csg.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. /*************************************************************************/
  2. /* csg.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "csg.h"
  31. #include "core/math/geometry.h"
  32. #include "core/math/math_funcs.h"
  33. #include "core/sort_array.h"
  34. // Static helper functions.
  35. inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
  36. return (p_point1 - p_point2).length_squared() < p_distance * p_distance;
  37. }
  38. inline static Vector2 interpolate_segment_uv(const Vector2 p_segement_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
  39. float segment_length = (p_segement_points[1] - p_segement_points[0]).length();
  40. if (segment_length < CMP_EPSILON)
  41. return p_uvs[0];
  42. float distance = (p_interpolation_point - p_segement_points[0]).length();
  43. float fraction = distance / segment_length;
  44. return p_uvs[0].linear_interpolate(p_uvs[1], fraction);
  45. }
  46. inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
  47. if (p_interpolation_point.distance_squared_to(p_vertices[0]) < CMP_EPSILON2)
  48. return p_uvs[0];
  49. if (p_interpolation_point.distance_squared_to(p_vertices[1]) < CMP_EPSILON2)
  50. return p_uvs[1];
  51. if (p_interpolation_point.distance_squared_to(p_vertices[2]) < CMP_EPSILON2)
  52. return p_uvs[2];
  53. Vector2 edge1 = p_vertices[1] - p_vertices[0];
  54. Vector2 edge2 = p_vertices[2] - p_vertices[0];
  55. Vector2 interpolation = p_interpolation_point - p_vertices[0];
  56. float edge1_on_edge1 = edge1.dot(edge1);
  57. float edge1_on_edge2 = edge1.dot(edge2);
  58. float edge2_on_edge2 = edge2.dot(edge2);
  59. float inter_on_edge1 = interpolation.dot(edge1);
  60. float inter_on_edge2 = interpolation.dot(edge2);
  61. float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
  62. if (scale == 0)
  63. return p_uvs[0];
  64. float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
  65. float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
  66. float u = 1.0f - v - w;
  67. return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
  68. }
  69. static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
  70. Vector3 edge1 = p_vertices[1] - p_vertices[0];
  71. Vector3 edge2 = p_vertices[2] - p_vertices[0];
  72. Vector3 h = p_dir.cross(edge2);
  73. real_t a = edge1.dot(h);
  74. // Check if ray is parallel to triangle.
  75. if (Math::is_zero_approx(a))
  76. return false;
  77. real_t f = 1.0 / a;
  78. Vector3 s = p_from - p_vertices[0];
  79. real_t u = f * s.dot(h);
  80. if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance)
  81. return false;
  82. Vector3 q = s.cross(edge1);
  83. real_t v = f * p_dir.dot(q);
  84. if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance)
  85. return false;
  86. // Ray intersects triangle.
  87. // Calculate distance.
  88. real_t t = f * edge2.dot(q);
  89. // Confirm triangle is in front of ray.
  90. if (t >= p_tolerance) {
  91. r_intersection_point = p_from + p_dir * t;
  92. return true;
  93. } else
  94. return false;
  95. }
  96. inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
  97. real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
  98. // If determinant is, zero try shift the triangle and the point.
  99. if (Math::is_zero_approx(det)) {
  100. if (p_shifted > 2) {
  101. // Triangle appears degenerate, so ignore it.
  102. return false;
  103. }
  104. Vector3 shift_by;
  105. shift_by[p_shifted] = 1;
  106. Vector3 shifted_point = p_point + shift_by;
  107. Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
  108. return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
  109. }
  110. // Find the barycentric coordinates of the point with respect to the vertices.
  111. real_t lambda[3];
  112. lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
  113. lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
  114. lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
  115. // Point is in the plane if all lambdas sum to 1.
  116. if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1))
  117. return false;
  118. // Point is inside the triangle if all lambdas are positive.
