multimesh);
  723. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  724. return;
  725. }
  726. if (multimesh->buffer) {
  727. glDeleteBuffers(1, &multimesh->buffer);
  728. multimesh->buffer = 0;
  729. }
  730. if (multimesh->data_cache_dirty_regions) {
  731. memdelete_arr(multimesh->data_cache_dirty_regions);
  732. multimesh->data_cache_dirty_regions = nullptr;
  733. multimesh->data_cache_used_dirty_regions = 0;
  734. }
  735. multimesh->instances = p_instances;
  736. multimesh->xform_format = p_transform_format;
  737. multimesh->uses_colors = p_use_colors;
  738. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  739. multimesh->uses_custom_data = p_use_custom_data;
  740. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 2 : 0);
  741. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 2 : 0);
  742. multimesh->buffer_set = false;
  743. multimesh->data_cache = Vector<float>();
  744. multimesh->aabb = AABB();
  745. multimesh->aabb_dirty = false;
  746. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  747. if (multimesh->instances) {
  748. glGenBuffers(1, &multimesh->buffer);
  749. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  750. glBufferData(GL_ARRAY_BUFFER, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW);
  751. glBindBuffer(GL_ARRAY_BUFFER, 0);
  752. }
  753. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  754. }
  755. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  756. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  757. ERR_FAIL_COND_V(!multimesh, 0);
  758. return multimesh->instances;
  759. }
  760. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  761. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  762. ERR_FAIL_COND(!multimesh);
  763. if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
  764. return;
  765. }
  766. multimesh->mesh = p_mesh;
  767. if (multimesh->instances == 0) {
  768. return;
  769. }
  770. if (multimesh->data_cache.size()) {
  771. //we have a data cache, just mark it dirty
  772. _multimesh_mark_all_dirty(multimesh, false, true);
  773. } else if (multimesh->instances) {
  774. // Need to re-create AABB. Unfortunately, calling this has a penalty.
  775. if (multimesh->buffer_set) {
  776. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  777. const uint8_t *r = buffer.ptr();
  778. const float *data = (const float *)r;
  779. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  780. }
  781. }
  782. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  783. }
  784. #define MULTIMESH_DIRTY_REGION_SIZE 512
  785. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  786. if (multimesh->data_cache.size() > 0) {
  787. return; //already local
  788. }
  789. ERR_FAIL_COND(multimesh->data_cache.size() > 0);
  790. // this means that the user wants to load/save individual elements,
  791. // for this, the data must reside on CPU, so just copy it there.
  792. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
  793. {
  794. float *w = multimesh->data_cache.ptrw();
  795. if (multimesh->buffer_set) {
  796. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  797. {
  798. const uint8_t *r = buffer.ptr();
  799. memcpy(w, r, buffer.size());
  800. }
  801. } else {
  802. memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
  803. }
  804. }
  805. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  806. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  807. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  808. multimesh->data_cache_dirty_regions[i] = false;
  809. }
  810. multimesh->data_cache_used_dirty_regions = 0;
  811. }
  812. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  813. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  814. #ifdef DEBUG_ENABLED
  815. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  816. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  817. #endif
  818. if (!multimesh->data_cache_dirty_regions[region_index]) {
  819. multimesh->data_cache_dirty_regions[region_index] = true;
  820. multimesh->data_cache_used_dirty_regions++;
  821. }
  822. if (p_aabb) {
  823. multimesh->aabb_dirty = true;
  824. }
  825. if (!multimesh->dirty) {