  119. if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0)
  120. return false;
  121. return true;
  122. }
  123. inline static bool is_triangle_degenerate(const Vector2 p_vertices[3], real_t p_vertex_snap2) {
  124. real_t det = p_vertices[0].x * p_vertices[1].y - p_vertices[0].x * p_vertices[2].y +
  125. p_vertices[0].y * p_vertices[2].x - p_vertices[0].y * p_vertices[1].x +
  126. p_vertices[1].x * p_vertices[2].y - p_vertices[1].y * p_vertices[2].x;
  127. return det < p_vertex_snap2;
  128. }
  129. inline static bool are_segements_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
  130. Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
  131. Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
  132. real_t segment1_length2 = segment1.dot(segment1);
  133. real_t segment2_length2 = segment2.dot(segment2);
  134. real_t segment_onto_segment = segment2.dot(segment1);
  135. if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2)
  136. return true;
  137. real_t max_separation2;
  138. if (segment1_length2 > segment2_length2) {
  139. max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
  140. } else {
  141. max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
  142. }
  143. return max_separation2 < p_vertex_snap2;
  144. }
  145. // CSGBrush
  146. void CSGBrush::_regen_face_aabbs() {
  147. for (int i = 0; i < faces.size(); i++) {
  148. faces.write[i].aabb = AABB();
  149. faces.write[i].aabb.position = faces[i].vertices[0];
  150. faces.write[i].aabb.expand_to(faces[i].vertices[1]);
  151. faces.write[i].aabb.expand_to(faces[i].vertices[2]);
  152. }
  153. }
  154. void CSGBrush::build_from_faces(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uvs, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material>> &p_materials, const PoolVector<bool> &p_invert_faces) {
  155. faces.clear();
  156. int vc = p_vertices.size();
  157. ERR_FAIL_COND((vc % 3) != 0);
  158. PoolVector<Vector3>::Read rv = p_vertices.read();
  159. int uvc = p_uvs.size();
  160. PoolVector<Vector2>::Read ruv = p_uvs.read();
  161. int sc = p_smooth.size();
  162. PoolVector<bool>::Read rs = p_smooth.read();
  163. int mc = p_materials.size();
  164. PoolVector<Ref<Material>>::Read rm = p_materials.read();
  165. int ic = p_invert_faces.size();
  166. PoolVector<bool>::Read ri = p_invert_faces.read();
  167. Map<Ref<Material>, int> material_map;
  168. faces.resize(p_vertices.size() / 3);
  169. for (int i = 0; i < faces.size(); i++) {
  170. Face &f = faces.write[i];
  171. f.vertices[0] = rv[i * 3 + 0];
  172. f.vertices[1] = rv[i * 3 + 1];
  173. f.vertices[2] = rv[i * 3 + 2];
  174. if (uvc == vc) {
  175. f.uvs[0] = ruv[i * 3 + 0];
  176. f.uvs[1] = ruv[i * 3 + 1];
  177. f.uvs[2] = ruv[i * 3 + 2];
  178. }
  179. if (sc == vc / 3)
  180. f.smooth = rs[i];
  181. else
  182. f.smooth = false;
  183. if (ic == vc / 3)
  184. f.invert = ri[i];
  185. else
  186. f.invert = false;
  187. if (mc == vc / 3) {
  188. Ref<Material> mat = rm[i];
  189. if (mat.is_valid()) {
  190. const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
  191. if (E) {
  192. f.material = E->get();
  193. } else {
  194. f.material = material_map.size();
  195. material_map[mat] = f.material;
  196. }
  197. } else {
  198. f.material = -1;
  199. }
  200. }
  201. }
  202. materials.resize(material_map.size());
  203. for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
  204. materials.write[E->get()] = E->key();
  205. }
  206. _regen_face_aabbs();
  207. }
  208. void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
  209. faces = p_brush.faces;
  210. materials = p_brush.materials;
  211. for (int i = 0; i < faces.size(); i++) {
  212. for (int j = 0; j < 3; j++) {
  213. faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
  214. }
  215. }
  216. _regen_face_aabbs();
  217. }
  218. // CSGBrushOperation
  219. void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
  220. // Check for face collisions and add necessary faces.
  221. Build2DFaceCollection build2DFaceCollection;
  222. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  223. for (int j = 0; j < p_brush_b.faces.size(); j++) {
  224. if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
  225. update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
  226. }
  227. }
  228. }
  229. // Add faces to MeshMerge.
  230. MeshMerge mesh_merge;
  231. mesh_merge.vertex_snap = p_vertex_snap;
  232. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  233. Ref<Material> material;
  234. if (p_brush_a.faces[i].material != -1) {
  235. material = p_brush_a.materials[p_brush_a.faces[i].material];
  236. }
  237. if (build2DFaceCollection.build2DFacesA.has(i)) {
  238. build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  239. } else {
  240. Vector3 points[3];
  241. Vector2 uvs[3];
  242. for (int j = 0; j < 3; j++) {
  243. points[j] = p_brush_a.faces[i].vertices[j];
  244. uvs[j] = p_brush_a.faces[i].uvs[j];
  245. }
  246. mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  247. }
  248. }
  249. for (int i = 0; i < p_brush_b.faces.size(); i++) {
  250. Ref<Material> material;
  251. if (p_brush_b.faces[i].material != -1) {
  252. material = p_brush_b.materials[p_brush_b.faces[i].material];
  253. }
  254. if (build2DFaceCollection.build2DFacesB.has(i)) {
  255. build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  256. } else {
  257. Vector3 points[3];
  258. Vector2 uvs[3];
  259. for (int j = 0; j < 3; j++) {
  260. points[j] = p_brush_b.faces[i].vertices[j];
  261. uvs[j] = p_brush_b.faces[i].uvs[j];
  262. }
  263. mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  264. }
  265. }
  266. // Mark faces that ended up inside the intersection.
  267. mesh_merge.mark_inside_faces();
  268. // Create new brush and fill with new faces.