  826. multimesh->dirty_list = multimesh_dirty_list;
  827. multimesh_dirty_list = multimesh;
  828. multimesh->dirty = true;
  829. }
  830. }
  831. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  832. if (p_data) {
  833. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  834. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  835. if (!multimesh->data_cache_dirty_regions[i]) {
  836. multimesh->data_cache_dirty_regions[i] = true;
  837. multimesh->data_cache_used_dirty_regions++;
  838. }
  839. }
  840. }
  841. if (p_aabb) {
  842. multimesh->aabb_dirty = true;
  843. }
  844. if (!multimesh->dirty) {
  845. multimesh->dirty_list = multimesh_dirty_list;
  846. multimesh_dirty_list = multimesh;
  847. multimesh->dirty = true;
  848. }
  849. }
  850. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  851. ERR_FAIL_COND(multimesh->mesh.is_null());
  852. AABB aabb;
  853. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  854. for (int i = 0; i < p_instances; i++) {
  855. const float *data = p_data + multimesh->stride_cache * i;
  856. Transform3D t;
  857. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  858. t.basis.rows[0][0] = data[0];
  859. t.basis.rows[0][1] = data[1];
  860. t.basis.rows[0][2] = data[2];
  861. t.origin.x = data[3];
  862. t.basis.rows[1][0] = data[4];
  863. t.basis.rows[1][1] = data[5];
  864. t.basis.rows[1][2] = data[6];
  865. t.origin.y = data[7];
  866. t.basis.rows[2][0] = data[8];
  867. t.basis.rows[2][1] = data[9];
  868. t.basis.rows[2][2] = data[10];
  869. t.origin.z = data[11];
  870. } else {
  871. t.basis.rows[0].x = data[0];
  872. t.basis.rows[1].x = data[1];
  873. t.origin.x = data[3];
  874. t.basis.rows[0].y = data[4];
  875. t.basis.rows[1].y = data[5];
  876. t.origin.y = data[7];
  877. }
  878. if (i == 0) {
  879. aabb = t.xform(mesh_aabb);
  880. } else {
  881. aabb.merge_with(t.xform(mesh_aabb));
  882. }
  883. }
  884. multimesh->aabb = aabb;
  885. }
  886. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  887. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  888. ERR_FAIL_COND(!multimesh);
  889. ERR_FAIL_INDEX(p_index, multimesh->instances);
  890. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  891. _multimesh_make_local(multimesh);
  892. {
  893. float *w = multimesh->data_cache.ptrw();
  894. float *dataptr = w + p_index * multimesh->stride_cache;
  895. dataptr[0] = p_transform.basis.rows[0][0];
  896. dataptr[1] = p_transform.basis.rows[0][1];
  897. dataptr[2] = p_transform.basis.rows[0][2];
  898. dataptr[3] = p_transform.origin.x;
  899. dataptr[4] = p_transform.basis.rows[1][0];
  900. dataptr[5] = p_transform.basis.rows[1][1];
  901. dataptr[6] = p_transform.basis.rows[1][2];
  902. dataptr[7] = p_transform.origin.y;
  903. dataptr[8] = p_transform.basis.rows[2][0];
  904. dataptr[9] = p_transform.basis.rows[2][1];
  905. dataptr[10] = p_transform.basis.rows[2][2];
  906. dataptr[11] = p_transform.origin.z;
  907. }
  908. _multimesh_mark_dirty(multimesh, p_index, true);
  909. }
  910. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  911. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  912. ERR_FAIL_COND(!multimesh);
  913. ERR_FAIL_INDEX(p_index, multimesh->instances);
  914. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  915. _multimesh_make_local(multimesh);
  916. {
  917. float *w = multimesh->data_cache.ptrw();
  918. float *dataptr = w + p_index * multimesh->stride_cache;
  919. dataptr[0] = p_transform.columns[0][0];
  920. dataptr[1] = p_transform.columns[1][0];
  921. dataptr[2] = 0;
  922. dataptr[3] = p_transform.columns[2][0];
  923. dataptr[4] = p_transform.columns[0][1];
  924. dataptr[5] = p_transform.columns[1][1];
  925. dataptr[6] = 0;
  926. dataptr[7] = p_transform.columns[2][1];
  927. }
  928. _multimesh_mark_dirty(multimesh, p_index, true);
  929. }
  930. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  931. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  932. ERR_FAIL_COND(!multimesh);
  933. ERR_FAIL_INDEX(p_index, multimesh->instances);
  934. ERR_FAIL_COND(!multimesh->uses_colors);
  935. _multimesh_make_local(multimesh);
  936. {
  937. // Colors are packed into 2 floats.