  269. r_merged_brush.faces.clear();
  270. switch (p_operation) {
  271. case OPERATION_UNION: {
  272. int outside_count = 0;
  273. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  274. if (mesh_merge.faces[i].inside)
  275. continue;
  276. outside_count++;
  277. }
  278. r_merged_brush.faces.resize(outside_count);
  279. outside_count = 0;
  280. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  281. if (mesh_merge.faces[i].inside)
  282. continue;
  283. for (int j = 0; j < 3; j++) {
  284. r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  285. r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  286. }
  287. r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
  288. r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
  289. r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
  290. outside_count++;
  291. }
  292. r_merged_brush._regen_face_aabbs();
  293. } break;
  294. case OPERATION_INTERSECTION: {
  295. int inside_count = 0;
  296. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  297. if (!mesh_merge.faces[i].inside)
  298. continue;
  299. inside_count++;
  300. }
  301. r_merged_brush.faces.resize(inside_count);
  302. inside_count = 0;
  303. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  304. if (!mesh_merge.faces[i].inside)
  305. continue;
  306. for (int j = 0; j < 3; j++) {
  307. r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  308. r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  309. }
  310. r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
  311. r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
  312. r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
  313. inside_count++;
  314. }
  315. r_merged_brush._regen_face_aabbs();
  316. } break;
  317. case OPERATION_SUBSTRACTION: {
  318. int face_count = 0;
  319. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  320. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  321. continue;
  322. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  323. continue;
  324. face_count++;
  325. }
  326. r_merged_brush.faces.resize(face_count);
  327. face_count = 0;
  328. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  329. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  330. continue;
  331. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  332. continue;
  333. for (int j = 0; j < 3; j++) {
  334. r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  335. r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  336. }
  337. if (mesh_merge.faces[i].from_b) {
  338. //invert facing of insides of B
  339. SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
  340. SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
  341. }
  342. r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
  343. r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
  344. r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
  345. face_count++;
  346. }
  347. r_merged_brush._regen_face_aabbs();
  348. } break;
  349. }
  350. // Update the list of materials.
  351. r_merged_brush.materials.resize(mesh_merge.materials.size());
  352. for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
  353. r_merged_brush.materials.write[E->get()] = E->key();
  354. }
  355. }
  356. // CSGBrushOperation::MeshMerge
  357. // Use a limit to speed up bvh and limit the depth.
  358. #define BVH_LIMIT 8
  359. int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *facebvhptr, FaceBVH **facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
  360. if (p_depth > r_max_depth) {
  361. r_max_depth = p_depth;
  362. }
  363. if (p_size == 0) {
  364. return -1;
  365. }
  366. if (p_size <= BVH_LIMIT) {
  367. for (int i = 0; i < p_size - 1; i++) {
  368. facebvhptrptr[p_from + i]->next = facebvhptrptr[p_from + i + 1] - facebvhptr;
  369. }
  370. return facebvhptrptr[p_from] - facebvhptr;
  371. }
  372. AABB aabb;
  373. aabb = facebvhptrptr[p_from]->aabb;
  374. for (int i = 1; i < p_size; i++) {
  375. aabb.merge_with(facebvhptrptr[p_from + i]->aabb);
  376. }
  377. int li = aabb.get_longest_axis_index();
  378. switch (li) {
  379. case Vector3::AXIS_X: {
  380. SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
  381. sort_x.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  382. //sort_x.sort(&p_bb[p_from],p_size);
  383. } break;
  384. case Vector3::AXIS_Y: {
  385. SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
  386. sort_y.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  387. //sort_y.sort(&p_bb[p_from],p_size);
  388. } break;
  389. case Vector3::AXIS_Z: {
  390. SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
  391. sort_z.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  392. //sort_z.sort(&p_bb[p_from],p_size);
  393. } break;
  394. }
  395. int left = _create_bvh(facebvhptr, facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  396. int right = _create_bvh(facebvhptr, facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  397. int index = r_max_alloc++;
  398. FaceBVH *_new = &facebvhptr[index];
  399. _new->aabb = aabb;
  400. _new->center = aabb.position + aabb.size * 0.5;
  401. _new->face = -1;
  402. _new->left = left;
  403. _new->right = right;
  404. _new->next = -1;
  405. return index;
  406. }
  407. void CSGBrushOperation::MeshMerge::_add_distance(List<real_t> &r_intersectionsA, List<real_t> &r_intersectionsB, bool p_from_B, real_t p_distance) const {
  408. List<real_t> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
  409. // Check if distance exists.
  410. for (const List<real_t>::Element *E = intersections.front(); E; E = E->next())
  411. if (Math::is_equal_approx(**E, p_distance))
  412. return;
  413. intersections.push_back(p_distance);
  414. }
  415. bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
  416. Face face = faces[p_face_idx];
  417. Vector3 face_points[3] = {
  418. points[face.points[0]],
  419. points[face.points[1]],
  420. points[face.points[2]]
  421. };
  422. Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
  423. Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
  424. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
  425. enum {
  426. TEST_AABB_BIT = 0,
  427. VISIT_LEFT_BIT = 1,
  428. VISIT_RIGHT_BIT = 2,
  429. VISIT_DONE_BIT = 3,
  430. VISITED_BIT_SHIFT = 29,
  431. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  432. VISITED_BIT_MASK = ~NODE_IDX_MASK
  433. };
  434. List<real_t> intersectionsA;
  435. List<real_t> intersectionsB;
  436. int level = 0;
  437. int pos = p_bvh_first;
  438. stack[0] = pos;
  439. while (true) {
  440. uint32_t node = stack[level] & NODE_IDX_MASK;
  441. const FaceBVH *current_facebvhptr = &(facebvhptr[node]);
  442. bool done = false;
  443. switch (stack[level] >> VISITED_BIT_SHIFT) {
  444. case TEST_AABB_BIT: {
  445. if (current_facebvhptr->face >= 0) {
  446. while (current_facebvhptr) {
  447. if (p_face_idx != current_facebvhptr->face &&
  448. current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
  449. const Face &current_face = faces[current_facebvhptr->face];
  450. Vector3 current_points[3] = {
  451. points[current_face.points[0]],
  452. points[current_face.points[1]],
  453. points[current_face.points[2]]
  454. };
  455. Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
  456. Vector3 intersection_point;
  457. // Check if faces are co-planar.