  938. float *w = multimesh->data_cache.ptrw();
  939. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  940. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  941. memcpy(dataptr, val, 2 * 4);
  942. }
  943. _multimesh_mark_dirty(multimesh, p_index, false);
  944. }
  945. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  946. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  947. ERR_FAIL_COND(!multimesh);
  948. ERR_FAIL_INDEX(p_index, multimesh->instances);
  949. ERR_FAIL_COND(!multimesh->uses_custom_data);
  950. _multimesh_make_local(multimesh);
  951. {
  952. float *w = multimesh->data_cache.ptrw();
  953. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  954. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  955. memcpy(dataptr, val, 2 * 4);
  956. }
  957. _multimesh_mark_dirty(multimesh, p_index, false);
  958. }
  959. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  960. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  961. ERR_FAIL_COND_V(!multimesh, RID());
  962. return multimesh->mesh;
  963. }
  964. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  965. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  966. ERR_FAIL_COND_V(!multimesh, AABB());
  967. if (multimesh->aabb_dirty) {
  968. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  969. }
  970. return multimesh->aabb;
  971. }
  972. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  973. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  974. ERR_FAIL_COND_V(!multimesh, Transform3D());
  975. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  976. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  977. _multimesh_make_local(multimesh);
  978. Transform3D t;
  979. {
  980. const float *r = multimesh->data_cache.ptr();
  981. const float *dataptr = r + p_index * multimesh->stride_cache;
  982. t.basis.rows[0][0] = dataptr[0];
  983. t.basis.rows[0][1] = dataptr[1];
  984. t.basis.rows[0][2] = dataptr[2];
  985. t.origin.x = dataptr[3];
  986. t.basis.rows[1][0] = dataptr[4];
  987. t.basis.rows[1][1] = dataptr[5];
  988. t.basis.rows[1][2] = dataptr[6];
  989. t.origin.y = dataptr[7];
  990. t.basis.rows[2][0] = dataptr[8];
  991. t.basis.rows[2][1] = dataptr[9];
  992. t.basis.rows[2][2] = dataptr[10];
  993. t.origin.z = dataptr[11];
  994. }
  995. return t;
  996. }
  997. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  998. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  999. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1000. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1001. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1002. _multimesh_make_local(multimesh);
  1003. Transform2D t;
  1004. {
  1005. const float *r = multimesh->data_cache.ptr();
  1006. const float *dataptr = r + p_index * multimesh->stride_cache;
  1007. t.columns[0][0] = dataptr[0];
  1008. t.columns[1][0] = dataptr[1];
  1009. t.columns[2][0] = dataptr[3];
  1010. t.columns[0][1] = dataptr[4];
  1011. t.columns[1][1] = dataptr[5];
  1012. t.columns[2][1] = dataptr[7];
  1013. }
  1014. return t;
  1015. }
  1016. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1017. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1018. ERR_FAIL_COND_V(!multimesh, Color());
  1019. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1020. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1021. _multimesh_make_local(multimesh);
  1022. Color c;
  1023. {
  1024. const float *r = multimesh->data_cache.ptr();
  1025. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1026. uint16_t raw_data[4];
  1027. memcpy(raw_data, dataptr, 2 * 4);
  1028. c.r = Math::half_to_float(raw_data[0]);
  1029. c.g = Math::half_to_float(raw_data[1]);
  1030. c.b = Math::half_to_float(raw_data[2]);
  1031. c.a = Math::half_to_float(raw_data[3]);
  1032. }
  1033. return c;
  1034. }
  1035. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1036. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1037. ERR_FAIL_COND_V(!multimesh, Color());
  1038. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1039. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1040. _multimesh_make_local(multimesh);
  1041. Color c;
  1042. {
  1043. const float *r = multimesh->data_cache.ptr();
  1044. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1045. uint16_t raw_data[4];
  1046. memcpy(raw_data, dataptr, 2 * 4);
  1047. c.r = Math::half_to_float(raw_data[0]);
  1048. c.g = Math::half_to_float(raw_data[1]);
  1049. c.b = Math::half_to_float(raw_data[2]);
  1050. c.a = Math::half_to_float(raw_data[3]);
  1051. }
  1052. return c;
  1053. }
  1054. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1055. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1056. ERR_FAIL_COND(!multimesh);
  1057. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1058. // Color and custom need to be packed so copy buffer to data_cache and pack.