  458. if ((current_normal - face_normal).length_squared() < CMP_EPSILON2 &&
  459. is_point_in_triangle(face_center, current_points)) {
  460. // Only add an intersection if not a B face.
  461. if (!face.from_b)
  462. _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0);
  463. } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
  464. real_t distance = (intersection_point - face_center).length();
  465. _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance);
  466. }
  467. }
  468. if (current_facebvhptr->next != -1) {
  469. current_facebvhptr = &facebvhptr[current_facebvhptr->next];
  470. } else {
  471. current_facebvhptr = nullptr;
  472. }
  473. }
  474. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  475. } else {
  476. bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
  477. if (!valid) {
  478. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  479. } else {
  480. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  481. }
  482. }
  483. continue;
  484. }
  485. case VISIT_LEFT_BIT: {
  486. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  487. stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
  488. level++;
  489. continue;
  490. }
  491. case VISIT_RIGHT_BIT: {
  492. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  493. stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
  494. level++;
  495. continue;
  496. }
  497. case VISIT_DONE_BIT: {
  498. if (level == 0) {
  499. done = true;
  500. break;
  501. } else
  502. level--;
  503. continue;
  504. }
  505. }
  506. if (done)
  507. break;
  508. }
  509. // Inside if face normal intersects other faces an odd number of times.
  510. return (intersectionsA.size() + intersectionsB.size()) & 1;
  511. }
  512. void CSGBrushOperation::MeshMerge::mark_inside_faces() {
  513. // Mark faces that are inside. This helps later do the boolean ops when merging.
  514. // This approach is very brute force with a bunch of optimizations,
  515. // such as BVH and pre AABB intersection test.
  516. Vector<FaceBVH> bvhvec;
  517. bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
  518. FaceBVH *facebvh = bvhvec.ptrw();
  519. AABB aabb_a;
  520. AABB aabb_b;
  521. bool first_a = true;
  522. bool first_b = true;
  523. for (int i = 0; i < faces.size(); i++) {
  524. facebvh[i].left = -1;
  525. facebvh[i].right = -1;
  526. facebvh[i].face = i;
  527. facebvh[i].aabb.position = points[faces[i].points[0]];
  528. facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
  529. facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
  530. facebvh[i].center = facebvh[i].aabb.position + facebvh[i].aabb.size * 0.5;
  531. facebvh[i].aabb.grow_by(vertex_snap);
  532. facebvh[i].next = -1;
  533. if (faces[i].from_b) {
  534. if (first_b) {
  535. aabb_b = facebvh[i].aabb;
  536. first_b = false;
  537. } else {
  538. aabb_b.merge_with(facebvh[i].aabb);
  539. }
  540. } else {
  541. if (first_a) {
  542. aabb_a = facebvh[i].aabb;
  543. first_a = false;
  544. } else {
  545. aabb_a.merge_with(facebvh[i].aabb);
  546. }
  547. }
  548. }
  549. AABB intersection_aabb = aabb_a.intersection(aabb_b);
  550. // Check if shape AABBs intersect.
  551. if (intersection_aabb.size == Vector3())
  552. return;
  553. Vector<FaceBVH *> bvhtrvec;
  554. bvhtrvec.resize(faces.size());
  555. FaceBVH **bvhptr = bvhtrvec.ptrw();
  556. for (int i = 0; i < faces.size(); i++) {
  557. bvhptr[i] = &facebvh[i];
  558. }
  559. int max_depth = 0;
  560. int max_alloc = faces.size();
  561. _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
  562. for (int i = 0; i < faces.size(); i++) {
  563. // Check if face AABB intersects the intersection AABB.
  564. if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb))
  565. continue;
  566. if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i))
  567. faces.write[i].inside = true;
  568. }
  569. }
  570. void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[], const Vector2 p_uvs[], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  571. int indices[3];
  572. for (int i = 0; i < 3; i++) {
  573. VertexKey vk;
  574. vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  575. vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  576. vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  577. int res;
  578. if (snap_cache.lookup(vk, res)) {
  579. indices[i] = res;
  580. } else {
  581. indices[i] = points.size();
  582. points.push_back(p_points[i]);
  583. snap_cache.set(vk, indices[i]);
  584. }
  585. }
  586. // Don't add degenerate faces.
  587. if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2])
  588. return;
  589. MeshMerge::Face face;
  590. face.from_b = p_from_b;
  591. face.inside = false;
  592. face.smooth = p_smooth;
  593. face.invert = p_invert;
  594. if (p_material.is_valid()) {
  595. if (!materials.has(p_material)) {
  596. face.material_idx = materials.size();
  597. materials[p_material] = face.material_idx;
  598. } else {
  599. face.material_idx = materials[p_material];
  600. }
  601. } else {
  602. face.material_idx = -1;
  603. }
  604. for (int k = 0; k < 3; k++) {
  605. face.points[k] = indices[k];
  606. face.uvs[k] = p_uvs[k];
  607. }
  608. faces.push_back(face);
  609. }
  610. // CSGBrushOperation::Build2DFaces
  611. int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
  612. for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
  613. if ((p_point - vertices[vertex_idx].point).length_squared() < vertex_snap2)
  614. return vertex_idx;
  615. }
  616. return -1;
  617. }
  618. int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
  619. // Check if vertex exists.
  620. int vertex_id = _get_point_idx(p_vertex.point);
  621. if (vertex_id != -1)
  622. return vertex_id;
  623. vertices.push_back(p_vertex);
  624. return vertices.size() - 1;
  625. }
  626. void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
  627. if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) {
  628. ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
  629. // The first vertex.
  630. if (r_vertex_indices.size() == 0) {
  631. // Simply add it.
  632. r_vertex_indices.push_back(p_new_vertex_index);
  633. return;
  634. }
  635. // The second vertex.
  636. if (r_vertex_indices.size() == 1) {
  637. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  638. Vector2 new_point = vertices[p_new_vertex_index].point;
  639. // Sort along the axis with the greatest difference.
  640. int axis = 0;
  641. if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y))
  642. axis = 1;
  643. // Add it to the beginning or the end appropriately.
  644. if (new_point[axis] < first_point[axis])
  645. r_vertex_indices.insert(0, p_new_vertex_index);
  646. else
  647. r_vertex_indices.push_back(p_new_vertex_index);
  648. return;
  649. }
  650. // Third or later vertices.
  651. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  652. Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
  653. Vector2 new_point = vertices[p_new_vertex_index].point;
  654. // Determine axis being sorted against i.e. the axis with the greatest difference.
  655. int axis = 0;
  656. if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y))
  657. axis = 1;
  658. // Insert the point at the appropriate index.
  659. for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
  660. Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
  661. if (new_point[axis] < insert_point[axis]) {
  662. r_vertex_indices.insert(insert_idx, p_new_vertex_index);
  663. return;
  664. }
  665. }
  666. // New largest, add it to the end.
  667. r_vertex_indices.push_back(p_new_vertex_index);
  668. }
  669. }
  670. void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
  671. int segments = p_segment_indices.size() - 1;
  672. if (segments < 2)
  673. return;
  674. // Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
  675. for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
  676. int closest_idx = 0;
  677. int inner_idx = p_segment_indices[sorted_idx];
  678. if (sorted_idx > segments / 2) {
  679. // Merge to other segment end.
  680. closest_idx = segments;
  681. // Reverse the merge order.
  682. inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
  683. }
  684. // Find the mergeable faces.
  685. Vector<int> merge_faces_idx;
  686. Vector<Face2D> merge_faces;
  687. Vector<int> merge_faces_inner_vertex_idx;
  688. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  689. for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
  690. if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
  691. merge_faces_idx.push_back(face_idx);
  692. merge_faces.push_back(faces[face_idx]);
  693. merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
  694. }
  695. }
  696. }
  697. Vector<int> degenerate_points;
  698. // Create the new faces.
  699. for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
  700. int outer_edge_idx[2];
  701. outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
  702. outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
  703. // Skip flattened faces.
  704. if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
  705. outer_edge_idx[1] == p_segment_indices[closest_idx])
  706. continue;
  707. //Don't create degenerate triangles.
  708. Vector2 edge1[2] = {
  709. vertices[outer_edge_idx[0]].point,
  710. vertices[p_segment_indices[closest_idx]].point
  711. };
  712. Vector2 edge2[2] = {
  713. vertices[outer_edge_idx[1]].point,
  714. vertices[p_segment_indices[closest_idx]].point
  715. };
  716. if (are_segements_parallel(edge1, edge2, vertex_snap2)) {
  717. if (!degenerate_points.find(outer_edge_idx[0]))
  718. degenerate_points.push_back(outer_edge_idx[0]);
  719. if (!degenerate_points.find(outer_edge_idx[1]))
  720. degenerate_points.push_back(outer_edge_idx[1]);
  721. continue;
  722. }
  723. // Create new faces.
  724. Face2D new_face;
  725. new_face.vertex_idx[0] = p_segment_indices[closest_idx];
  726. new_face.vertex_idx[1] = outer_edge_idx[0];
  727. new_face.vertex_idx[2] = outer_edge_idx[1];
  728. faces.push_back(new_face);
  729. }
  730. // Delete the old faces in reverse index order.
  731. merge_faces_idx.sort();
  732. merge_faces_idx.invert();
  733. for (int i = 0; i < merge_faces_idx.size(); ++i)
  734. faces.remove(merge_faces_idx[i]);
  735. if (degenerate_points.size() == 0)
  736. continue;
  737. // Split faces using degenerate points.
  738. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  739. Face2D face = faces[face_idx];
  740. Vertex2D face_vertices[3] = {
  741. vertices[face.vertex_idx[0]],
  742. vertices[face.vertex_idx[1]],
  743. vertices[face.vertex_idx[2]]
  744. };
  745. Vector2 face_points[3] = {
  746. face_vertices[0].point,
  747. face_vertices[1].point,
  748. face_vertices[2].point
  749. };
  750. for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
  751. int degenerate_idx = degenerate_points[point_idx];
  752. Vector2 point_2D = vertices[degenerate_idx].point;
  753. // Check if point is existing face vertex.
  754. bool existing = false;
  755. for (int i = 0; i < 3; ++i) {
  756. if ((point_2D - face_vertices[i].point).length_squared() < vertex_snap2) {
  757. existing = true;
  758. break;
  759. }
  760. }
  761. if (existing)
  762. continue;
  763. // Check if point is on an each edge.
  764. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  765. Vector2 edge_points[2] = {
  766. face_points[face_edge_idx],
  767. face_points[(face_edge_idx + 1) % 3]
  768. };
  769. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(point_2D, edge_points);
  770. if ((closest_point - point_2D).length_squared() < vertex_snap2) {
  771. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  772. // If new vertex snaps to degenerate vertex, just delete this face.