  1059. _multimesh_make_local(multimesh);
  1060. multimesh->data_cache = p_buffer;
  1061. float *w = multimesh->data_cache.ptrw();
  1062. uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1063. old_stride += multimesh->uses_colors ? 4 : 0;
  1064. old_stride += multimesh->uses_custom_data ? 4 : 0;
  1065. for (int i = 0; i < multimesh->instances; i++) {
  1066. {
  1067. float *dataptr = w + i * old_stride;
  1068. float *newptr = w + i * multimesh->stride_cache;
  1069. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
  1070. memcpy(newptr, vals, 8 * 4);
  1071. }
  1072. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1073. float *dataptr = w + i * old_stride + 8;
  1074. float *newptr = w + i * multimesh->stride_cache + 8;
  1075. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
  1076. memcpy(newptr, vals, 4 * 4);
  1077. }
  1078. if (multimesh->uses_colors) {
  1079. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1080. float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1081. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1082. memcpy(newptr, val, 2 * 4);
  1083. }
  1084. if (multimesh->uses_custom_data) {
  1085. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1086. float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1087. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1088. memcpy(newptr, val, 2 * 4);
  1089. }
  1090. }
  1091. multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
  1092. const float *r = multimesh->data_cache.ptr();
  1093. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1094. glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
  1095. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1096. } else {
  1097. // Only Transform is being used, so we can upload directly.
  1098. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1099. const float *r = p_buffer.ptr();
  1100. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1101. glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
  1102. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1103. }
  1104. multimesh->buffer_set = true;
  1105. if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
  1106. //if we have a data cache, just update it
  1107. multimesh->data_cache = multimesh->data_cache;
  1108. {
  1109. //clear dirty since nothing will be dirty anymore
  1110. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1111. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1112. multimesh->data_cache_dirty_regions[i] = false;
  1113. }
  1114. multimesh->data_cache_used_dirty_regions = 0;
  1115. }
  1116. _multimesh_mark_all_dirty(multimesh, false, true); //update AABB
  1117. } else if (multimesh->mesh.is_valid()) {
  1118. //if we have a mesh set, we need to re-generate the AABB from the new data
  1119. const float *data = p_buffer.ptr();
  1120. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1121. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1122. }
  1123. }
  1124. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1125. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1126. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1127. Vector<float> ret;
  1128. if (multimesh->buffer == 0) {
  1129. return Vector<float>();
  1130. } else if (multimesh->data_cache.size()) {
  1131. ret = multimesh->data_cache;
  1132. } else {
  1133. // Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
  1134. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1135. ret.resize(multimesh->instances * multimesh->stride_cache);
  1136. {
  1137. float *w = ret.ptrw();
  1138. const uint8_t *r = buffer.ptr();
  1139. memcpy(w, r, buffer.size());
  1140. }
  1141. }
  1142. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1143. // Need to decompress buffer.