  773. if (degenerate_idx == opposite_vertex_idx) {
  774. faces.remove(face_idx);
  775. // Update index.
  776. --face_idx;
  777. break;
  778. }
  779. // Create two new faces around the new edge and remove this face.
  780. // The new edge is the last edge.
  781. Face2D left_face;
  782. left_face.vertex_idx[0] = degenerate_idx;
  783. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  784. left_face.vertex_idx[2] = opposite_vertex_idx;
  785. Face2D right_face;
  786. right_face.vertex_idx[0] = opposite_vertex_idx;
  787. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  788. right_face.vertex_idx[2] = degenerate_idx;
  789. faces.remove(face_idx);
  790. faces.insert(face_idx, right_face);
  791. faces.insert(face_idx, left_face);
  792. // Don't check against the new faces.
  793. ++face_idx;
  794. // No need to check other edges.
  795. break;
  796. }
  797. }
  798. }
  799. }
  800. }
  801. }
  802. void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
  803. // For each face.
  804. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  805. Face2D face = faces[face_idx];
  806. Vertex2D face_vertices[3] = {
  807. vertices[face.vertex_idx[0]],
  808. vertices[face.vertex_idx[1]],
  809. vertices[face.vertex_idx[2]]
  810. };
  811. // Check each edge.
  812. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  813. Vector2 edge_points[2] = {
  814. face_vertices[face_edge_idx].point,
  815. face_vertices[(face_edge_idx + 1) % 3].point
  816. };
  817. Vector2 edge_uvs[2] = {
  818. face_vertices[face_edge_idx].uv,
  819. face_vertices[(face_edge_idx + 1) % 3].uv
  820. };
  821. Vector2 intersection_point;
  822. // First check if the ends of the segment are on the edge.
  823. bool on_edge = false;
  824. for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
  825. intersection_point = Geometry::get_closest_point_to_segment_2d(p_segment_points[edge_point_idx], edge_points);
  826. if ((intersection_point - p_segment_points[edge_point_idx]).length_squared() < vertex_snap2) {
  827. on_edge = true;
  828. break;
  829. }
  830. }
  831. // Else check if the segment intersects the edge.
  832. if (on_edge || Geometry::segment_intersects_segment_2d(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
  833. // Check if intersection point is an edge point.
  834. if ((intersection_point - edge_points[0]).length_squared() < vertex_snap2 ||
  835. (intersection_point - edge_points[1]).length_squared() < vertex_snap2)
  836. continue;
  837. // Check if edge exists, by checking if the intersecting segment is parallel to the edge.
  838. if (are_segements_parallel(p_segment_points, edge_points, vertex_snap2))
  839. continue;
  840. // Add the intersection point as a new vertex.
  841. Vertex2D new_vertex;
  842. new_vertex.point = intersection_point;
  843. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
  844. int new_vertex_idx = _add_vertex(new_vertex);
  845. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  846. _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
  847. // If new vertex snaps to opposite vertex, just delete this face.
  848. if (new_vertex_idx == opposite_vertex_idx) {
  849. faces.remove(face_idx);
  850. // Update index.
  851. --face_idx;
  852. break;
  853. }
  854. // If opposite point is on the segemnt, add its index to segment indices too.
  855. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(vertices[opposite_vertex_idx].point, p_segment_points);
  856. if ((closest_point - vertices[opposite_vertex_idx].point).length_squared() < vertex_snap2)
  857. _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
  858. // Create two new faces around the new edge and remove this face.
  859. // The new edge is the last edge.
  860. Face2D left_face;
  861. left_face.vertex_idx[0] = new_vertex_idx;
  862. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  863. left_face.vertex_idx[2] = opposite_vertex_idx;
  864. Face2D right_face;
  865. right_face.vertex_idx[0] = opposite_vertex_idx;
  866. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  867. right_face.vertex_idx[2] = new_vertex_idx;
  868. faces.remove(face_idx);
  869. faces.insert(face_idx, right_face);
  870. faces.insert(face_idx, left_face);
  871. // Check against the new faces.
  872. --face_idx;
  873. break;
  874. }
  875. }
  876. }
  877. }
  878. int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
  879. int new_vertex_idx = -1;
  880. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  881. Face2D face = faces[face_idx];
  882. Vertex2D face_vertices[3] = {
  883. vertices[face.vertex_idx[0]],
  884. vertices[face.vertex_idx[1]],
  885. vertices[face.vertex_idx[2]]
  886. };
  887. Vector2 points[3] = {
  888. face_vertices[0].point,
  889. face_vertices[1].point,
  890. face_vertices[2].point
  891. };
  892. Vector2 uvs[3] = {
  893. face_vertices[0].uv,
  894. face_vertices[1].uv,
  895. face_vertices[2].uv
  896. };
  897. // Skip degenerate triangles.
  898. if (is_triangle_degenerate(points, vertex_snap2)) {
  899. continue;
  900. }
  901. // Check if point is existing face vertex.
  902. for (int i = 0; i < 3; ++i) {
  903. if ((p_point - face_vertices[i].point).length_squared() < vertex_snap2)
  904. return face.vertex_idx[i];
  905. }
  906. // Check if point is on an each edge.
  907. bool on_edge = false;
  908. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  909. Vector2 edge_points[2] = {
  910. points[face_edge_idx],
  911. points[(face_edge_idx + 1) % 3]
  912. };
  913. Vector2 edge_uvs[2] = {
  914. uvs[face_edge_idx],
  915. uvs[(face_edge_idx + 1) % 3]
  916. };
  917. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(p_point, edge_points);
  918. if ((closest_point - p_point).length_squared() < vertex_snap2) {
  919. on_edge = true;
  920. // Add the point as a new vertex.
  921. Vertex2D new_vertex;
  922. new_vertex.point = p_point;
  923. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
  924. new_vertex_idx = _add_vertex(new_vertex);
  925. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  926. // If new vertex snaps to opposite vertex, just delete this face.
  927. if (new_vertex_idx == opposite_vertex_idx) {
  928. faces.remove(face_idx);
  929. // Update index.
  930. --face_idx;
  931. break;
  932. }
  933. // Don't create degenerate triangles.
  934. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  935. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  936. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  937. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  938. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  939. break;
  940. }
  941. // Create two new faces around the new edge and remove this face.
  942. // The new edge is the last edge.
  943. Face2D left_face;
  944. left_face.vertex_idx[0] = new_vertex_idx;
  945. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  946. left_face.vertex_idx[2] = opposite_vertex_idx;
  947. Face2D right_face;
  948. right_face.vertex_idx[0] = opposite_vertex_idx;
  949. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  950. right_face.vertex_idx[2] = new_vertex_idx;
  951. faces.remove(face_idx);
  952. faces.insert(face_idx, right_face);
  953. faces.insert(face_idx, left_face);
  954. // Don't check against the new faces.
  955. ++face_idx;
  956. // No need to check other edges.
  957. break;
  958. }
  959. }
  960. // If not on an edge, check if the point is inside the face.
  961. if (!on_edge && Geometry::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
  962. // Add the point as a new vertex.
  963. Vertex2D new_vertex;
  964. new_vertex.point = p_point;
  965. new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
  966. new_vertex_idx = _add_vertex(new_vertex);
  967. // Create three new faces around this point and remove this face.
  968. // The new vertex is the last vertex.
  969. for (int i = 0; i < 3; ++i) {
  970. // Don't create degenerate triangles.
  971. Vector2 new_points[3] = { points[i], points[(i + 1) % 3], vertices[new_vertex_idx].point };
  972. if (is_triangle_degenerate(new_points, vertex_snap2)) {
  973. continue;
  974. }
  975. Face2D new_face;
  976. new_face.vertex_idx[0] = face.vertex_idx[i];
  977. new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
  978. new_face.vertex_idx[2] = new_vertex_idx;
  979. faces.push_back(new_face);
  980. }
  981. faces.remove(face_idx);
  982. // No need to check other faces.
  983. break;
  984. }
  985. }
  986. return new_vertex_idx;
  987. }
  988. void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
  989. // Find edge points that cross the plane and face points that are in the plane.
  990. // Map those points to 2D.
  991. // Create new faces from those points.
  992. Vector2 points_2D[3];
  993. int points_count = 0;
  994. for (int i = 0; i < 3; i++) {
  995. Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
  996. if (plane.has_point(point_3D)) {
  997. // Point is in the plane, add it.
  998. Vector3 point_2D = plane.project(point_3D);
  999. point_2D = to_2D.xform(point_2D);
  1000. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1001. } else {
  1002. Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
  1003. if (plane.has_point(next_point_3D))
  1004. continue; // Next point is in plane, it will be added separately.
  1005. if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D))
  1006. continue; // Both points on the same side of the plane, ignore.
  1007. // Edge crosses the plane, find and add the intersection point.
  1008. Vector3 point_2D;
  1009. if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
  1010. point_2D = to_2D.xform(point_2D);
  1011. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1012. }
  1013. }
  1014. }
  1015. Vector<int> segment_indices;
  1016. Vector2 segment[2];
  1017. int inserted_index[3] = { -1, -1, -1 };
  1018. // Insert points.
  1019. for (int i = 0; i < points_count; ++i) {
  1020. inserted_index[i] = _insert_point(points_2D[i]);
  1021. }
  1022. if (points_count == 2) {
  1023. // Insert a single segment.
  1024. segment[0] = points_2D[0];
  1025. segment[1] = points_2D[1];
  1026. _find_edge_intersections(segment, segment_indices);
  1027. for (int i = 0; i < 2; ++i) {
  1028. _add_vertex_idx_sorted(segment_indices, inserted_index[i]);
  1029. }
  1030. _merge_faces(segment_indices);
  1031. }
  1032. if (points_count == 3) {
  1033. // Insert three segments.
  1034. for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
  1035. segment[0] = points_2D[edge_idx];
  1036. segment[1] = points_2D[(edge_idx + 1) % 3];
  1037. _find_edge_intersections(segment, segment_indices);
  1038. for (int i = 0; i < 2; ++i) {
  1039. _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
  1040. }
  1041. _merge_faces(segment_indices);
  1042. segment_indices.clear();
  1043. }
  1044. }
  1045. }
  1046. void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  1047. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  1048. Face2D face = faces[face_idx];
  1049. Vertex2D fv[3] = {
  1050. vertices[face.vertex_idx[0]],
  1051. vertices[face.vertex_idx[1]],
  1052. vertices[face.vertex_idx[2]]
  1053. };
  1054. // Convert 2D vertex points to 3D.