  1144. uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1145. new_stride += multimesh->uses_colors ? 4 : 0;
  1146. new_stride += multimesh->uses_custom_data ? 4 : 0;
  1147. Vector<float> decompressed;
  1148. decompressed.resize(multimesh->instances * (int)new_stride);
  1149. float *w = decompressed.ptrw();
  1150. const float *r = ret.ptr();
  1151. for (int i = 0; i < multimesh->instances; i++) {
  1152. {
  1153. float *newptr = w + i * new_stride;
  1154. const float *oldptr = r + i * multimesh->stride_cache;
  1155. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
  1156. memcpy(newptr, vals, 8 * 4);
  1157. }
  1158. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1159. float *newptr = w + i * new_stride + 8;
  1160. const float *oldptr = r + i * multimesh->stride_cache + 8;
  1161. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
  1162. memcpy(newptr, vals, 4 * 4);
  1163. }
  1164. if (multimesh->uses_colors) {
  1165. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1166. const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1167. uint16_t raw_data[4];
  1168. memcpy(raw_data, oldptr, 2 * 4);
  1169. newptr[0] = Math::half_to_float(raw_data[0]);
  1170. newptr[1] = Math::half_to_float(raw_data[1]);
  1171. newptr[2] = Math::half_to_float(raw_data[2]);
  1172. newptr[3] = Math::half_to_float(raw_data[3]);
  1173. }
  1174. if (multimesh->uses_custom_data) {
  1175. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1176. const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1177. uint16_t raw_data[4];
  1178. memcpy(raw_data, oldptr, 2 * 4);
  1179. newptr[0] = Math::half_to_float(raw_data[0]);
  1180. newptr[1] = Math::half_to_float(raw_data[1]);
  1181. newptr[2] = Math::half_to_float(raw_data[2]);
  1182. newptr[3] = Math::half_to_float(raw_data[3]);
  1183. }
  1184. }
  1185. return decompressed;
  1186. } else {
  1187. return ret;
  1188. }
  1189. }
  1190. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1191. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1192. ERR_FAIL_COND(!multimesh);
  1193. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1194. if (multimesh->visible_instances == p_visible) {
  1195. return;
  1196. }
  1197. if (multimesh->data_cache.size()) {
  1198. //there is a data cache..
  1199. _multimesh_mark_all_dirty(multimesh, false, true);
  1200. }
  1201. multimesh->visible_instances = p_visible;
  1202. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1203. }
  1204. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1205. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1206. ERR_FAIL_COND_V(!multimesh, 0);
  1207. return multimesh->visible_instances;
  1208. }
  1209. void MeshStorage::_update_dirty_multimeshes() {
  1210. while (multimesh_dirty_list) {
  1211. MultiMesh *multimesh = multimesh_dirty_list;
  1212. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1213. const float *data = multimesh->data_cache.ptr();
  1214. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1215. if (multimesh->data_cache_used_dirty_regions) {
  1216. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1217. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1218. GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1219. if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
  1220. // If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1221. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1222. glBufferData(GL_ARRAY_BUFFER, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data, GL_STATIC_DRAW);
  1223. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1224. } else {
  1225. // Not that many regions? update them all
  1226. // TODO: profile the performance cost on low end
  1227. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1228. for (uint32_t i = 0; i < visible_region_count; i++) {
  1229. if (multimesh->data_cache_dirty_regions[i]) {
  1230. GLint offset = i * region_size;
  1231. GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1232. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1233. glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
  1234. }
  1235. }
  1236. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1237. }
  1238. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1239. multimesh->data_cache_dirty_regions[i] = false;
  1240. }
  1241. multimesh->data_cache_used_dirty_regions = 0;
  1242. }
  1243. if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) {
  1244. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1245. multimesh->aabb_dirty = false;
  1246. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1247. }
  1248. }
  1249. multimesh_dirty_list = multimesh->dirty_list;
  1250. multimesh->dirty_list = nullptr;
  1251. multimesh->dirty = false;
  1252. }
  1253. multimesh_dirty_list = nullptr;
  1254. }
  1255. /* SKELETON API */
  1256. RID MeshStorage::skeleton_allocate() {
  1257. return RID();
  1258. }
  1259. void MeshStorage::skeleton_initialize(RID p_rid) {
  1260. }
  1261. void MeshStorage::skeleton_free(RID p_rid) {
  1262. }
  1263. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1264. }
  1265. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1266. }
  1267. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1268. return 0;
  1269. }
  1270. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1271. }
  1272. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1273. return Transform3D();
  1274. }
  1275. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1276. }
  1277. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1278. return Transform2D();
  1279. }
  1280. void MeshStorage::skeleton_update_dependency(RID p_base, DependencyTracker *p_instance) {
  1281. }
  1282. /* OCCLUDER */
  1283. void MeshStorage::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) {
  1284. }
  1285. #endif // GLES3_ENABLED