  1055. Vector3 points_3D[3];
  1056. Vector2 uvs[3];
  1057. for (int i = 0; i < 3; ++i) {
  1058. Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
  1059. points_3D[i] = to_3D.xform(point_2D);
  1060. uvs[i] = fv[i].uv;
  1061. }
  1062. r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
  1063. }
  1064. }
  1065. CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
  1066. vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
  1067. // Convert 3D vertex points to 2D.
  1068. Vector3 points_3D[3] = {
  1069. p_brush.faces[p_face_idx].vertices[0],
  1070. p_brush.faces[p_face_idx].vertices[1],
  1071. p_brush.faces[p_face_idx].vertices[2],
  1072. };
  1073. plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
  1074. to_3D.origin = points_3D[0];
  1075. to_3D.basis.set_axis(2, plane.normal);
  1076. to_3D.basis.set_axis(0, (points_3D[1] - points_3D[2]).normalized());
  1077. to_3D.basis.set_axis(1, to_3D.basis.get_axis(0).cross(to_3D.basis.get_axis(2)).normalized());
  1078. to_2D = to_3D.affine_inverse();
  1079. Face2D face;
  1080. for (int i = 0; i < 3; i++) {
  1081. Vertex2D vertex;
  1082. Vector3 point_2D = to_2D.xform(points_3D[i]);
  1083. vertex.point.x = point_2D.x;
  1084. vertex.point.y = point_2D.y;
  1085. vertex.uv = p_brush.faces[p_face_idx].uvs[i];
  1086. vertices.push_back(vertex);
  1087. face.vertex_idx[i] = i;
  1088. }
  1089. faces.push_back(face);
  1090. }
  1091. void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
  1092. Vector3 vertices_a[3] = {
  1093. p_brush_a.faces[p_face_idx_a].vertices[0],
  1094. p_brush_a.faces[p_face_idx_a].vertices[1],
  1095. p_brush_a.faces[p_face_idx_a].vertices[2],
  1096. };
  1097. Vector3 vertices_b[3] = {
  1098. p_brush_b.faces[p_face_idx_b].vertices[0],
  1099. p_brush_b.faces[p_face_idx_b].vertices[1],
  1100. p_brush_b.faces[p_face_idx_b].vertices[2],
  1101. };
  1102. // Don't use degenerate faces.
  1103. bool has_degenerate = false;
  1104. if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
  1105. is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
  1106. is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
  1107. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
  1108. has_degenerate = true;
  1109. }
  1110. if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
  1111. is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
  1112. is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
  1113. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
  1114. has_degenerate = true;
  1115. }
  1116. if (has_degenerate)
  1117. return;
  1118. // Ensure B has points either side of or in the plane of A.
  1119. int in_plane_count = 0, over_count = 0, under_count = 0;
  1120. Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
  1121. ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
  1122. for (int i = 0; i < 3; i++) {
  1123. if (plane_a.has_point(vertices_b[i]))
  1124. in_plane_count++;
  1125. else if (plane_a.is_point_over(vertices_b[i]))
  1126. over_count++;
  1127. else
  1128. under_count++;
  1129. }
  1130. // If all points under or over the plane, there is no intesection.
  1131. if (over_count == 3 || under_count == 3)
  1132. return;
  1133. // Ensure A has points either side of or in the plane of B.
  1134. in_plane_count = 0;
  1135. over_count = 0;
  1136. under_count = 0;
  1137. Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
  1138. ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
  1139. for (int i = 0; i < 3; i++) {
  1140. if (plane_b.has_point(vertices_a[i]))
  1141. in_plane_count++;
  1142. else if (plane_b.is_point_over(vertices_a[i]))
  1143. over_count++;
  1144. else
  1145. under_count++;
  1146. }
  1147. // If all points under or over the plane, there is no intesection.
  1148. if (over_count == 3 || under_count == 3)
  1149. return;
  1150. // Check for intersection using the SAT theorem.
  1151. {
  1152. // Edge pair cross product combinations.
  1153. for (int i = 0; i < 3; i++) {
  1154. Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
  1155. for (int j = 0; j < 3; j++) {
  1156. Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
  1157. Vector3 sep_axis = axis_a.cross(axis_b);
  1158. if (sep_axis == Vector3())
  1159. continue; //colineal
  1160. sep_axis.normalize();
  1161. real_t min_a = 1e20, max_a = -1e20;
  1162. real_t min_b = 1e20, max_b = -1e20;
  1163. for (int k = 0; k < 3; k++) {
  1164. real_t d = sep_axis.dot(vertices_a[k]);
  1165. min_a = MIN(min_a, d);
  1166. max_a = MAX(max_a, d);
  1167. d = sep_axis.dot(vertices_b[k]);
  1168. min_b = MIN(min_b, d);
  1169. max_b = MAX(max_b, d);
  1170. }
  1171. min_b -= (max_a - min_a) * 0.5;
  1172. max_b += (max_a - min_a) * 0.5;
  1173. real_t dmin = min_b - (min_a + max_a) * 0.5;
  1174. real_t dmax = max_b - (min_a + max_a) * 0.5;
  1175. if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
  1176. return; // Does not contain zero, so they don't overlap.
  1177. }
  1178. }
  1179. }
  1180. }
  1181. // If we're still here, the faces probably intersect, so add new faces.
  1182. if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
  1183. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
  1184. }
  1185. p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
  1186. if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
  1187. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
  1188. }
  1189. p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
  1190. }